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Optimal error correction in topological subsystem codes
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A promising approach to overcome decoherence in quantum computing schemes is to perform active quantum
error correction using topology. Topological subsystem codes incorporate both the benefits of topological and
subsystem codes, allowing for error syndrome recovery with only 2-local measurements in a two-dimensional
array of qubits. We study the error threshold for topological subsystem color codes under very general external
noise conditions. By transforming the problem into a classical disordered spin model, we estimate using Monte
Carlo simulations that topological subsystem codes have an optimal error tolerance of 5.5(2)%. This means
there is ample space for improvement in existing error-correcting algorithms that typically find a threshold of

approximately 2%.
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Quantum computing promises to fundamentally further
the bounds of computability, particularly in such fields as
complexity theory and cryptography, and, in particular, the
simulation of chemical and physical systems. Unfortunately,
implementations of quantum computing proposals require
precise manipulations of quantum systems which are highly
susceptible to external noise. The technical feasibility of any
quantum computer design thus heavily relies on efficient
quantum error detection and recovery. This can be achieved,
for example, by redundantly encoding quantum information
in a code subspace of many physical qubits [1-3]. Such
a suitable subspace is defined in terms of stabilizer opera-
tors [4,5]—products of individual Pauli operators—and their
corresponding eigenvalues.

Because stabilizers need to be measured during the error
recovery procedure, geometric locality of the involved qubits
is essential for practicality. Topological error-correcting codes
[6-11] achieve this by arranging qubits on a topologically
nontrivial manifold with stabilizers acting only on neighboring
qubits. These codes promise a reliable approach to quantum
computing, because of their stability to errors [12-18]: A
sizable fraction of physical qubits needs to fail before the
logical information encoded in the system is lost beyond error
correction.

To determine the error stability of topologically pro-
tected quantum computing proposals it is customary to
map the error correction procedure onto the thermodynamic
behavior of a disordered classical (statistical-mechanical)
spin system [12,14,19]. There is a fruitful synergy between
quantum computation and statistical mechanics: On the one
hand, the stability of quantum computing proposals can be
studied with the well-established machinery from statisti-
cal physics of complex systems, and on the other hand,
it also opens the door to novel applications of statistical
models.

Unfortunately, there is one caveat: The stabilizers for
surface codes (such as the Kitaev code [6]) and topological
color codes [7] involve multiple qubits—four in the case
of the Kitaev code, six or eight for color codes. This
immensely complicates physical realizations. However, in
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stabilizer subsystem codes [20,21] some of the encoded logical
qubits are “gauge qubits” where no information is encoded.
This provides ancilla qubits to absorb decoherence effects and,
in particular, allows breaking up the required measurements
for error recovery into several individual measurement that
involve a smaller number of qubits [20,21], e.g., two. Hence,
physical realizations are more feasible at the price of requiring
additional qubits. Note that extensions and variants have also
been proposed [22,23].

A true advantage is given by topological subsystem codes
[9] which combine the robustness of topologically based
implementations with the simplicity of subsystem codes where
only measurements of neighboring qubits are required for
recovery. As in the case of surface and color codes, the
ideal error stability for topological subsystem codes can be
computed by mapping the error recovery problem onto a
classical statistical-mechanical Ising spin system where the
disorder corresponds to faulty physical qubits. Here, using
large-scale Monte Carlo simulations we compute the ideal
error correction threshold for topological subsystem color
codes affected by depolarizing noise. Our results show error
correction is feasible up to 5.5(2)% faulty physical qubits.
Remarkably, existing error-correcting algorithms only reach a
threshold of approximately 2% [24,25], leaving ample room
for improvement.

Topological subsystem codes and mapping. A stabilizer
subsystem code is defined by its gauge group G. Its elements
are Pauli operators that, by definition, do not affect encoded
states. Namely, two states p and p’ are equivalent if p =
> gipg with g; and g/ elements in the algebra generated
by G.

Topological subsystem color codes [9] are constructed by
starting from a two-dimensional lattice with triangular faces
and three-colorable vertices. Here we consider the triangular
lattice shown in Figs. 1 and 2(a). As indicated in Figs. 1
and 2(b), there are three physical qubits per triangle and the
gauge group has 2-local generators G; of the form o%¥ ® o¥,
where w = x, y, and z.

Any family of topological codes shows a finite threshold for
a given local noise source. In other words, when the intensity
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FIG. 1. (Color online) Graphical representation of the qubit
arrangement for topological subsystem color codes on a regular
triangular lattice. Each of the triangular unit cells (large light gray
triangles) contains three physical qubits (balls). The two-qubit gauge
generators 0" ® o™ are shown in green (gray, w = x), yellow (light
gray, w =y) and blue (dark gray, w = z). These are the lines
connecting the qubits (balls). They are arranged such that each
physical qubit has two generators of z type, one of x type and one of
y type. See main text for details.

of the noise is below the threshold, we can correct errors with
any desired accuracy at the price of choosing a large enough
code in the family. We are interested in the error threshold of
topological subsystem codes under the effects of depolarizing
noise, where each qubit is affected by a channel of the
form

Dyp)=(=plp+5 3 o"pa”. (1)

W=x,y,2

Here p represents the density matrix describing the quantum
state of the qubit and p € [0,1] its the probability for an
error to occur. The depolarizing channel plays a fundamental
role in quantum information protocols where the effects of
noise need to be considered, e.g., in quantum cryptography
[26,27], quantum distillation of entanglement [28], and quan-
tum teleportation [29].

It is expected that there exists a threshold value p = p,
such that in the limit of large codes, for p < p, error correction
succeeds with probability 1 and for p > p, the resultis entirely
random. Remarkably, for topological codes in general, one can
relate p. to a phase transition in a suitably chosen classical
disordered Ising spin model, as we detail next.

To construct the related classical statistical-mechanical
system, we place an Ising spin s; = +1 for each gauge
generator G;. Single-qubit Pauli operators o are mapped
onto interaction terms according to the generators G; with
which they do not commute, giving rise to a Hamiltonian of
the general form

He)=—=1 5 3 o[ @)
Jj o ow=x,y.z i

Here i enumerates all Ising spins and j all physical qubit sites,
respectively. For each spin s; the exponent g7 € {0,1} is 0
[1]if o J?” [anti]commutes with G;. The signs of the couplings
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FIG. 2. (Color online) (a) A regular triangular lattice satisfies the
vertex three-colorability requirement (indicated by A, B, C). (b) To
construct a topological subsystem code, we place three qubits (filled
large circles) inside each of the triangular unit cells and connect them
with 0% ® o° gauge generators (dotted lines). The links between
these triangles are assigned o* ® o* and 0¥ ® 0¥ gauge generators
(yellow/light gray and green/dark grey solid lines, respectively). (c)
For the mapping, gauge generators represented by colored lines in (b)
are associated with Ising spins s**»* and the qubits with interactions.
(d) Introducing new Ising spin variables s%° = s%s’* allows for the
removal of local Z, symmetries.

;" = %1 are then quenched random variables satisfying the

constraint 7; tjy ‘L'; = 1. For each j, they are all positive with

probability 1 — p and the other three configurations have
probability p/3 each.

In our specific case the Hamiltonian has the geometry
depicted in Fig. 2(c) and thus takes the form

H=-J Z (rfs]’ + rlys;)sjif + rfs’»‘s]y., 3)
J

where j enumerates qubit sites and spins are labeled, for each
j,asshowninFig. 2. Notice that z-labeled spins are arranged in
triangles, and that flipping each of these triads of spins together
does not change the energy of the system. Therefore, there is a
Z, gauge symmetry. We fix the Z, gauge symmetry and at the
same time simplify the Hamiltonian by introducing new Ising
variables s7° = s75;. Notice that these spins are constrained:
If j, k, | are three-qubit sites in a triangle, sizs,?sfz = 1. The
simulated Hamiltonian therefore reads [30]

n
= —J ) TistisE 4 rls)sE 4 Tishs)
H=-J TiSisT A TissT Ty 4)
J

Note that the Hamiltonian in Eq. (4) has no local symmetries,
but a global Z, x Z, symmetry. Indeed, we can color spins
according to their nearest colored vertex in the original lattice
[Fig. 2(a)], producing three sublattices A, B, and C. Flipping
the spins of two of these sublattices together leaves the energy
invariant, giving rise to the indicated symmetry.

We are thus left with a random spin system with two
parameters, 7 and p. It is expected that for low T and
p the system will be magnetically ordered. In the ground
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states each sublattice has aligned spins and thus the sublattice
magnetization is a good order parameter:

1
m:N—PZsi, (®))

where Np = L?/3 (L the linear system size) represents the
number of spins in one of the sublattices. The threshold p,
for topological subsystem codes is recovered as the critical p
along the Nishimori line [31]

l—p

4BJ =In ,
p/3

(6)

where the ferromagnetic phase of a sublattice is lost [12].

Numerical details. We investigate the critical behavior of
the classical Ising spin model [Eq. (4)] via large-scale parallel
tempering Monte Carlo simulations [32,33]. Both spin states
and interaction terms are bit encoded to allow for efficient local
updates via bit masking. Detecting the transition temperature
T.(p) for different fixed amounts of disorder allows us to
pinpoint the phase boundary in the p-T phase diagram
(Fig. 4).

We choose periodic boundary conditions keeping in mind
the colorability requirements. Then we can use the magnetiza-
tion defined in Eq. (5) to construct the wave-vector-dependent
magnetic susceptibility

2
1 .
xm(K) = N_P <(Z Sielk'R'> > , @)
T

ieP

where (- - -)7 denotes a thermal average and R; is the spatial
location of the spin s;. From Eq. (7) we construct the two-point
finite-size correlation function

1 [Xm (0)]av
= - 1’ 8
SL 2 Sin(kmin/z) [Xm (kmin)]av ( )

where [-- -],y denotes an average over disorder and Ky, =
(2w /L,0) is the smallest nonzero wave vector. Near the
transition &;, is expected to scale as

£, /L ~ X[L'"(T — T,)], ©)

where X is a dimensionless scaling function. Because at the
transition temperature T = T, the argument of Eq. (9) is zero
(up to scaling corrections) and hence independent of L, we
expect lines of different system sizes to cross at this point. If,
however, the lines do not meet, we know that no transition
occurs in the studied temperature range.

When determining the transition temperature 7.(p) for
a given disorder rate p, the correlation functions &;/L
are obtained by averaging over several disorder realizations
(governed by p) for every system size L. Because we are
only able to investigate limited system sizes L < 00, a careful
analysis of finite-size effects is required when estimating the
transition temperature in the thermodynamic limit.
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TABLE 1. Simulation parameters: p is the error rate for the
depolarizing channel, L is the linear system size, N, is the number
of disorder samples, f,q = 2” is the number of equilibration sweeps,
Tnin [Timax] 1s the lowest [highest] temperature, and Ny the number of
temperatures used.

p L N, sa b Tmin Tmax N T

0.000-0.020 9,12 3200 17 1.40 2.50 24
0.000-0.020 18 1600 18 1.40 2.50 24
0.000-0.020 24 400 19 1.40 2.50 28
0.030-0.040 9,12 4800 18 1.25 2.40 28
0.030-0.040 18 2400 19 1.25 2.40 28
0.030-0.040 24 800 20 1.25 2.40 32
0.045-0.060 9,12 9600 19 0.9 2.20 32
0.045-0.060 18 4800 21 0.9 2.20 36
0.045-0.060 24 2400 24 0.9 2.20 48

In all simulations, equilibration is tested using a base-
2 logarithmic binning of the data: Once the data for all
observables agree for three logarithmically sized bins within
error bars we deem the Monte Carlo simulation for that system
size to be in thermal equilibrium. The simulation parameters
can be found in Table I.

Results. For the pure system (p = 0) there is a sharp
transition visible directly in the sublattice magnetization.
The transition temperature is T¢ pue A~ 1.65(1). For larger
amounts of disorder, a possible transition can be located
precisely by means of the two-point finite-size correlation
function [Eq. (8)]. Sample data for a disorder strength of
p = 0.048 (i.e., this would mean that on average 4.8% of the
physical qubits have failed) are shown in Fig. 3, indicating a
transition temperature of 7.(p) = 1.251(8). At p = 0.055(2),
the lines only touch marginally such that both the scenario of
a crossing as well as no transition are compatible within error

€L/ L L= 9 —a—

p = 0.048
3L Tu(p) ~1.251(8)
—

1
1.15 1.20 1.25 1.30 135 T

FIG. 3. (Color online) Crossing of the correlation function &, /L
with a disorder rate of p = 0.048. The data exhibit a clear crossing
at a transition temperature of 7.(p) &~ 1.251(8) [30]. The shaded area
corresponds to the error bar in the estimate of 7.(p). Note that error
bars are calculated using a bootstrap analysis of 500 resamplings.
Corrections to scaling are minimal at this disorder rate, but increase
closer to the error threshold.
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FIG. 4. (Color online) Computed phase diagram for the classical
disordered spin model shown in Eq. (3). Each data point 7.(p) on the
phase boundary (dashed curve separating white and shaded regions)
is calculated by locating the crossing in correlation function &, /L
for different system sizes L at a fixed disorder rate p. The Nishimori
line (blue solid line) indicates where the requirement for the mapping
[Eq. (6)] holds. The error threshold p. &~ 0.055(2) is found where
the Nishimori line intersects the phase boundary between the ordered
phase (shaded) and the disordered phase (not shaded, larger 7 and p).
Below p. &~ 0.055(2) error correction is feasible. The red (dark gray)
shaded vertical bar corresponds to the statistical error estimate for p,.
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bars. For error rates p > p., the lines do not meet, indicating
that there is no transition in the temperature range studied.

The crossing of the critical phase boundary 7.(p) with
the Nishimori line [Eq. (6)] determines the error threshold to
depolarization. Our (conservative) estimate is p. =~ 0.055(2).
Our results are summarized in Fig. 4, which shows the
estimated phase diagram.

Summary. We have calculated numerically the error re-
silience of topological subsystem codes to the depolarizing
channel by mapping the error correction procedure onto a
statistical-mechanical Ising spin model with disorder. The
large critical error rate of p. = 5.5(2)%, combined with a
streamlined error recovery procedure that requires only two-
qubit interactions, constitutes a promising implementation
concept for quantum computing.
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