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Quantum error correction with mixed ancilla qubits
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Most quantum error-correcting codes are predicated on the assumption that there exists a reservoir of qubits
in the state |0〉 which can be used as ancilla qubits to prepare multiqubit logical states. In this Brief Report, we
examine the consequences of relaxing this assumption and propose a method to increase the fidelity produced by a
given code when the ancilla qubits are initialized in mixed states, using the same number of qubits, at most doubling
the number of gates when the recovery operation would already be implemented. The procedure implemented
consists of altering the encoding operator to include the inverse of the unitary operation used to correct detected
errors after decoding. This augmentation will be especially useful in quantum computing architectures that do
not possess projective measurement, such as solid-state NMR quantum information processing.
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I. INTRODUCTION

Quantum error correction [1–3] is the practice of using a
large number of error-prone qubits to encode a small amount
of information in such a way as to protect the logical state,
at least partially, from errors which would otherwise affect
it. In general, the preservation of a one-qubit state using an
error-correcting code can be divided into four operations.
(1) The one-qubit input state α|0〉 + β|1〉 is attached to an
ancilla, and a unitary operation rotates the state into the
final encoded state α|0̄〉 + β|1̄〉, where {|0̄〉, |1̄〉} are a set of
orthogonal states in the larger Hilbert space. (2) Each qubit
in the encoded state is subjected to the random error process
that the code is designed to correct. (3) The inverse of the
encoding unitary is applied. The density matrix for the state
will contain terms proportional to U |ψ〉〈ψ |U † ⊗ |s〉〈s|, where
|ψ〉 is the original state and s is a classical (n − 1)-bit string,
the syndrome of the error U . (4) A unitary, controlled on the
syndrome qubits, inverts the unitary in the terms described
above, producing a final state which has greater fidelity
to the input state than the state resulting from unencoded
transmission.

The function of a quantum error-correcting code is to divert
entropy accrued during transmission to the ancilla qubits.
Thus, it is often assumed that the qubits which comprise the
ancilla are initialized in the state |0〉 or a state with negligible
entropy. However, this assumption is often violated in practice.
For example, let us consider the state of the ancilla immediately
after either procedure in Fig. 1 has been performed. This
increases the entropy of the ancilla state, which must be
“refreshed” to |00〉 in order for the code to be used again. If the
operation which accomplishes this is imperfect, the ancilla will
retain some of the entropy it gained during error correction.

In addition, many quantum computing architectures exist
in which qubits equilibrate into Boltzmann distributions.
Consider, for example, low-temperature solid-state electron

*dcriger@iqc.ca

spin resonance (ESR) [4–6], where the population of the
ground state of an electron spin is ∼ 3

4 at 4.2 K and 7 T.
Throughout the remainder of this Brief Report, we treat the
initial state as the result of an error process which occurs before
the encoding operation.

In the following sections, we detail the error map that
produces the ancilla noise we consider and describe an
augmentation to error-correcting codes which prevents some of
the deleterious effects of this initialization error. We proceed to
test this augmentation on two widely studied error-correction
codes, correcting bit flip and depolarization. We conclude by
examining the effects of augmentation on a concatenated code.

A. Initialization error

In this Brief Report, we examine the consequences of
attempting error correction using mixed ancillary qubits, each
in the state

ρq =
[

1 − q

2 0

0 q

2

]
. (1)

In order to study the effect of this noise, we wish to model it
as the result of an error process. One error process which takes
the state |0〉 to the distribution above is the bit-flip channel
described below,

� =
{√

1 − q

2
Î ,

√
q

2
X̂

}
, (2)

where the channel is given in the Kraus representation � ≡
{�j }, �(ρ) = ∑

j �jρ�
†
j ,

∑
j �

†
j�j = Î [7]. The initial

state on the ancillae is �⊗n[|0〉〈0|⊗n]. This additional error
limits the ability of the ancilla to absorb entropy. As a result,
any error-correcting code with ancilla qubits being maximally
mixed, with q = 1, will not be useful as an error-correcting
code.
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FIG. 1. (top) The traditional three-qubit code to correct bit-flip
errors and (bottom) that augmented to provide increased fidelity in
the case where each ancilla qubit is subject to the initialization noise
map discussed above. The map E in this example is the bit-flip
map {√1 − pÎ ,

√
pX̂}. The augmentation consists of implementing

the Toffoli gate used to correct detected errors before the standard
encoding procedure takes place. This improves the overall fidelity by
ensuring that, if no error occurs, the encoded state remains unaltered
by false syndromes.

II. CHANNEL FIDELITY

In order to study the effects of initialization noise, we also
require a quantitative criterion to determine which quantum er-
ror correction protocols are useful and which are not. We eval-
uate the utility of a given protocol using the channel fidelity, a
special case of Schumacher’s entanglement fidelity [8]:

FC(�) = 〈�| (� ⊗ Î ) [|�〉 〈�|] |�〉
= 1

4n

∑
k

|Tr(�k)|2, (3)

where |�〉 = 1√
2n

∑n
j∈{0, 1} |j 〉 ⊗ |j 〉 and {�k} are the Kraus

operators for the channel �. The channel fidelity is a measure
of the average fidelity of the output state with the input
state [9]. The utility of a quantum error-correcting code will
be decided based on whether its channel fidelity for an input
state exceeds the channel fidelity of unencoded transmission
through the error channel.

III. AUGMENTED ERROR CORRECTION

When subjected to initialization error, the controlled op-
erations in the correction stage can introduce new errors into
the output state since the syndrome has been altered by the
initialization error. A new code can be created to mitigate this
error by implementing the inverse of the correction operation
before the encoding unitary. This is shown in Figs. 1 and 2.

The augmented three-qubit code in Fig. 1 can be shown
to satisfy a numerically derived upper bound for the channel
fidelity using an arbitrary channel for encoding, which is
both CPTP and unital. To derive this bound, the optimization
of channel fidelity is posed as a semidefinite program [10],
optimizing over the encoding channel, which is linearly
constrained to be both completely positive trace preserving
(CPTP) and unital. The numerical search for optimal encoders
is the origin of the augmentation in this Brief Report.

FIG. 2. In order to augment an error-correction code on n qubits,
the recovery operator is inverted and implemented before encoding.
This eliminates faults caused solely by false syndromes. Here, R is the
recovery operator, C is the encoding operator, and E is the error map.

The advantages of this augmentation are the following:
(1) The fidelity of the augmented codes will always exceed or
equal that of the unaugmented codes since the augmentation
corrects additional errors left uncorrected by the unaugmented
codes without altering the function of the error-correcting
code for pure ancillae. (2) The augmented code is especially
useful in implementations where the main error parameter p

can be constrained and the initialization parameter q cannot.
For example, when the error parameter during a storage
operation is time dependent, reducing the storage time reduces
the error parameter. This is true for any error channel and
any number of ancilla qubits since the inverse recovery
operator prevents faults in the case where the error map acts
trivially. Therefore, when p can be diminished to arbitrary
size, the augmented code allows arbitrarily high fidelity, where
the unaugmented code does not. (3) Augmented codes provide
increased fidelity at higher q than unaugmented codes. A code
(whose implementation will be denoted �) is useful if, for an
error channel �, FC(�) � FC(�). To illustrate this, we plot
the tolerable q in Figs. 3, 4, and 5.

Furthermore, note that this procedure increases the gate
complexity of the code by at most a factor of 2 since the
augmenting unitary is already required for the code to function.
We conclude that this augmentation will be useful in a variety
of circumstances, and in the following sections, we examine
examples of this strategy used to counter two common error
processes: bit flip and depolarization.

FIG. 3. (Color online) The initialization error for which an error-
correcting code can give a channel fidelity �1 − p. This is shown for
four repetition codes correcting bit-flip errors. Note that the tolerable
error for small values of p, the parameter describing the main bit-flip
channel, approaches 0 rapidly for unaugmented codes. In contrast,
augmentation provides a high tolerable q for every value of p.
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FIG. 4. The initialization error for which an error-correcting code
can give a channel fidelity �1 − 3

4 p. This is shown for the perfect
five-qubit code. Note that the behavior of this code is qualitatively
different, having zero tolerable initialization for p ∼ 0.18. The ability
of the augmented code to provide finite tolerable q at p = 0 is
preserved.

IV. BIT FLIP

In order to correct Pauli-X̂ (bit-flip) errors, we encode the
state we wish to preserve into the two-dimensional subspace
of an n-qubit (2n-dimensional) register having maximum
distinguishability under bit flip: {|0〉⊗n , |1〉⊗n}. In order to
correct t th-order bit-flip errors, 2t + 1 qubits are required.
Here, we analyze three-, five-, seven-, and nine-qubit repetition
codes to counter bit-flip errors, with and without augmentation.
Each fidelity is expressed as a polynomial in p, FC = ∑

k ckp
k ,

and c0 and c1 are shown in Table I.

FIG. 5. (Color online) The tolerable initialization noise for
different concatenated codes. For the top-level concatenation, the
encoder used in the top panel of Fig. 1 has been replaced with the
encoder used in the bottom panel of Fig. 1. For the full concatenation,
all the encoding circuits used are augmented, as in Fig. 1. Note
that the bottom curve (for the unaugmented concatenated code) is
identical to the tolerable initialization noise for the three-bit error
correcting code when left unconcatenated, shown in Fig. 3. Also, the
tolerable q for the fully augmented code is 2 − √

2, identical to the
augmented three-qubit code.

TABLE I. Fidelity coefficients for four repetition codes, cor-
recting bit flip. Each fidelity is expressed as a polynomial in p,
FC = ∑

k ckp
k , and c0 and c1 are shown. Note that for the augmented

codes, c0 = 1, indicating that the contribution to the error term due
solely to the mixed ancilla has been eliminated.

Qubits c0 c1

Unaugmented 3 1 − 1
4 q2 −2q + 3

2 q2

5 1 − 1
2 q3 + · · · − 9

2 q2 + 6q3 − · · ·
7 1 − 15

16 q4 + · · · −10q3 + · · ·
9 1 − 7

4 q5 + · · · − 175
8 q4 − · · ·

Augmented 3 1 −2q + 1
2 q2

5 1 − 9
2 q2 + 3q3 + · · ·

7 1 − 5
16 q3 + · · ·

9 1 − 175
8 q4 − · · ·

We conclude by noting that this behavior can be trivially
extended to codes that correct any channel of the form
{√1 − pÎ ,

√
pUXU †}.

V. DEPOLARIZATION

It is important, in order to ensure that augmented error-
correction codes are widely useful, to examine the performance
of such codes correcting depolarization, an error process to
which all error processes can be reduced [11]. Depolarization
is a channel which consists of the following Kraus map:

	 =
{√

1 − 3p

4
Î ,

√
p

4
X̂,

√
p

4
Ŷ ,

√
p

4
Ẑ

}
. (4)

We find channel fidelities for an augmented five-qubit code
versus depolarization (See Fig. 6) and an unaugmented code
[12,13].

Here, the optimization of the channel fidelity has not been
posed as a semidefinite problem. Instead, we have assumed that
a unitary will be appended to the encoder which consists of
2n−1 single-qubit unitaries, each controlled on a unique binary
string on the ancilla. This reduces the size of the optimization
problem from 4n to 3 × 2n−1, each single-qubit unitary having
three free parameters. We observe that the optimal unitary is
the inverse of the correcting operation.

We present the polynomial coefficients for the fidelity, as
described in Table II. Here, we see that the p-independent
terms are eliminated, but the term linear in p remains. We
continue, showing the tolerable initialization noise levels for
codes that counter depolarization errors in Fig. 4.

TABLE II. Fidelity coefficients for the five-qubit perfect code,
correcting depolarization. Each fidelity is expressed as a polynomial
in p, FC = ∑

k ckp
k , and c0 and c1 are shown. Note that for the

augmented codes, c0 = 1, indicating that the contribution to the error
term due solely to the mixed ancilla has been eliminated.

c0 c1

Unaugmented 1 − 3
2 q2 + q3 − · · · −6q + 21

2 q2 − 11
2 q3 + · · ·

Augmented 1 −6q + 9
2 q2 − 3

2 q3 + · · ·
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TABLE III. Fidelity coefficients for the two-level concatenated
repetition code, correcting bit flip. Each fidelity is expressed as a
polynomial in p, FC = ∑

k ckp
k , and c0 and c1 are shown.

c0 c1

Unaugmented 1 − 1
4 q2 + 1

2 q3 + . . . −4q2 + 3q3 + . . .

Top-level augmented 1 − 1
2 q3 + . . . −4q2 + q3 + . . .

Fully augmented 1 −4q2 + 2q3 + . . .

VI. CONCATENATION

It is useful to examine the effect of augmentation on a
two-level concatenated code in order to determine the benefits
of augmentation at each level. Below, we examine the effect
of augmentation on the concatenated three-qubit code. With
bit-flip probability p and initialization error q as defined above,
the channel fidelity for unaugmented, top-level augmented,
and fully augmented codes are shown in Table III.

The tolerable initialization noise is shown in Fig. 5.

VII. DISCUSSION AND SUMMARY

The large initialization errors discussed in this Brief Report
render fault-tolerant computation impossible with current
methods. The purpose of the augmented error correction
described above is to partially compensate for these errors and
to increase the utility of highly mixed states. This technique is
intended for experimental use in the near term, in venues such
as solid-state nuclear magnetic resonance (SSNMR), which
does not possess an easy means of refreshing ancilla qubits
and where the error introduced by implementing the additional
recovery operator is likely to be much smaller than the error
in ancilla state preparation. An emphasis has been placed
on avoiding the incorporation of additional ancilla qubits
since experimental implementation is currently restricted to
small registers. This is true not only for SSNMR but also for
other venues as well. The recovery operator in a stabilizer
error-correcting code, such as those shown above, is costly to
implement fault-tolerantly. This is due to the fact that Pauli
gates which are controlled on n − 1 qubits are not in the Clif-
ford group [15], a set of gates that can be implemented without
causing adverse error propagation in deeply-concatenated
error-correcting codes. This has motivated the development
of alternate recovery procedures, such as those used in Knill
error correction [16]. It is possible that a restricted set of state
preparation errors can be compensated for using Pauli gates
that are controlled on a single ancilla qubit, which are in the
Clifford group. It remains to be seen, however, whether this
will increase the error threshold for fault-tolerant protocols.

FIG. 6. The augmented version of the “perfect” five-qubit code
given in [14] and the errata to [14]. The top circuit is the unaugmented
encoder, and the bottom circuit is the correction operator. These are
combined according to the prescription in Fig. 2. Here, the error
channel is the depolarizing channel {√1 − 3p/4Î ,

√
p/4X̂,

√
p/4Ŷ ,√

p/4Ẑ}. The augmentation has a similar effect to that used
on the (2t + 1)-qubit codes countering t th-order bit-flip errors.
We can deduce from this that the benefits of augmentation as
described above are not limited to codes which counter classical
errors.

In summary, the assumption that there exists a pure ancilla
initialized in the state |0〉⊗n is often violated since the
initialization process is imperfect in practice. This motivates
the study of error-correcting codes whose encoding operators
are augmented to produce higher fidelities in the presence of
initialization errors. The augmentation consists of inverting
the recovery operator (which performs a single-qubit unitary
on the message qubit, controlled on the end state of the ancilla
qubits) and inserting it before encoding. The action of this
augmented encoding can be easily understood from Fig. 2; it
ensures that, if the main error channel acts trivially, the output
state is equal to the input state, as opposed to having been
altered by the false syndrome generated by the initialization
noise. This augmentation produces fidelities strictly greater
than those from unaugmented codes and constrains all error
terms to be proportional to the main error channel parameter,
which is useful when that parameter can be controlled
experimentally.
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