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Experimental observation of the dual behavior of PT -symmetric scattering
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We investigate experimentally parity-time (PT ) symmetric scattering using LRC circuits in an inductively
coupled PT -symmetric pair connected to transmission line leads. In the single-lead case, the PT -symmetric
circuit acts as a simple dual device—an amplifier or an absorber depending on the orientation of the lead. When
a second lead is attached, the system exhibits unidirectional transparency for some characteristic frequencies.
This nonreciprocal behavior is a consequence of generalized (nonunitary) conservation relations satisfied by the
scattering matrix.
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While there is absolutely no doubt as to the usefulness of
gain mechanisms for signal boosting and information transfer,
loss, on the other hand, is typically undesirable—one to be
avoided if at all possible—since it degrades the efficiency
of the structures employed to perform useful operations on
these signals. It is perhaps for this reason that researchers
have never intentionally explored the combination of gain and
loss as a duality of useful ingredients in device and materials
engineering.

Currently, however, an alternate viewpoint is emerging
aiming to manipulate absorption, and, via a judicious design
that involves the combination of delicately balanced amplifica-
tion and absorption mechanisms, achieve classes of synthetic
structures with altogether new physical behavior and novel
functionality. This idea deliberately exploits notions of parity
(P) and time (T ) symmetry [1–3] and can be naturally incorpo-
rated into the framework of classical optics [4]. In fact, optical
media with delicately balanced gain and loss characteristics
of systems with joint parity-time (PT ) symmetry have been
reported [5] showing several intriguing features [4–21]. These
include, among others, power oscillations and nonreciprocity
of light propagation [4,5,10], nonreciprocal Bloch oscillations
[11], and unidirectional invisibility [19]. In the nonlinear
domain, such pseudo-Hermitian nonreciprocal effects can be
used to realize a new generation of on-chip isolators and
circulators [9]. Other results within the framework of PT -
optics include the realization of coherent perfect laser-absorber
[13,14] and nonlinear switching structures [15].

More recently these ideas have been extended into the realm
of electronic circuitry [22], where it was demonstrated that a
pair of coupled LRC circuits, one with amplification and the
other with an equivalent amount of attenuation, provide the
simplest experimental realization of a PT -symmetric system.
The PT -circuitry approach suggested in Ref. [22] opens new
avenues for innovative integrated circuitry architectures which
will afford novel avenues for signal manipulation, and reduced
circuit loss. Moreover, it allows for direct contact with cutting
edge technological problems appearing in (nano)antenna
theory and split-ring resonator metamaterial arrays.

Although the study of PT -symmetric Hamiltonians has
been a subject of intense research efforts, relatively few authors
have up to now theoretically studied the equivalent scattering
system [12–14,16–19,23]. Given that the additional freedom
of the gain and loss parameter will lead to a wealth of novel

scattering phenomena, it is surprising that there is a lack of
experimental investigations on PT scattering.

Here we report initial experimental results for the scattering
properties of PT -symmetric systems. The scattering setup
consists of a pair of inductively coupled LRC oscillators, one
with gain and the other with loss, coupled to transmission
line (TL) leads. Our measurements reveal the signatures of the
parity-time symmetry in the conservation relations satisfied
by the nonunitary scattering matrix. In the simplest possible
scattering setup where the target is coupled to a single TL,
we find that the reflection signal is nonreciprocal and respects
the (nonunimodular) conservation relation rLr∗

R = 1, where
rL(rR) is the reflection associated to a left (right) incident
wave. Furthermore, we have identified a transition from a
subunitary to a superunitary scattering process and associate it
with the spatial structure of the potential inside the scattering
domain. Once a second TL is attached to the PT scatterer,
the system demonstrates unidirectional transparency, where
the transmittance is unity and the reflectance is zero, but only
for waves incident from a single side. Being free of basic
theoretical approximations, and due to its relative simplicity
in the experimental implementation, the LRC networks with
PT symmetry can offer unique insights into the study of
PT -symmetric scattering which is at the forefront of current
research in various areas of physics.

The heart of thePT -symmetric scatterer (load) is the pair of
inductively coupled LC resonators (dimer) shown in the insets
of Fig. 1 [22]. Each inductor consists of 75 turns of #24 copper
wire wound on 15-cm-diam polyvinyl chloride (PVC) forms
in a 6 × 6 mm loose bundle for an inductance L0 = 2.32 mH.
The coils, matched to within 1% by repositioning one of the
turns, are mounted coaxially with a bundle separation that
determines the mutual coupling of μ = M/L0 = 0.29 used
for the data presented in this work. The capacitances are
10.36 nF silver mica in addition to the self-capacitance of
the coil bundles of ∼320 pF. Capacitance balance is trimmed
by substituting ∼360 pF of one side with a GR722-M variable
capacitance. The uncoupled frequency of each resonator is
ω0 = 1/

√
LC = 2πν with ν = 30.957 kHz. Loss imposed on

the right half of the dimer is a standard carbon resistor R.
Gain imposed on the left half of the dimer, symbolized by
−R, is implemented with an LF356-based negative impedance
converter (NIC). The NIC gain is trimmed to oppositely match
the value of R used on the loss side, setting the gain and loss
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FIG. 1. (Color online) Experimental reflectances for a single TL
attached to the lossy (RR) or the gain (RL) side of the dimer (see lower
insets) for μ = 0.29, γ = 0.188 875, and η = 0.0305. The black line
corresponds to R−1

L and confirms the nonreciprocal nature RLRR = 1
of the PT scattering. The upper inset shows the measurements for
the left (right) reflection phases φL (φR). The blue (dark gray) lines
are the theoretical results, Eq. (4).

parameter γ = R−1√L/C = 1/(ω0RC). An additional NIC
is included on the loss side so that intrinsic resonator losses
on both sides can be compensated for prior to setting the gain
and loss parameter.

We start our scattering studies with the following two
reciprocal geometries: In the first case, a TL is attached
to the left (amplified) circuit of the dimer load while in
the second case, the TL is connected to the right (lossy)
circuit of the load (see lower right and left insets of Fig. 1,
respectively). Experimentally, the equivalent of a TL with
characteristic impedance Z0 is attached to either side of the
dimer at the LC circuit voltage node in the form of a resistance
R0 = Z0 in series with an HP3325A synthesizer. The right
and left traveling-wave components associated with the TL
are deduced from the complex voltages on both sides of R0

with an EG&G 7256 lock-in amplifier. With VLC the voltage
on the LC circuit, and V0 the voltage on the synthesizer side
of the coupling resistor R0, the right (incoming) wave has a
voltage amplitude V +

L = V0/2 and the left (reflected) wave
has a voltage amplitude V −

L = VLC − V0/2. The lock-in is
referenced to the synthesizer, defining the phases of the wave
components relative to the incoming wave.

At any point along a TL, the current and voltage determine
the amplitudes of the right and left traveling-wave components
[24]. The forward V +

L|R and backward V −
L|R wave amplitudes,

and VL|R and IL|R the voltage and current at the left (L) or right
(R) TL-dimer contacts satisfy the continuity relation

VL|R = V +
L|R + V −

L|R, IL|R = [V +
L|R − V −

L|R]/Z0, (1)

which connects the wave components to the currents and
voltages at the TL-dimer contact points. Note that with this
convention, a positive lead current flows into the right circuit,
but out of the left circuit, and that the reflection amplitudes for
left or right incident waves are defined as rL ≡ V −

L /V +
L and

rR ≡ V +
R /V −

R , respectively.
Application of the first and second Kirchoff’s laws at the

TL leads allows us to find the corresponding wave amplitudes
and reflection. For example, the case of the left-attached lead

in the lower right inset of Fig. 1 gives

η(V +
L − V −

L ) = IM
L − γVL − iωVL,

VL = −iω
[
IM
L + μIM

R

]
, VR =−iω

[
IM
R + μIM

L

]
,

0 = IM
R + γVR − iωVR, (2)

where γ is the gain and loss parameter, η = √
L/C/Z0 is the

dimensionless TL impedance, and IM
L|R are the current ampli-

tudes in the left or right inductors. Here, the dimensionless
wave frequency ω is in units of 1/

√
LC. Similar equations

apply for the right-attached case shown in the lower left inset
of Fig. 1.

We are interested in the behavior of the reflectance RL|R ≡
|rL|R|2, and spatial profile of the potential VL|R inside the
scattering domain, as the gain and loss parameter γ and the
frequency ω changes.

ForPT -symmetric structures, the corresponding scattering
signals satisfy generalized unitarity relations which reveal the
symmetries of the scattering target. Specifically, in the single-
port setup this information is encoded solely in the reflection.
To unveil it, we observe that the lower left setup of Fig. 1 is
the PT -symmetric replica of the lower right one. Assuming
therefore that a potential wave at the left lead (lower right inset)
has the form VL(x) = exp(ikx) + rL exp(−ikx) [we assume
V +

L = 1 and V −
L = rL in Eq. (1)], we conclude that the form of

the wave at the right lead associated with the lower left setup of
Fig. 1 is VR(x) = exp(−ikx) + rr exp(ikx) = V ∗

L (−x). Direct
comparison leads to the relation

rLr∗
R = 1 → RL = 1/RR and φL = φR, (3)

where φL (φR) are the left (right) reflection phases. Note that
Eq. (3) differs from the more familiar conservation relation
R = 1, which applies to unitary scattering processes as a
result of flux conservation. In the latter case the left and right
reflectances are equal. Instead in the PT -symmetric case we
have in general that RL �= RR .

For the specific case of the PT -symmetric dimer, we
can further calculate analytically the exact expression for the
reflection coefficients. From Eqs. (2) we have

rL(ω) = −f (−η,−γ )/f (η,−γ ),

rR(ω) = −f (−η,γ )/f (η,γ ), (4)

f = 1 − [2 − γm(γ + η)]ω2 + mω4 − iηω(1 − mω2),

with

m = 1/
√

1 − μ2.

In the limiting case of ω → 0,∞ the reflections becomes rR →
∓1 and thus unitarity is restored.

In the main panel of Fig. 1 we report representative
measurements of the reflection signals for the two scattering
configurations and compare them with Eq. (4). The synthesizer
frequency is slowly swept through the region of interest,
producing the reflectance RL = |V −

L /V +
L | as a function of

frequency, resulting in the red (dark gray) squares of Fig. 1. A
similar procedure is used to obtain the reflectance RR from the
right (loss) side of the dimer, resulting in the green (light gray)
squares of Fig. 1. The measured reflectances RL and RR satisfy
the generalized conservation relation RLRR = 1 [25] while
for the reflection phases we have that φL = φR , as expected
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FIG. 2. (Color online) The ω-γ phase diagram for μ = 0.57,
indicating the existence of a subunitary [log10(RR) < 0] and a
complimentary superunitary [log10(RR) > 0] domain for the setup
shown at the lower left inset of Fig. 1; the (white) plane log10(R) = 0
is shown for reference while the boundary Eq. (5) is indicated with a
bold (red/gray) line.

from Eq. (3). Therefore, our experiment demonstrates that a
PT -symmetric load is a simple electronic dual device that for
the same values of the parameters ω,μ,γ acts as an absorber
as well as a signal amplifier, depending on the direction of the
incident signal.

Next, we identify the existence of a subunitary domain for
which R < 1 (flux is diminished), and a superunitary domain
for which R > 1 (flux is enhanced). At the transition between
the two domains RL = RR = 1, in which case the scattering
from both sides conserves flux. Such reflectance degeneracies
(RDs) occur as a parameter such as the frequency ω (or γ ) is
varied continuously. Requiring that |rR| = 1, we get

γ ∗ =
√

−1 + 2ω2−(1 − μ2)ω4

(1−μ2)ω2
and

|ω2 − 1|
ω2

� μ � 1.

(5)

A panorama of theoretical RR(ω,γ ) is shown in Fig. 2. In the
same plot we mark the transition line γ ∗(ω) where a RD occurs.
Inside this domain, a singularity point appears for which RR →
∞, while a reciprocal point for which RR = 0 is found in
the complementary domain. The corresponding (ωs; γ∞,0) are
found from Eq. (4) to be γ∞,0 = 1

2 (
√

η2 + 4μ2

(1−μ2) ∓ η), ωs =
1√

1−μ2
. Obviously via Eq. (3) we have the reverse scenario

for RL.
The subunitary-to-superunitaryPT -symmetric transition is

also manifest in the spatial structure of the potential (VL; VR)
inside the dimer. From Eq. (2) we get

VL = 2ηω[1 − mω(ω − iγ )]/D,

VR = −2ημω/D, (6)

D = ηω(1 − mω2) + i{1 − ω2[2 − m(ω2 + γω + γ 2)]}.
Typical potential amplitudes (|VL|; |VR|) for the setup of the
lower left inset of Fig. 1 versus the frequency ω are shown

FIG. 3. (Color online) The spatial potential distribution inside
the dimer versus the frequency ω. The symbols correspond to
experimental data while the lines to the theoretical predictions of
Eq. (6). The TL is coupled to the lossy side. We have used the same
parameters as those used in Fig. 1. The blue dashed lines indicate the
boundaries between subunitary to superunitary scattering where RDs
occur.

in Fig. 3. We observe that they are in general asymmetric. In
the superunitary domain, the gain side is characterized by a
larger potential amplitude |VL| > |VR| while in the subunitary
domain the scenario is reversed and |VL| < |VR|. The latter
configuration ensures that more power is being consumed than
compensated for by the gain circuit, while the inverse argument
applies for the former configuration. At frequencies where
the RD occurs, the potential profiles are spatially symmetric.
This is consistent with the intuitive expectation that in order
to conserve flux the excitation must on average spend equal
amounts of time in the loss and gain circuits of the structure.
Obviously, the reverse scenario occurs if we coupled the PT
dimer to the TL from the gain side.

Finally, we have experimentally studied the generalized
conservation relations for the case of two-port scattering
processes (see the inset of Fig. 4). Specifically, for one-

FIG. 4. (Color online) Experimental measurements (symbols) of
T , RL|R for the two-port scattering setup shown in the inset. The solid
lines (with the corresponding colors) are the numerical values of
T , RL|R . The conservation relation Eq. (7) RLRR + 2T − T 2 = 1
extracted from the experimental data is reported with blue solid
circles. The horizontal dashed blue line indicates the value 1. The
vertical dashed lines indicate the frequencies for which we have
unidirectional transparency. We have used the same parameters as
those used in Fig. 1.
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dimensional (1D) geometries, it was found [13,14,19,23] that
while the reflectances for left and right incident waves might
be different as in the single-port case, the corresponding
transmittances are the same, i.e., TL = TR = T . Moreover,
the following conservation relation was shown to hold [14]:√

RLRR = |T − 1|. (7)

Note that Eq. (7) is an intriguing generalization of the more
familiar conservation relation R + T = 1, which applies to
unitary processes. In the PT -symmetric case, the geometric
mean of the two reflectances,

√
RLRR replaces the single

reflectance R [26].
Our measurements for RL|R and T are shown in Fig. 4.

The quantity RLRR + 2T − T 2 (blue/gray solid circles) is
evaluated from the experimental data and it is found to be 1, as
it is expected from Eq. (7). An interesting result of our analysis
is that at specific ω values (marked with vertical dashed lines)
the transmittance becomes T = 1, while at the same time one
of the reflectances vanishes. Hence, the scattering for this

direction of incidence is flux conserving and the structure is
unidirectionally transparent. Periodic repetition of the PT -
symmetric unit will result in the creation of unidirectionally
transparent frequency bands. The phenomenon was first
predicted in Ref. [19] and its generalization was discussed in
Ref. [14].

In summary, we have presented experimental evidence of
the anomalous properties of PT -symmetric scattering. On
this basis, we propose PT -symmetric LRC circuits as an
easily realizable system where many other theoretical ideas
can be investigated. Their simplicity and direct accessibility to
the dynamical variables enables insight and a more thorough
understanding of PT -symmetric scattering. Due to space con-
siderations, we defer a discussion of other results pertaining to
the time-dependent aspects of PT scattering to a subsequent
publication.
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