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Short-time quantum detection: Probing quantum fluctuations
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We study the information provided by a detector click about the state of an initially excited two-level
system. By computing the time evolution of the corresponding conditioned probability beyond the rotating-wave
approximation, we show that a click in the detector is related to the decay of the source only for long interaction
times. For short times, non-rotating-wave approximation effects such as self-excitations of the detector forbid a
naive interpretation of the detector readings. These effects might appear in cQED experiments.
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Introduction. Quantum detection theory was created to
study the behavior of detectors in the presence of radiation [1].
Highly satisfactory up to date, it relies on the conspicuous
rotating-wave approximation (RWA), which neglects the so-
called counterrotating terms. These terms give important
contributions to strong atom-field couplings and very short
times as compared to the system time scale, meaning that for
any effect beyond RWA (bRWA) to be directly acknowledged,
our measurements must be very precise and fast. This is
problematic for quantum optics experiments, due to the very
small matter-radiation coupling and the fact that observation
times must be at the femtosecond scale for most cases
(nanosecond for hyperfine qubits), which is too small for
current experiments (∼μs for trapped ions [2]).

However, cavity quantum electrodynamics (cQED) [3]
provides a framework in which those phenomena are ac-
cessible to study. By using superconducting qubits coupled
to a transmission line, the setup behaves analogously to
a one-dimensional radiation-matter interaction model at the
microwave frequency range [4]. Moreover, parameters can
be easily tuned and the qubit-line coupling modulated up to
ultrastrong levels [5,6]. Fast qubit state readout (∼ns) is also
possible using a pulsed DC SQUID scheme [7]. Thus, bRWA
phenomena have already been reported [8,9], Glauber’s theory
is no longer valid, and quantum detectors should be described
by a non-RWA model like that of [10].

A direct consequence of the breakdown of the RWA is that
a detector in its ground state interacting with the vacuum of the
field has a certain probability of getting excited and emitting
a photon. However, there is not a widespread consensus on
the physical reality of this effect. As a matter of fact there had
been attempts to design effective detector models in a way
which prevents this phenomenon from happening [11]. We
should, however, recall here that these peculiar effects should
not be that discomforting, as the initial state considered is not
an eigenstate of the full Hamiltonian bRWA.

To describe those processes we will neither impose any
additional constraints nor question their real existence. We
will study the following setup: a source S initially excited, a
detector D initially in the ground state, and both interacting
with the electromagnetic field in its vacuum state. If the
detector clicks at a given time, does it mean that the source is
now in the ground state? This problem amounts to computing
the probability of decay for the source, conditioned to the
excitation of the detector. We will show that unlike Glauber’s
RWA detector, in which this conditioned probability would be

equal to 1 at any time, this cQED detector only achieves this
value at long times due to the impact of non-RWA effects.

Mathematical description of the model. We consider a
model consisting of two superconducting qubits, S and D,
with two levels g and e and separated a distance r . Let us
consider that at t = 0, S is excited, D is in its ground state,
and there are no excitations in the transmission line, which
will be open, enabling a continuum of modes. Representing
the states in terms of qubits and field (F ) free eigenstates
with the notation |ψ〉 = |SDF 〉, the initial state would be
|i〉t=0 = |eg0〉. We intend to study the relevance of bRWA
processes by quantifying what information about the state of
S can be extracted by knowing the qubit D state after a certain
time t . For that we will compute the probability PSg |De

(t) of S

to have decayed at a certain instant t based on the condition
that we have measured D excited at that moment:

PSg |De
(t) = P[ge∗]

P[∗e∗]
=

∑
F |〈geF |e−iH t/h̄|eg0〉|2∑

n,F |〈neF |e−iH t/h̄|eg0〉|2 , (1)

P[ge∗] being the probability of having S in the ground state and
D excited, and P[∗e∗] the total probability of excitation of D.

Naively we would expect that P[∗e∗](t) = 0 ∀ t � R/c

and that P[∗e∗](t) = P[ge∗](t) �= 0 ∀ t � R/c, so PSg |De
= 1.

However, in Ref. [12] it is shown that PDe
(t) � 0 ∀ t � R/c.

As explained in Refs. [13,14], we can split the probability of
detector excitation as

P[∗e∗](t) = P (0)
[∗e∗](t) + P (R)

[∗e∗](t). (2)

The first term, independent of R (and so of S), is the
self-excitation term, and so P (0)

[∗e∗](t) � 0 ∀ t � R/c. The
second, dependent on R, refers to excitations due to exchange
processes, and behaves causally P (R)

[∗e∗](t) = 0 ∀ t � R/c.

One might expect that the effects of P (0)
[∗e∗](t) could be

accounted for by including a sort of “dark current” due to
self-excitations as compared to the exchange processes that
would be the only ones to appear if we were thinking naively.
In that sense, the analysis here presented might look somehow
contrived; however, the very notion of dark current is not valid
for short times. The concept itself comes from Fermi’s Golden
Rule, which predicts a linear dependence of the excitation
probability with time. In a bRWA analysis at very short times,
akin to that of the Zeno effect or ours, the probability of
excitation will result proportional to t2, and no such thing
as a constant stable rate of dark counts can be defined. Since
there is no way to experimentally distinguish between the two
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sorts of processes that lead to a detector excitation, the analysis
through a conditioned probability seems a reasonable one.

We will consider the following Hamiltonian [15,16]:

H = H0 + HI ,

H0 =
∑

A={S,D}

h̄�A

2
σA

z +
∫ ∞

−∞
dk h̄ ωk a

†
k ak, (3)

HI = −
∑

A={S,D}
dAV (xA)σA

x .

Here xA corresponds to the position of the qubit A, h̄�A is
the gap between levels for qubit A, and V refers to the one-
dimensional field which expands as

V (x) = i

∫ ∞

−∞
dk

√
Nωke

ikxak + H.c. (4)

This field has a continuum of Fock operators [ak,a
†
k′] =

δ(k − k′), and a linear spectrum, ωk = v|k|, where v is the
propagation velocity of the field. The normalization and the
speed of photons, v = (cl)−1/2, depend on the microscopic
details such as the capacitance and inductance per unit length, c
and l. Note that this model resembles that of an Unruh-DeWitt
detector [10]. For our calculations, we will make use of the
interaction picture, so we let the initial state |eg0〉 evolve for a
lapse of time t as

|ψ(t)〉 = UI (t)|eg0〉 = T {e−i
∫ t

0 dt ′HI (t ′)/h̄}|eg0〉
= I |eg0〉+X|ge0〉 +

∑
k

A1,k |gg1k〉 +
∑

k

B1,k |ee1k〉

+
∑
kk′

A2,kk′ |eg2kk′ 〉 +
∑
kk′

B2,kk′ |ge2kk′ 〉 + · · · .

(5)

Note that all terms but the first three are zero when working
in the RWA. For A’s coefficients D end in the ground state,
for B’s, in the excited one. Here and in the following we will
only make explicit the terms that contain contributions for
the probabilities up to d4

A. For example, terms with three or
more photons in the amplitude will be excluded, as they give
contributions of O(d6

A). We will underline the ones relevant to
our analysis.

Probability calculations. Let us define M(t ; nF ) =
〈neF |ψ(t)〉. Thus, the first of the probabilities needed for the
computation of PSg |De

(t) [Eq. (1)] can be written down using
Eq. (5) as

P[ge∗] =
∑
F

|〈geF |UI (t)|eg0〉|2 =
∑
F

|M(t ; gF )|2

= |X|2 +
∑

|B2|2 +
∑

|B4|2 + · · · .

The first building block needed is |X|2. Note that

P[ge0] = |〈ge0|UI (t)|eg0〉|2 = |M(t ; g0)|2 = |X|2. (6)

To evaluate |X|2 up to fourth order in perturbation theory,
one must consider that X has no contributions for orders 0 or
1, so the calculation must be performed for orders 2 and above.
As a matter of fact, order 2 alone is sufficient. This calculation
has been already performed in the appendix of [17], where
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FIG. 1. (Color online) (a) P[ge0] in front of t for three different
values of the distance between qubits 2π r

λ
= 0.1 (dotted, squares,

blue), 0.3 (dashed, crosses, green), and 0.5 (solid, circles, black). For
all cases KS = KD = 7.5 × 10−3 and �/(2π ) = 1 GHz. (b) P[ge0] in
front of t for three different values of the coupling strength K = KS =
KD = 6 × 10−3 (dotted, squares, blue), 7.5 × 10−3 (dashed, crosses,
green), and 9 × 10−3 (solid, circles, black). For all cases 2π r

λ
= 0.3

and �/(2π ) = 1 GHz.

the perturbative parameter dA is included in the dimensionless

coupling strength KA = 4d2
AN

h̄2v
= 2( gA

�A
)2, with A = {S,D}, gA

being the qubit-line coupling. We must restrict our calculations
to times when KA�At 
 1, where our perturbative approach
is valid.

In Fig. 1 we sketch the evolution of the probability P[ge0]

with time, and its dependence with the coupling and the
distance between qubits. Typical values for couplings and
distances for a setup in cQED are considered from here on.
At these early stages P[ge0] is highly oscillatory in time. For
a given time, the probability always grows with the coupling
strength but depends on the distance in different ways.

To proceed with the calculation of P[ge∗], the terms
B2,kk′ = 〈eg0|UI (t)|ge2kk′ 〉 must be evaluated. Because the
final associated bare state has two photons, this implies
automatically that orders 0 and 1 are discarded. Once again,
order 2 alone fits. The final calculation gives a term symmetric
respect to a k ↔ k′ exchange:

B2,kk′ = fkk′ + fk′k = fkk′ + {k ↔ k′}. (7)

After that, they must be squared and summed as in
∑ |B2|2 =

1
2!

∑
kk′ B2,kk′B∗

2,kk′ splitting into two terms:
∑ |B2|2 =∑

kk′ fkk′f ∗
kk′ + ∑

kk′ fkk′f ∗
k′k , a “direct” one, just the product

of the square of the emission amplitudes (explicitly computed
in Ref. [17]), and a “crossed” one which looks like a photon
exchange and is a one-dimensional version of the crossed term
computed in Ref. [18]. The summation of the direct terms
implies the appearance of expected divergences which can
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FIG. 2. (Color online) P[ge∗] (solid, blue, circles) and P[ge0]

(dashed, green, crosses) in front of t in s with a distance 2π r

λ
= 0.5,

a coupling strength of K = KS = KD = 3 × 10−2, and �/(2π ) =
1 GHz (� = �S = �D). The difference between the two graphs is
the non-RWA term

∑ |B2|2.

be resolved using a regularization procedure analogous to the
one sketched in the appendix of Ref. [18]. This procedure
requires the times of analysis to be larger than a certain
cutoff time t0, which in this case is related to the typical
size of a superconducting qubit d � 10−6 m [19] and the
propagation velocity of the field quanta: v � 108 m/s. Thus,
t0 = d/c � 1 × 10−14 s, far below the times considered in this
work.

Notice that B2 is only nonzero beyond the RWA. In Fig. 2
we compare P[ge∗] with P[ge0]. The impact of this non-RWA
contribution is seen in the subnanosecond regime for a large
coupling strength. At larger times, the impact diminishes,
P[ge∗] � P[ge0], and the RWA applies.

The last probability of interest P[∗e∗] can be written as

P[∗e∗] =
∑
n,F

|〈neF |UI (t)|eg0〉|2 =
∑
n,F

|M(t ; nF )|2

= |X|2 +
∑

|B1|2 +
∑

|B2|2 +
∑

|B3|2 + · · · .
(8)

And so we must obtain
∑ |B1|2, which is again a completely

non-RWA contribution. For that case the situation gets more
complicated, as there are interfering processes of orders 1 and
3 leading to that final state. The four diagrams contributing to∑ |B1|2 up to fourth order in perturbation theory can be seen
in Fig. 3. The leading contribution is just the probability of
self-excitation of the detector (first diagram for B1 in Fig. 3)
and the other contributions come from the interference of this
diagram with the other three. In particular, interference with
the third diagram of B1 is crucial for causality [14]. More
details on this computation can be found in Ref. [20].

Conditioned detection probability. With the previous prob-
abilities computed we can finally address the conditioned
probability PSg |De

(t), which can be calculated as Eq. (1).
Note that in the RWA, PSg |De

(t) = 1 at any time, since
P[∗e∗] = P[ge∗] = P[ge0]. The effect of non-RWA contributions
to the evolution of PSg |De

(t) can be seen in Figs. 4 and 5, where
the dependence with the coupling and the distance between
qubits is considered.

X = B2 =

+ + +

|gS |eD |gS |eD

B1 =

|eS |eD |eS |eD |eS |eD |eS |eD

|eS |gD |eS |gD

|eS |gD |eS |gD |eS |gD |eS |gD

FIG. 3. Diagrams contributing to X, B1, and B2. X represents the
amplitude for photon exchange between source and detector, while
B2 is just the amplitude for two single-photon emissions, one at
each qubit. The leading-order contribution to B1 is the amplitude for
a single-photon emission at the detector qubit (first diagram), but
third-order one-loop corrections (second and fourth) and a photon
exchange accompanied by an emission at the source (third) have
to be also taken into account. B1 and B2 are completely non-RWA
diagrams.

The first thing we notice in Fig. 4 is that for short times the
information provided by the detector is not very much related
to the state of the source, that is, self-excitations and other
non-RWA phenomena dominate over the photon exchange
between source and detector. For the cases considered, only at
interaction times t � 1 ns � 1/� the conditioned probability
converges to the RWA prediction and the excitation of the
detector is a reliable way to detect the decay of the source.
Since the non-RWA contributions are more relevant for large
couplings and short distances, the convergence is faster as the
distance grows and the couplings diminish, as can be seen in
Figs. 4 and 5. Notice that the ripple frequency we see, for

Kt(s)

P
Sg/De

PSg|De

Kt(s)

FIG. 4. (Color online) PSg |De
(t) [Eq. (1)] in front of Kt for

three different values of K = KS = KD = 7.5 × 10−3 (solid, blue,
circles), 1.5 × 10−2 (dashed, green, crosses), 7.5 × 10−2 (dashed,
black, squares). In the three cases 2π r

λ
= 1 and �/(2π ) = 1 GHz

(� = �S = �D).
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FIG. 5. (Color online) PSg |De
(t) [Eq. (1)] in front of t in s

for three different values of the distance 2π r

λ
= 0.5 (dotted, blue,

circles), 0.75 (dashed, green, crosses), 1 (solid, black, squares). In
the three cases, K = KS = KD = 1.5 × 10−2 and �/(2π ) = 1 GHz
(� = �S = �D).

instance, in Fig. 4 comes from higher harmonics of the qubit
frequency �. It can be thought as a process similar to that
of a Rabi oscillation, where the qubits would be absorbing in
cycles the photons previously emitted in self-excitations.

Prospects and conclusions. These theoretical results could
have an impact in real experiments of cQED. In particular,
a typical setup to measure the internal state of a flux
qubit coupled to a transmission line consists of a SQUID

surrounding the qubit. Although the total measurement process
could take up to tens of nanoseconds, most of the time the
coupling SQUID qubit is much stronger than K [7] and the
dynamics qubit-transmission line is effectively frozen. Thus
this dynamics is only important during the activation of the
SQUID, a process that may be in the nanosecond regime. For
those measurement times, as we have proved, self-excitation
effects cannot be disregarded and should manifest themselves.

Besides, it should, in principle, be possible to prepare
experiments in the near future to test our predictions directly.
We do not intend to present here more than just a rough
sketch. Such experiments would involve the preparation of
the system at t = 0 in the initial state |eg0〉, the switching
of the interaction for a certain time t (in the line of previous
proposals, as [14,21–23]) and then the SQUID measurement
of both qubits S and D. By repeating the experiment several
times, the resulting frequencies should match our theoretical
predictions.

To conclude, we have shown that for typical cQED
parameters, a significant amount of time is needed to start
trusting the state of a detector as being informative regarding
an initially excited source. This is due to the breakdown of the
RWA in cQED. By neglecting the counterrotating terms, a total
reliability on the information coming out of the detector would
be wrongly derived for all time scales. Our result applies to
other setups and quantum detectors, although it is in the case
of cQED where it might affect the interpretation of coming
experimental results.
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