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Comment on “Pressure dependence of wall relaxation in polarized 3He gaseous cells”
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Zheng et al. [Zheng, Gao, Ye, and Zhang, Phys. Rev. A 83, 061401(R) (2011)] have measured a strong linear
pressure dependence of the nuclear relaxation rate of 3He in glass cells typically used to generate and/or store
polarized 3He at room and cryogenic temperatures. Their interpretation is that this linear dependence is a general
characteristic of paramagnetic wall relaxation, and they offer a theoretical explanation of the effect based on
diffusion theory in the bulk with an incorrect boundary condition. We question the physical basis of the boundary
condition and suggest some alternate explanations of the observations. Numerous previous studies support a
broadly valid pressure-independent model for wall relaxation.
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I. INTRODUCTION

The central claim of the paper by Zheng et al. [1] is
that the relaxation rate of nuclear spin-polarized 3He in
glass cells depends linearly on the gas pressure at constant
temperature. A further claim is that this linear dependence
results from diffusive transport of polarized 3He atoms to the
cell wall. The authors’ theoretical treatment of this relaxation
is physically implausible: the characteristic time scale for
diffusion across their cells is much shorter than the measured
longitudinal nuclear relaxation time T1, which means that
diffusion can play no role in conventional wall relaxation.
In addition, their claims would contradict many previous
studies over decades that either demonstrate or rely on the
assumption that wall relaxation under most circumstances is
density independent [2–9] . The physical reasons for the usual
pressure independence of wall relaxation are well known to
the community and indeed are presented in the discussion of
Eq. (1) of Zheng et al.:

1

T1
= μv̄S

4V
, (1)

where S/V is the surface-to-volume ratio of the cell, v̄ is the
rms thermal velocity of 3He atoms, and μ is the depolarization
probability per wall collision. The point is that the number
of wall collisions per particle per second for the entire
ensemble is independent of pressure [10]; hence, so is the
ensemble average wall depolarization rate. This only breaks
down when the depolarization is so strong that it depletes
the polarization density near the walls. Zheng et al. [1] seek
to add a diffusion-dependent component to the relaxation
given by Eq. (1), despite the fact that their polarization cells
are demonstrably in the weak depolarization limit μ � 1.
We provide intuitive and formal arguments for the correct
handling of diffusion, review the assumptions for the result
in Eq. (1), propose possible alternative explanations of the
observed results, and review relevant historical results.

*saam@physics.utah.edu

II. DIFFUSION EQUATION ANALYSIS

Zheng et al. [1] present an explanation of their result based
on the diffusion equation [their Eq. (3)], with the ill-posed
boundary condition given by their Eq. (5). The boundary
condition as stated by Zheng et al. [1] is dimensionally
incorrect, given that they identify their parameter α to be the
probability of polarization loss at the surface. According to
standard diffusion theory the correct boundary condition is

D
∂ρ(r,t)

∂r

∣∣∣∣
r=R

= − v̄

4
μρ(r,t), (2)

where ρ (r,t) is the number density of polarized 3He and D is
the diffusion constant. (For example, see Eq. (10) of Ref. [11]).
For a discussion of the boundary condition [Eq. (2)] in relation
to the diffusion limit of various kinds of random walks see
Ref. [12].

Considering the diffusion theory analysis for a spherical cell
to first order in the dimensionless parameter β = μv̄R/(4D),
where R is the radius of the cell, the eigenvalue solutions to
this problem are x2

k ≈ 3β + kπ (k = 0,1,2,3, . . .). For weak
relaxation (β � 1), the solution for the lowest order mode
yields 1/T1 = x2

0D/R2 = 3μv̄/4R, which is on the order of
μ/τb, where τb = R/v̄ is the time for a ballistically moving
particle to traverse the cell. Hence the relaxation time is
independent of pressure unless β approaches unity. For β � 1,
a graphical solution yields x0 ≈ π , yielding T1 ≈ τd < 1 s
compared with ≈20 h for their cell filled with 1 bar 3He, where
τd = R2/(π2D) is the time constant for the first diffusion
mode. If the observed T1 is much larger than τd, then the
theory predicts it will be independent of pressure (for a uniform
surface).

Additional insight comes from the idea that if two serial
processes are required to cause relaxation, then the charac-
teristic times for these processes are added together to yield
T1 [3]. In this case, the typical 3He atom first diffuses to the
wall taking a time τd . Once near the wall, the characteristic
relaxation time is 4V/μv̄S. The measured relaxation time T1

for the cell is then given by T1 ≈ τd + 4V/μv̄S. The physics of
gas-phase relaxation comes down to the relative size of these
two terms and the size of μ. Evaluation of this expression
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for the conditions of the cells in Ref. [1] yields a plot of the
variation of T1 with μ similar to that shown in Appendix A
of Ref. [2]. Such a plot illustrates that the pressure does not
affect T1 unless μ is so large that T1 becomes comparable to
the diffusion time.

III. PRESSURE-DEPENDENT RELAXATION

The result in Eq. (1) of Zheng et al. [1] rests on three
important assumptions: (i) the wall interactions have a range
much shorter than the mean free path λ of the atoms;
(ii) the relaxation sites on the wall have a very small occupation
probability; and (iii) the wall interactions are everywhere
weak, i.e., μ � 1 and many wall collisions are required to
fully depolarize a spin [2]. The above assumptions are broadly
valid, particularly for conventional sealed glass cells. For
paramagnetic relaxation sites, assumption (i) is easily satisfied:
the range of the wall interaction is perhaps a few tenths of a
nanometer, whereas the mean free path at 1 bar is >100 nm
and even longer at lower pressures. Given the extremely short
duration (�1 ps) for wall collisions, assumption (ii) is almost
certainly satisfied for any reasonable gas density. For the cells
in Ref. [1], T1 � τd is always satisfied.

Assumption (iii) can be violated if the depolarization is so
strong that it depletes the polarization density near the walls.
This suggests a possible explanation of the observations of
Zheng et al. [1]. Localized regions of the surface with a high
depolarization probability would deplete the local polarization
density resulting in a linear pressure dependence, while, since
they cover only a fraction of the surface, the resulting T1

would not be too short. In the experiment the cells used at
room temperature were made of Rb-coated Pyrex and were
connected to an O-ring valve through a 1.5-mm-inner-diameter
Pyrex capillary tubing. These attachments may be acting as a
localized region with very high depolarization rate while the
rest of the cell has a negligible effect on the apparent relaxation
rate. In this case the rate of diffusion through the capillary to
the valve can directly affect the relaxation rate, and Zheng
et al. [1] do not show definitively that this diffusion can be
neglected in their cells. Jacob et al. [13] treated this problem
with the simplifying assumptions that the valve materials have
μ = 1 and the capillary walls have μ � 1. They found that
the contribution to relaxation from the capillary is given by

(
1

T1

)
cap

= πr2D

V L
, (3)

where r and L are the capillary radius and length. The
prediction of Eq. (3) for the cells in Ref. [13] was found
to be in approximate agreement with the capillary relaxation
by positioning a bead of Rb metal over the capillary opening.
Equation (3) predicts T1 to be proportional to pressure through
the inverse pressure dependence of D. Not only is this the same
pressure dependence observed in Ref. [1] at low pressure, but
if we take a typical value (0.15 bar) in the middle of the linear
pressure range for the Rb-coated cell in Fig. 2 of Ref. [1], using
r = 0.75 mm, L = 18 cm, V ≈ 50 cm3, and D ≈ 12 cm2/s,
we estimate (T1)cap ≈ 1.2 h. The measured T1 at this pressure
is ≈2 h, meaning that it is very plausible for relaxation due
to the capillary and valve to contribute significantly to or even

dominate the relaxation, even if the valve materials are less
than perfectly relaxing.

We have carried out a finite-element simulation of the
problem using the geometry used in Ref. [1] at T = 4.2 K
(including the restriction in the tube at the entrance to the cell)
and the diffusion constant obtained from the viscosity, and
we have obtained results consistent with the measurements
if we allow for the temperature change along the capillary
tube. At low pressures where the relaxation time is driven by
the transport of the depolarized gas through the tube, a linear
pressure dependence is observed. Furthermore the relaxation
time can be shortened by moving the surface impurity in the
tube closer to the cell, while maintaining the linear pressure
dependence. At high pressures the transport from the impure
surface is no longer a dominant factor and the wall relaxation
in the cell becomes the dominant source of relaxation. At these
pressures virtually no depolarized gas is transported from the
impure surface to the bulk and no pressure dependence is seen.

Other explanations are possible. While gradient relaxation
at the high pressures used in their experiment also give T1 ∝
p, [14], Zheng et al. [1] have ruled out static gradients as
a possible cause of the observed behavior. However there is
the possibility that inhomogeneous ac fields, which result in a
similar pressure dependence of T1 [15], may be playing a role.
As pointed out by Zheng et al. [1] pressure dependence was
reported in the low temperature experiments in their Ref. [8]
and ascribed to a pressure dependence of μ, associated with
an adsorbed phase on the surface.

Previous work on cells with multidomained ferromagnetic
relaxation sites [6] showed that T1 can in this case depend
on the diffusion coefficient. Zheng et al. [1] suggest that
the departure from linear dependence at high pressures may
be due to ferromagnetic sites having the opposite pressure
dependence, as observed in Ref. [6]. However, the cells in
Ref. [6] exhibited this pressure dependence only after being
exposed to magnetic fields on the order of 1 T or more;
it disappeared for cells that had been “degaussed.” Zheng
et al. [1] are clear that their cells have never been exposed
to high fields and further state that ferromagnetic sites cannot
be the dominant cause of relaxation in their cells, despite the
fact that they later offer this very explanation for the flattening
of their T1 curves at high pressures.

IV. DISCUSSION OF PAST RESULTS

Zheng et al. [1] point out that their results are inconsistent
with past results for low-pressure metastability-exchange
optical pumping (MEOP) cells, arguing that relaxation in
those cells is likely dominated by other mechanisms, such
as relaxation to ferromagnetic wall sites and dipole-dipole re-
laxation that occurs in 3He-3He collisions. First, dipole-dipole
relaxation is given by 800/p h [4], where p is the pressure in
bar, hence at pressures below 10 mbar this contribution would
be greater than 80 000 h. Second, ferromagnetic relaxation
appears to manifest in just a few special cases and is linear
in pressure; it is thus highly implausible that it plays much
of a role in the decades of past results that are entirely
consistent with pressure-independent wall relaxation. It is
worth recounting some of these results, as they cover a wide
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range of cell constructions for both MEOP and spin-exchange
optical pumping (SEOP) over a broad range of pressures.

Fitzsimmons et al. [3] found no systematic dependence of
the relaxation time on 3He density for the 2.7 to 27 mbar
pressure range at room temperature. These studies included
bare Corning 7740 (Pyrex) [16] and aluminosilicate glass
cells; the Pyrex cells had relaxation times of ≈4 h at room
temperature. One of us (T.R.G.) has observed comparable
relaxation times in both sealed Pyrex MEOP cells at pressures
on the order of 1 mbar as well as in valved Pyrex storage
cells (equipped with suitable diffusion-restricted capillaries)
at pressures between 0.3 and 1 bar [17]. Indeed, in Ref. [17]
no pressure dependence was observed for either Pyrex or
aluminosilicate glass storage cells for pressures between 0.3
and 1 bar. Heil et al. [5] studied sealed cells at pressures
of 8 mbar and 2.3 bar, for both bare and metal-coated
Pyrex and aluminosilicate glass; they demonstrated the clear
advantages of metal coatings, especially for Pyrex. However,
they observed no systematic difference, for the same coating
and glass, between the two dramatically different pressures.
Andersen et al. [18] have observed T1 ≈ 8 h at pressures
of ≈1 mbar in the ILL optical pumping station [18]. More
recently, one of us (A.P.) has measured the T1 of a valved,
6-cm-diameter Pyrex cell at several pressures between 0.15
and 4.0 bar and found all the T1 values to be within ±20% of
a value of 7.5 h.

Newbury et al. [4] constructed a remarkable series of
aluminosilicate cells containing Rb for SEOP, in which wall
relaxation was almost completely suppressed. This allowed
them to compare the pressure dependence of relaxation for
cells filled to pressures between 1 and 4 bar to the linear
dependence expected from their calculation of dipole-dipole

relaxation. No other source of pressure dependence was
expected or included in their analysis. Tests of the dipole-
dipole calculation have been extended down to 0.5 bar [19],
and the best cells show the pressure-dependent limit expected
for dipole-dipole relaxation. In summary, no evidence has ever
been shown for any pressure dependence to 3He relaxation
except for that expected from dipole-dipole relaxation [4]
(primarily at high pressures), static [14] and ac [15] magnetic
field gradients (primarily at low pressures), or magnetized
cells [6,20] (where invoking ferromagnetism is justified).

Hence, it appears that the observations of Zheng et al. [1] do
not represent a general property of wall-induced relaxation but
are the result of the properties of their individual cells and/or
other details of their experiment.

V. CONCLUSION

Whatever the complexities of the experimental situation,
the authors’ claim that α in their Eq. (5) is independent of
D has no physical basis. As the equation is written α has
the units of inverse length. With the only physical length in
the bulk being the mean free path of the diffusing particles,
we are back to the diffusion constant, D ∼ λv̄ (λ being the
mean free path for collisions.) There is no justification for
setting the current proportional to the gradient other than
diffusion theory. The application of the diffusion theory in their
Eqs. (3) and (6) and the denial of its applicability in Eq. (5)
are inconsistent. Although Zheng et al. dismiss capillary
relaxation as negligible, previous experimental results and our
simulations show that it is the most likely explanation for the
observed linear pressure dependence in Ref. [1].
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