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Quantum phase for an arbitrary system with finite-dimensional Hilbert space
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A representation of the phase observable in terms of a positive-operator-valued measure for an arbitrary
quantum system with a finite Hilbert space is consistently defined. The phase for systems with rational relations
between the energy eigenvalue differences is treated explicitly and the phase in the case of the irrational relations
is obtained as a well-defined limit of the rational approximations.
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I. INTRODUCTION

State vector evolution of a quantum system with a finite
Hilbert spaceHn is either periodic or quasiperiodic, depending
on the characteristic frequencies, i.e., the ratios of the energy
eigenvalue differences (Ei − Ej )/(Ek − El), with i,j,k,l =
1,2, . . . ,n, being rational or irrational. Classical Hamiltonian
systems that support only periodic and quasiperiodic orbits are
integrable and for such systems a variable called phase, which
is directly related to the time parameter, is well defined and
simply expressible in terms of the canonical variables [1].
Following the spirit of the correspondence principle, one
would expect that for periodic and quasiperiodic quantum
dynamics an observable phase of the quantum motion should
be well defined in general. Such an observable for systems
with finite-dimensional Hilbert space is essential in the context
of quantum information theory. However, a proper definition
of the quantum phase even for the simplest system, such as
the harmonic oscillator, proves to be a highly nontrivial task
primarily because of the well-known Pauli obstacle [2]. Many
different nonequivalent answers were suggested. Some of the
relevant references are Refs. [3–11] (a comprehensive list of
more than 500 items containing works on the phase observable
published up to 1996 is available in Ref. [12]). The major
breakthrough was to realize that measurements of quantum
observables can be consistently described using an appropriate
positive-operator-valued measure (POVM), which provides
nonorthogonal resolutions of unity and cannot be reduced
to the more common projective measures (PMs) [13,14].
In the simplest cases of the harmonic oscillator, the phase
is mathematically represented by the corresponding POVM
denoted M̂(dθ ), which satisfies the covariance condition
[13,14]

exp[iθ1Ĥ ]M̂(a,b)exp[−iθ1Ĥ ] = M̂(a + θ1,b + θ1)mod2π,

(1)
where θ1 is a particular phase parameter value, (a,b) and
(a + θ1,b + θ1) are an interval of the phase and its θ1 shift,
and Ĥ is the Hamiltonian. The covariance condition is taken
as the defining property of the phase observable. However, a
definition of the phase observable for an arbitrary quantum
system with a periodic or quasiperiodic state vector dynamics
has not been formulated in full generality. Examples of POVM
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representations of phase observables have been constructed
for qubits and qutrits [15–20] using polar decomposition,
analogously to the case for the harmonic oscillator. An
interesting approach explores the complementarity of the
putative phase and amplitude observables formalized using
the concept of mutually unbiased bases [21].

It is the purpose of this Brief Report to introduce a consistent
definition of the POVM for the phase observable in general for
an arbitrary quantum system with a finite number of energy
eigenstates and eigenvalues. We shall see that such a phase
observable satisfies the covariance condition and is always
given by a POVM (and not by a PM), as should be expected on
quite general arguments [22]. The definition can be generalized
to systems with an infinite Hilbert space.

We would like to stress that the phase introduced here is
not considered a parameter to be estimated from the system’s
state like in Ref. [23,24]. In addition, the phase of an arbitrary
N -level system is here considered a single quantity determined
by the system’s Hamiltonian and not as N objects conjugated
to the N inversions as in, for example, Refs. [19–21]. In this
sense the single phase studied here could be called the master
phase of the system. The system’s phase introduced here is
comparable to the phase observable introduced by Holevo [13]
for the equidistant spectrum of the harmonic oscillator or for
the systems with rationally related energy levels discussed
in Refs. [25,26]. However, our results provide a consistent
definition of the phase for finite systems with arbitrary spectra
and point out the relations between the spectra of systems with
similar distributions of the phase values.

II. RESULTS

Without any substantial loss of generality in the presen-
tation of the main ideas, we start the analysis with three-
dimensional systems with three different energy eigenvalues
E0 < E1 < E2. All such systems can be divided into groups
characterized by the three energy eigenvectors. The systems
in one group have the same energy eigenvectors denoted
|0〉,|1〉, and |2〉 and are distinguished by all possible triplets
of different energy eigenvalues E0,E1, and E2. The definition
of the phase observable will be given in terms of arbitrary
E0,E1, and E2 and arbitrary fixed |0〉,|1〉, and |2〉. A general-
ization, based on the same ideas, to systems with an arbitrary
finite number of possibly degenerate energy eigenvalues is
sketched in Sec. III.
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The characteristic frequency of the three-dimensional sys-
tem is given by the ratio of the energy differences

ν = E2 − E1

E1 − E0
, (2)

which could be a rational or an irrational number implying a
periodic or quasiperiodic state vector dynamics. There is no
special purpose in our presentation in using the ratio of the
energy differences instead of the independent pair E2 − E1

and E1 − E0. The main point is that the two energy differences
could be integer or noninteger multiples of some unit �E. Of
course, in the first case the characteristic frequency is rational
and in the second it is irrational. In the case of more than
three energy eigenvalues there will be more characteristic
frequencies, each corresponding to the ratio of independent
energy value differences, some of which are rational and some
irrational. In any case, the characteristic frequencies are fully
determined by the energy spectrum. Our strategy to define the
phase observable for an arbitrary ν will be to define it first for
an arbitrary rational ν and then to consider the limit of such an
observable for a sequence of rational frequencies converging
to an irrational frequency.

A systematic way to reproduce and organize all rational
and irrational numbers in the interval [0,1] is provided by
the Farey algorithm, which we briefly recapitulate. The result
of the algorithm is an infinite sequence of rows of rational
numbers called the Farey tree and is organized as follows.
The first row contains only p1/q1 = 0/1 and p2/q2 = 1/1.
The second row contains the numbers obtainable as p/q =
(p1 + p2)/(q1 + q2), which is just 1/2. The third row adds
two more rational numbers as (0 + 1)/(1 + 2) = 1/3 and
(1 + 1)/(2 + 1) = 2/3. The rational numbers that appear at
the next row are 1/4 = (0 + 1)/(1 + 3), 2/5 = (1 + 1)/(3 +
2), 3/5 = (1 + 2)/(2 + 3), and 3/4 = (2 + 1)/(3 + 1). Each
new rational number at the kth row has the numerator and the
denominator equal to the sum of numerators and denominators
of the two neighboring rational numbers obtained at all the
previous rows. Following the algorithm ad infinitum generates
all rational numbers in [0,1]. A sequence of successively better
rational approximations with the smallest denominators of
irrational numbers is obtained by following the connected
decreasing paths in the Farey tree. Such a sequence for a
particular irrational number can be obtained analogously by
its continued fraction expansion. The dynamical role of the
rational approximations of the frequencies of structures with
quasiperiodic motion in classical Hamiltonian systems is well
known [27].

After this brief recapitulation of the Farey tree construction
we proceed to define the phase observable for the quantum
system with energy ratios (2) equal to a rational ν = pk/qk

belonging to the kth level of the Farey tree. The energy
differences satisfy

Ek1 − Ek0 = pk�Ek, Ek2 − Ek1 = qk�Ek, (3)

where �Ek is the energy unit that fits exactly pk times into the
interval Ek1 − Ek0 and qk times into Ek2 − Ek1. Notice that as
k is increased pk/qk converges to an irrational number and pk

and qk both converge to infinity, implying that �Ek → 0 in
Eq. (3). The semispectral measure [28] of the phase observable
for the system with the rational number pk/qk is constructed

using the following vectors indexed by a continuous index
t ∈ [0,2πh̄/�Ek):

|t〉k =
√

�Ek

2πh̄

2∑
n=0

exp(iEknt/h̄)|n〉, (4)

where |n〉,n = 0,1,2 are arbitrary but fixed eigenvectors of the
Hamiltonians in the considered group.

The domain of the semispectral measure representing the
phase observable, denoted θ , should always be θ ∈ [0,2π ),
irrespective of the system considered, i.e., of the rational
number pk/qk . Therefore we rescale the interval of the
index t ∈ [0,2πh̄/�Ek) by defining θ = th̄/�Ek . The phase
interval (a,b) ⊂ [0,2π ) corresponds to the t interval (ta,tb) ⊂
[0,2πh̄/�Ek), where ta = ah̄/�Ek and tb = bh̄/�Ek . The
semispectral measure of the phase observable θ is now defined
as

M̂
pk/qk

θ (a,b) = M̂
pk/qk

t (ta,tb) = �Ek

2πh̄

∫ tb

ta

dt |tk〉〈tk|

= �Ek

2πh̄

∫ tb

ta

dt

2∑
n,m=0

exp[i(Ekn − Ekm)t]|n〉〈m|.

(5)

The phase semispectral measure M̂
pk/qk

θ (a,b) obviously satis-
fies the covariance condition (1). Its off-diagonal and diagonal
matrix elements in the |n〉 bases are

[Mpk/qk

θ (a,b)]m�=n = �Ek

2πh̄

∫ tb

ta

dt exp i[Enk − Emk]t/h̄

= 1

2πi

(
�Ek

Enk − Emk

)[
exp i

(Enk − Emk)b

�Ek

− exp i
(Enk − Emk)a

�Ek

]
(6)

and

[Mpk/qk

θ (a,b)]m=n = (b − a)/2π. (7)

Obviously [Mpk/qk

θ (0,2π )]m�=n = 0 and [Mpk/qk

θ (0,2π )]m=n =
1. The matrix element M̂

pk/qk

θ (a,b) for arbitrary pk/qk gen-
erates a resolution of unity. The resolution is obviously
nonorthogonal.

Thus the family M̂
pk/qk

θ (a,b) given by Eq. (5) provides
the POVM representation of the phase observable for an
arbitrary system with a rational ratio (2). In Fig. 1 we
illustrate the phase expectations 〈ψ |M̂pk/qk

θ (0,b)|ψ〉, with b ∈
(0,2π ), in the three states |ψ〉 forming an orthonormal
basis: |1/

√
3,1/

√
3,1/

√
3〉 [Fig. 1(a)], |1/

√
2, − 1/

√
2,0〉

[Fig. 1(b)], and |1/
√

6,1/
√

6, − √
2/3〉 [Fig. 1(c)]. In

fact, m(b; ν = pk/qk,ψ) ≡ 〈ψ |M̂pk/qk

θ (0,b)|ψ〉 − b/2π for
the three rational numbers pk/qk = 2/3,3/5, and 5/8 is illus-
trated. One should notice that the amplitudes of the oscillations
in the curves becomes smaller for the rational numbers with
larger qk . In fact, the curves converge at the x axis as qk → ∞.

The phase observable for systems with irrational ratios (2)
are defined by considering the limits of phases given by Eq. (5)
for systems with rational ratios. An irrational ν determines the
sequence of rational approximations pk/qk with both pk,qk →
∞. This is equivalent to �Ek → 0, which is applied in Eq. (5)
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(a)

(b)

(c)

FIG. 1. Illustration of m(b; ν,ψ) for (a) |ψ〉 =
|1/

√
3,1/

√
3,1/

√
3〉, (b) |ψ〉 = |1/

√
2, − 1/

√
2,0〉, and (c)

|ψ〉 = |1/
√

6,1/
√

6, − √
2/3〉 for ν = 2/3 (thick gray line), 3/5

(thin gray line), and (thick black line).

to give the POVM for the phase observable of the system with
the irrational ν. Due to the rescaling involved in the transition
from the parameter t to the phase θ , the limiting process results
with a well-defined finite POVM, which satisfies the coherence
property (1). The matrix elements of this POVM are obtained
from Eqs. (6) and (7) in the limit k → ∞, with �Ek → 0, and
are equal to

[Mν
θ (a,b)]m�=n = 0 (8)

and

[Mν
θ (a,b)]m=n = (b − a)/2π. (9)

The phase observables for systems with the irrational ratio
(2) are represented by the same POVM given by the matrix
elements (8) and (9) independently of the irrational ν.

III. DISCUSSION

The definition of the phase POVM for systems with N

energy levels that are all nondegenerate and such that the
ratios of the energy eigenvalue differences are all rational is a
straightforward generalization of the three-level case. Vectors
|t〉 are defined with formula (4) where the summation is over
the nondegenerate energy eigenbases. The term �Ek denotes
the small interval such that the independent energy eigenvalue
differences are presented as integer multiples p1,p2, . . . ,pN

of �Ek . The phase variable θ and the POVM M
p1,p2,...,pN

θ

are defined as in the three-level case, i.e., θ = th̄/�Ek and
formula (5). More discussion is needed to treat systems
with degenerate energy and/or irrational ratios of the energy
eigenvalue differences.

In the case that some of the energy levels are degenerate
the summation over the energy eigenvectors in the definition
of the vector |t〉 needs to be supplemented by the summation
over a basis in each of the degenerate energy eigenspaces. The
choice of the basis within each of the degenerate eigenspaces
is in general arbitrary, but it is natural to respect the symmetry
underlying the degeneracy and use the common eigenbases of
the complete set of operators commuting with the Hamiltonian.

The phase POVM of the irrational case is obtained as the
limit of POVMs over the sequence of systems with rational
ratios where the rational numbers fixing the energies are
chosen to be the successive continued-fraction approximants
of the corresponding irrational ratios. Like in the three-level
case, it is important to realize that the phases of two systems
are similar only if the involved rational numbers are close
to each other in the Farey tree. Otherwise a system with
energy levels that are small perturbations of another system
could have a quite different phase distribution in the same
state. This is illustrated in Fig. 2 for an example of a
four-level system. The following comparisons are made:
in Fig. 2(a) the phase POVM for two systems with energy
levels E1,E2 = E1 + 1�E, E3 = E1 + 3�E, and E4 =
E1 + 5�E (thin line) and E1,E2 = E1 + 10�E, E3 =
E1 + 31�E, and E4 = E1 + 51�E (thick line) and
in Fig. 2(b) for two systems with energy E1,E2 =
E1 + 1�E, E3 = E1 + 3�E, and E4 = E1 + 5�E (thin
line) and E1,E2 = E1 + 1�E, E3 = E1 + 5�E, and E4 =

(a) (b)

FIG. 2. Illustration of the phase distribution of (b) two systems
with the characteristic frequencies nearby in the Farey tree being
much more similar than for (a) two systems with the slightly different
characteristic frequencies but far away in the Farey tree. The angle b

is in radians and m(b) is dimensionless. The details are given in the
main text.
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E1 + 8�E (thick line). As shown in Fig. 1, m(b) ≡
m(b; E1, E2, E3, E4, ψ) ≡ 〈ψ |M̂E1,E2,E3,E4

θ (0,b)|ψ〉 − b/2π ,
where |ψ〉 = (1/

√
4,1/

√
4,1/

√
4,1/

√
4). The characteristic

frequencies of the two systems in Fig. 2(a) are closer than
those of the two systems in Fig. 2(b), but the difference in
the phase distributions is much more similar for the pair of
systems in Fig. 2(b) because the characteristic frequencies are
closer in the Farey tree. In other words, the phase POVMs of
a sequence of systems with rational ratios will converge to a
well-defined limit and can be used to define the phase POVM
of the system with some irrational ratios only if the rational
ratios are chosen as the continued-fraction approximants of the
irrational energy difference ratios. This can be considered the
main point of our work. The systems with an infinite Hilbert
space and an infinite number of discrete energy eigenvalues
such that the energy spectrum contains accumulation points
requires a careful analysis.

IV. CONCLUSION

We have shown how to define the POVM representation
of the phase observable for an arbitrary quantum system with
a finite-dimensional Hilbert space. The matrix elements of
the phase POVM are given explicitly. The phase POVM is
nonorthogonal, provides a resolution of unity, and satisfies the
covariance condition required for the phase observable. In the
case of rationally related characteristic frequencies the phase
POVM is given by Eq. (5). The case of irrationally related
characteristic frequencies is treated as a well-defined limit of
the rational approximations.
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