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Simulations of femtosecond atmospheric filaments enhanced by dual pulse molecular alignment
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A laser pulse propagating through the atmosphere self-focuses due to the nonlinear index of refraction
modifications from the instantaneous electronic and delayed rotational responses of the air molecules. If the
pulse power is sufficient, the focused pulse intensity can surpass the ionization threshold, resulting in a plasma
filament. The balance between defocusing due to plasma refraction and focusing due to the instantaneous and
delayed responses results in extended propagation at high intensities. Because the rotational response induced by
the first pulse (the pump pulse) is periodic in time, owing to quantum-mechanical discreteness of the rotational
eigenfrequencies of the molecules, a subsequent laser pulse (the probe pulse), delayed at the recurrence period,
experiences a propagating wake of index modification left behind by the previous pulse. Here, we present
propagation simulations based on a recent experiment [Varma et al. (unpublished)] showing that axial extension
of the plasma filament and probe pulse shaping imposed by the molecular alignment wake are sensitive to probe
delay changes of as little as 10 fs.
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I. INTRODUCTION

Ultrashort laser pulses propagating in atmosphere self-
focus by modifying the local dielectric susceptibility through
interactions with N2 and O2 [1,2]. During focusing, as the laser
pulse intensity increases, the electron clouds of the N2 and O2

molecules become increasingly deformed, and the axes of the
molecules become partially aligned with the laser polarization
axis. These processes provide an intensity-dependent index of
refraction with a radial profile mirroring that of the laser pulse.
The nonlinear index acts as a traveling lens and imparts a radial
phase shift that combats diffraction, helping to collimate the
pulse. If the focusing is strong enough, the pulse can reach
the breakdown intensity for air, creating a plasma filament.
The plasma then refracts the pulse, lowering the intensity,
and ionization terminates. Under certain circumstances, the
process of self-focusing, ionization, and refraction can occur
more than once before the pulse finally diffracts away leading
to spatially extended filaments [3].

For linear diatomic molecules as found in air, the di-
electric susceptibility is composed of two contributions: the
instantaneous electronic response and the delayed rotational
response. The instantaneous electronic response arises from
the induced dipole moment acquired by atoms in the presence
of the laser field. At atmospheric temperatures, the electrons
within the molecules are present in the ground state with
response times much shorter than the optical period. As
a result, the presence of the laser electric field causes a
time-dependent separation between the electron cloud center
and the nucleus that oscillates at the laser frequency. The laser
pulse then interacts with the induced dipole moment setting
up a polarization current that feeds back onto the laser through
an intensity-dependent index of refraction.

The delayed rotational response occurs due to the aligning
of N2 or O2 molecules along the laser polarization axis. For
typical diatomic molecules, the polarizability is anisotropic
being larger along the molecular axis than perpendicular to
it. In general, the molecular axes will be randomly oriented
in atmosphere. Because of the random orientation, the initial
ensemble average polarizability of the gas is isotropic. As

the laser pulse turns on, the dipoles experience a torque that
tends to bring them into alignment with the laser electric
field. Because the alignment must overcome the inertia
of the nuclei, the process occurs on a longer time scale
than the instantaneous response. The delayed nature of the
alignment provides a susceptibility that is nonlocal in time: The
alignment at any time within the pulse depends on the intensity
at previous times. A consequence of this for short pulses is that
the susceptibility depends not only on the intensity through
the instantaneous response, but also on the energy fluence
of the pulse.

After the initial alignment of diatomic molecules, the
response decays but reforms itself periodically [4–9]. Revivals
in the molecular alignment result from the fact that the
rotational quantum eigenfrequencies are integer related [E =
h̄�0j (j + 1), where j is the total angular momentum quantum
number and �0 is the ground-state rotation rate]. In addition,
the phase of the recurrence propagates at the group velocity
of the original pulse. Thus, a second properly timed pulse not
only will experience the nonlinear susceptibility it generates,
but also will experience the delayed rotational response of the
preceding pulse. Examining the self-consistent propagation
of a second pulse co-propagating with the recurrence in the
rotational susceptibility is the focus of this paper.

The potential for extended propagation at high intensities
has led to several investigations into nonlinear atmospheric
propagation of single pulses both experimental and theoret-
ical [10–17]. Several multiple pulse studies have also been
conducted [18–24]. Bartels et al. have conducted experiments
demonstrating the phase modulation and spectral broadening
of probe pulses in the susceptibility recurrence of CO2 [18].
Fibich et al. have performed simulations of counterpropa-
gating lasers in a generic medium with the instantaneous
susceptibility but without the delayed molecular response [19].
An experiment exploring the effects on high-intensity pulse
propagation of molecular alignment recurrences was that of
Varma et al. [21]. They showed that, if an intense probe pulse
was injected at various delays into a pump-filament-induced
molecular alignment wake in air, the probe filament could
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be laterally displaced and trapped, enhanced, or destroyed
depending on the pump-probe delay. A more recent experiment
has explored the pump-probe effects on filament electron-
density and probe pulse shaping [23].

Calegari et al. have performed experiments and simulations
of strong pump-weak probe propagation with the probes
delayed with respect to the rotational recurrence period [24].
Their paper considers only the linear propagation of the
probe in a single gas species. This is in contrast to the work
presented here, which considers the nonlinear evolution of
high-power probe pulses delayed near the recurrence period
in both N2 and O2. The inclusion of two gas species is
necessary for atmospheric propagation simulations. While the
instantaneous and delayed susceptibilities are dominated by
N2 due to the large fractional composition, the ionization
is dominated by O2, which requires lower intensities in the
multiphoton regime [25,26]. Recently, Wahlstrand et al. have
used spectral interferometry to provide the most direct and
precise measurements of the instantaneous nonlinear index
and the molecular linear polarizability asymmetry [27], which
we use to calibrate our simulations. With the simulations, we
consider the extension of plasma filaments for both identical
and cross polarization for several delays. We also examine the
structure and evolution of the probe pulse due to the recurrence
susceptibility generated by the pump and the self-consistent
index modifications generated by the probe itself.

This paper is organized as follows. In Sec. II, we describe
the propagation model and the derivation of the wave equation
in terms of the vector potential used in our simulations.
Section III includes a description of the response models
used in the simulation, including models for the instantaneous
electronic response, the delayed rotational response, ioniza-
tion, ionization damping, and the plasma response. Section IV
contains our simulation results for a single pump pulse and a
probe pulse at varying delays with respect to the pump pulse
for the situations of cross and identical polarizations. Finally,
in Sec. V, we conclude with the summary and conclusions of
our paper.

II. PROPAGATION MODEL

We begin by writing the nonlinear wave equation for the
vector potential as follows:

∇ × ∇ × �A + 1

c2

∂2 �A
∂t2

= 4π

c

∂ �P
∂t

, (1)

where �P = �P (�x,t : �A) is the polarization vector, which can
be a nonlinear function of the electric field and by extension
�A. Standard vacuum propagation is accounted for by the wave

operator on the left-hand side (LHS) of Eq. (1), and modifi-
cations to the vacuum index of refraction due to the dielectric
response of N2 and O2 are grouped into the polarization vector
on the right-hand side (RHS). In particular, the polarization
vector will include the effects of plasma density via ionization,
the instantaneous electronic response, the delayed rotational
response, and linear dispersion. Here, we will consider the
evolution of the laser pulse for frequencies near the initial
central frequency ω0, thus, nonlinear processes associated with
harmonic generation will be ignored. Furthermore, we will
consider circularly symmetric propagation such that the vector

potential and polarization vector have transverse variation in
radius only.

Because the plasma density in a typical filament is small,
we apply the condition ∇ · �A = 0 to Eq. (1). We note that this
is not a gauge choice but an approximation. In particular, we
require ω2

p/ω2
0 � 1, where ω2

p = 4πe2ρe/me, ρe is the electron
density, e is the fundamental unit of charge, me is the electron
mass, and c is the speed of light. The condition ∇ · �A = 0
also provides a relation between A⊥ and Az : Az can be found
without solving an additional wave equation. From here on, we
only consider the transverse vector potential, and the subscript
⊥ is understood.

To include linear dispersion, we write P = PL + PNL,
where PL represents the linear in electric-field contribution
to the polarization and PNL is the nonlinear contribution. For
a linear medium, the polarization and electric field can be
related via the constitutive relation P̄L(ω) = χ (ω)Ē(ω), where
χ is the susceptibility, E is the electric field, and the overbars
denote temporal Fourier transforms. Using Ē = i(ω/c)Ā and
ε(ω) = 1 + 4πχ (ω), the vector potential can be related to the
polarization through the dielectric function ε(ω) by P̄L(ω) =
iω[ε(ω) − 1]Ā(ω)/4πc. The temporal Fourier transform of
Eq. (1) is then[

∇2 + ε(ω)
ω2

c2

]
Ā = iω

4π

c
P̄NL. (2)

To avoid a convolution integral in the time domain due to
the product ε(ω)Ā, we Taylor expand the dielectric function
around the laser central frequency ω0 as follows:

ω2

c2
ε(ω) = γ0 − γ1δω + γ2(δω)2, (3)

where δω = ω0 − ω is the frequency shift away from the laser
central frequency, γ0 = c−2ω2

0ε(ω0), γ1 = c−2[∂ω(ω2ε)]|ω=ω0 ,
and γ2 = 1

2c−2[∂2
ω(ω2ε)]|ω=ω0 . For atmospheric conditions,

the expansion is valid as the dielectric function is a weak
function of frequency near optical frequencies [28]. Upon
inverse Fourier transforming with respect to the variable δω,
we find[

∇2 + γ0 + iγ1
∂

∂t
− γ2

∂2

∂t2

]
Â = −4π

c

[
iω0 − ∂

∂t

]
P̂NL,

(4)

where Â(�x,t)= 1
2π

∫
Ā(�x,ω0+δω)eiδωtd(δω) and P̂NL(�x,t) =

1
2π

∫
P̄NL(�x,ω0 + δω)e−iδωtd(δω). Equation (5) determines

the evolution of the laser pulse enveloped about its central
frequency. In addition, we consider the envelope of the
laser pulse around the wave number k, which is deter-
mined shortly hereafter. Inserting Â(�x,t) = eikzA(�x,t) and
P̂NL(�x,t) = eikzPNL(�x,t) into Eq. (4), provides[

∇2
⊥ + (γ0 − k2) + iγ1

∂

∂t
− γ2

∂2

∂t2
+ 2ik

∂

∂z
+ ∂2

∂z2

]
A

= −4π

c

[
iω0 − ∂

∂t

]
PNL. (5)

For short laser pulses, it is useful to introduce a moving
frame with speed cf that can be chosen for convenience.
The associated coordinates are ξ = cf t − z, representing
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distance back from the head of the laser pulse, and z = z,
representing distance along the propagation path. Under the
variable transformation, Eq. (5) becomes
[
∇2

⊥ + ∂2

∂z2
+ 2

∂

∂z

(
ik − ∂

∂ξ

)
+ k2β0 + ikβ1

∂

∂ξ
− β2

∂2

∂ξ 2

]
A

= −4π

c

[
iω0 − cf

c

∂

∂ξ

]
PNL, (6)

where β0 = k−2γ0 − 1, β1 = k−1γ1cf − 2, and β2 = γ2c
2
f −

1. It is now useful to express the linear dielectric constant
as ε(ω0) = 1 + δε(ω0), where δε(ω0) is the change in the
linear dielectric function due to the presence of atmosphere.
As we see, the typical index modifications associated with
atmospheric propagation are small. One can then show that,
if cf = cg = (∂ω/∂k)|ω=ω0 and k = k0(1 + 1

2δε), where k0 =
ω0/c, then kβ1 = 0 and k2β0 = 0 for order (δε)2. The third
term in Eq. (6), within the parentheses, is responsible for
local wave-number shifts within the pulse ∂ξ ∼ −i δk, and the
second-order term in z is associated with modifications to the
Doppler-shifted frequency ∂z ∼ i(δω − c δk) in the moving
frame. Because the atmosphere is optically thin δω � c δk,
the second-order derivative in z can be ignored along with
δε ∂z. Finally, if the phase evolution of the polarization within
the laser pulse is much slower than the laser pulse central
frequency, we can drop the second term on the RHS of
Eq. (6). In the Appendix, we consider the effect of this
term on the energy conservation of the laser pulse. Applying
these approximations, we end up with the following equation
describing the evolution of the laser pulse enveloped around
the frequency ω0 and wave number k = k0(1 + 1

2δε):

[
∇2

⊥ + 2
∂

∂z

(
ik0 − ∂

∂ξ

)
− β2

∂2

∂ξ 2

]
A = −i

4πω0

c
PNL. (7)

The coefficient β2 = ω0c(∂2k/∂ω2)|ω=ω0 accounts for group-
velocity dispersion: Different frequencies travel at different
group velocities resulting in spreading of the laser pulse as it
propagates.

III. ATMOSPHERIC RESPONSE MODEL

We now consider the physical processes contributing to
the nonlinear polarization. In general, the polarization can
be expressed as PNL = −χNL(ik0 − ∂ξ )A, where χNL is the
nonlinear susceptibility of the atmosphere. In the Appendix,
we show that the ξ derivative has a minimal effect on the energy
and phase evolution of the pulse, and thus, from here on, we
use PNL = −ik0χNLA. The susceptibility can be written as a
sum of three contributions as follows:

χNL = χelec + χrot + χfree, (8)

where χelec is the instantaneous electronic response, χrot is the
molecular rotational response, and χfree is the free-electron
response. Each of these will be considered below. For now, we
note that the index of refraction is related to the susceptibility
by n � 1 + 2πχ and that both electronic and rotational
responses contribute a positive χ leading to focusing, whereas,
the plasma contributes a negative χ leading to refraction.

A. Electronic and rotational responses

In the presence of an external electric field, the electron
cloud of an atom or molecule becomes distorted resulting
in an induced dipole moment. At atmospheric temperatures,
N2 and O2 exist primarily in their electronic ground states.
Thus, for wavelengths much larger than the resonant excitation
frequencies, the electron cloud can adjust instantaneously to
the field of the laser pulse. For N2 and O2, significant electronic
excitation and absorption occur at wavelengths of λ ∼ 120 and
175 nm, respectively. To motivate the electronic and rotational
responses, we consider the classical picture, which has had
qualitative success modeling the evolution of the molecular
dipole moment. The shortcoming of the classical picture is
that linear and nonlinear polarizability coefficients appear as
parameters, which need to be found via experiments or from
a full Schrödinger-equation treatment of the molecule. We
note that quantizing the classical rotational Hamiltonian has
predicted revivals in the rotational response but still requires
specification of polarizabilities.

The simplest picture describing the response of a linear
diatomic molecule to an external field is the rigid-rotor model:
two positive nuclei of fixed separation with associated electron
orbitals. The polarizability is determined by an ensemble
average of molecular dipole moments �p = −e�x through
the expression �P = ρ〈 �p〉, where �x measures the separation
between the centers of the electronic and nuclear charges for
each molecule, ρ is the number density, and 〈X〉 represents
an ensemble average of the quantity X. The electron clouds
are bound to the nuclei by an anharmonic potential. At
lowest order in the electric field, the electron oscillates at
the laser frequency with an amplitude along each molecular
axis proportional to the linear polarizability associated with
that axis. In particular, �pL = α⊥ �E + �α ŝ‖(ŝ‖ · �E), where
�α = α‖ − α⊥, α‖, and α⊥ are the linear polarizabilities along
and perpendicular, respectively, to the molecular bond axis,
and ŝ‖ is a unit vector along the axis of the molecule. The
polarizability can be decomposed into a portion that is parallel
to the laser electric field and a portion perpendicular: �pL =
�pL,‖ + �pL,⊥, where �pL,‖ = (α⊥ + �α cos2 θ ) �E and θ is the
angle between the polarization direction and the molecular
bond axis. On averaging over an ensemble of molecules, the
contributions of �pL,⊥ cancel. If we further assume no net
molecular orientation relative to �E and average over θ , we
find 〈 �pL,‖〉 = (α⊥ + 1

3�α) �E. This contribution is included in
the dispersion for air.

As the electron clouds oscillate in the electric field, they
experience the anharmonicity of the potential providing a
correction to their oscillation amplitude. This correction
provides the nonlinear instantaneous electronic response (as
well as third harmonic generation, which is not considered
here). In particular, we can write the lowest-order nonlinear
instantaneous dipole moment as pk = βijkEiEjEk where
the sum over repeated indices is implied and the βijk

parametrize the anharmonicity of the potential. In the absence
of polarization rotation, this simplifies to pk = βiik|Ei |2 Ek or
simply pk = βik|Ei |2 Ek . For diatomic molecules composed
of identical atoms, βik is a symmetric matrix providing only
three matrix elements. We can then define the three nonlinear
polarizabilities as β‖, β⊥, and β×, which represent the
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polarizability along the molecular axis, perpendicular to the
molecular axis, and the cross polarizability. Thus, the nonlinear
electronic dipole moment can be expressed as �pelec = α

(3)
⊥ �E +

�α(3)(ŝ‖ · �E)ŝ‖, where α
(3)
⊥ ( �E) = β⊥| �E|2 − �β⊥(ŝ‖ · �E)2,

�α(3)( �E) = (�β‖ + �β⊥)(ŝ‖ · �E)2 − �β⊥| �E|2, and �βa =
βa − β×. As above, the component of the dipole along the laser
polarization axis is given by �pelec,‖ = (α(3)

⊥ + �α(3) cos2 θ ) �E,
however, now the coefficients α

(3)
⊥ and �α(3) are functions of

the angle θ . Again, we assume no net molecular orientation
relative to �E and average over θ , yielding the electronic
susceptibility,

χelec = ρ 1
5

(
β‖ + 8

3β⊥ + 1
3β×

)|k0 �A|2, (9)

where ρ is the number density. The coefficient in Eq. (9) can
be related to the nonlinear instantaneous index of refraction as

n2 = 16π2

5

ρ

c2

(
β‖ + 8

3
β⊥ + 1

3
β×

)
. (10)

Equation (10) expresses the macroscopic index of refraction in
terms of the microscopic details of the bound-electron motion.
In terms of macroscopic quantities, the total instantaneous
susceptibility for atmosphere can be expressed as

χelec = 1

2πρatm
(ρNn2,N + ρOn2,O)I0|a|2, (11)

where n2,j is the nonlinear instantaneous index of refraction
for each gas species at one atmosphere (we use N and O, but
they are understood to represent the diatomic molecules), ρj

is the atmospheric number density of each gas species, ρatm

is the total atmospheric number density, a = eA/mec
2 is the

normalized vector potential, and I0 = 8.6 × 1018 W/cm2 is
the intensity for a laser pulse with a wavelength of 800 nm and
a = 1. For the simulations presented here, we use the values
ρN/ρatm = 0.8, ρO/ρatm = 0.2, n2,N = 7.4 × 10−20 cm2/W,
and n2,O = 9.5 × 10−20 cm2/W [27].

The molecular rotational response arises from the
anisotropy in the linear polarization with respect to the
molecular axes that was discussed with regard to the linear
response above. In a linear diatomic molecule, the electrons
are less confined in the direction parallel to the bond axis
than in the transverse direction: α‖ > α⊥. Thus, an external
electric field exerts a torque on a molecule if its axis is not
aligned with the electric field. The torque results from the
electron cloud dragging the nuclei such that the molecular
bond axis is aligned with the polarization axis. Because the
process involves motion of the nuclei, it occurs on a time scale
much longer than the electron response. Recall from before
that a linear dipole moment of an ensemble of molecules
can be written as 〈 �pL,‖〉 = (α⊥ + �α〈cos2 θ〉) �E where, in
the absence of net molecular alignment, 〈cos2 θ〉 = 1/3. In
the presence of the laser pulse, 〈cos2 θ〉 is a function of time
representing the gradual alignment of the molecules along the
polarization axis. We separate the contributions to the linear
polarizability as 〈 �pL,‖〉 = (α⊥ + �α/3) �E + 〈 �prot〉. Recall that
the first term is included in the linear susceptibility and gives
rise to the quantity δε. Accounting for both N2 and O2, the

rotational susceptibility is then

χs
rot = ρN�αN

[〈cos2 θ〉N − 1
3

] + ρO�αO
[〈cos2 θ〉O − 1

3

]
,

(12)

where s denotes the susceptibility generated by the pulse itself
and the difference in polarizabilities are �αN = 7 × 10−25 cm3

and �αO = 1.1 × 10−24 cm3 [27]. The alignment of the
molecules is a nonlocal response of the medium depending
on the time history of the laser pulse. As a result, 〈cos2 θ〉 for
each species is expressed as a convolution in time of the form

〈cos2 θ〉i =
∫ ξ

−∞
Gi(ξ − ξ ′)| �E(ξ ′)|2dξ ′, (13)

where Gi(ξ ) represents the Green’s function for alignment
when the laser pulse approximates an impulse. We note that
Eq. (13) represents only the lowest order in the electric-field
contribution to the rotational alignment 〈 �prot〉 ∝ E3

0 , where E0

is the laser electric-field amplitude.
There are several models for Gi(ξ ), each with a varying

degree of insight and approximation. In general, the models
with the least approximation are those with the largest
computational requirements. Here, we present a reduced model
for Gi(ξ ) used in prior atmospheric propagation simulations
but also expand this model to capture the quantum-mechanical
(QM) phenomenon of rotational recurrences. We start by
reviewing the standard alignment model. Using a classical
theory for an ensemble of diatomic molecules that treats the
molecules as classical rotors, the Green’s function for the initial
delayed response for a single species can be expressed as

G(ξ̂ ) = �α

15kT M

[
ξ̂ + 1

2
π1/2(1 − 2ξ̂ 2)e−ξ̂ 2

erfi(ξ̂ )

]
, (14)

where ξ̂ = kT ξ , kT = c−1(2T /M)1/2, M is the molecular
moment of inertia, T is the temperature in units of energy, and
erfi is the imaginary error function [5]. However, performing a
convolution integral with this function at every point in space
requires a large number of computations ∼N2

ξ , where Nξ is
the number of grid points in ξ , greatly extending simulation
times. As an alternative, the response function G is modeled
as a damped harmonic oscillator with the natural frequency,
damping, and steady-state index chosen to fit Eq. (14) or
QM density-matrix calculations. Thus, to determine the total
susceptibility, a driven harmonic oscillator equation can be
solved requiring only ∼Nξ computations. In particular, the
rotational susceptibility for each gas is modeled using the
equation,[

d2

dξ 2
+ 2γi

d

dξ
+ ω2

i

]
χs

rot,i = 1

2π
ω2

i n̄2,iI0|a(ξ )|2. (15)

Because we are interested in laser pulses with full width at
half maxima (FWHM) less than 100 fs, the parameters ωi , γi ,
and n̄2,i are chosen to best match the initial rise up to the peak
in the rotational response. For nitrogen, we find good agree-
ment of the initial response for ωN = 0.0162 rad/fs, γN =
0.0096 fs−1, and n̄2,N = 1.35 × 10−19 cm2/W, whereas, for
oxygen, ωO = 0.0142 rad/fs, γN = 0.006 fs−1, and n̄2,O =
3.2 × 10−19 cm2/W. A comparison of the results of Eq. (15)
and the classical and QM models are shown in Fig. 1(a) for an
impulse starting at 20 fs.
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χ

(a) (b)

χ

FIG. 1. (Color online) (a) Comparison of rotational susceptibilities from the SHO model in Eq. (15), the classical kinetic model, and the
QM density-matrix theory for a pulse approximating an impulse starting at t = 20 fs with an intensity of I = 1 × 1010 W/cm2 and a fluence of
5 × 10−5 J/cm2. (b) Comparison of the rotational susceptibility after one full recurrence period in nitrogen modeled by Eq. (17) and the QM
density-matrix theory result for a pulse approximating an impulse with an intensity of I = 1 × 1010 W/cm2 and a fluence of 5 × 10−5 J/cm2.
Here, the probe pulse has its polarization rotated 90◦ from the pump pulse. In both figures, the SHO model is distinguished by the slower decay.

The delayed response model presented above eventually
phase mixes away after a few hundred femtoseconds, leav-
ing behind no modification to the susceptibility. Full QM
density-matrix calculations have predicted and experiments
have observed recurrences in the rotational response of
the molecules due to the discrete eigenfrequencies of the
molecules: ωj = h̄j (j + 1)/2M , where j is the total angular
momentum eigenvalue [4,6,7]. Thus, a second laser pulse
delayed from the initial pulse by the recurrence period will
experience not only its own rotational index modification,
but also an index modification generated by previous pulses.
The linear perturbation density-matrix result for the Green’s
function is

G(ξ ) = 2

15
�α

∞∑
j=2

j (j − 1)

2j − 1
(Fj − Fj−2) sin

[
h̄

Mc
(2j − 1)ξ

]
,

(16)

where Fj = Z−1Dj exp[− h̄2

2MT
j (j + 1)] is the field-free

probability of a molecule in the ensemble being in state
(j,m), here, m is the angular momentum value quantized
along the laser polarization direction, Z = ∑

j=0 Dj (2j +
1) exp[− h̄2

2MT
j (j + 1)] is the partition function, and Dj is

the degeneracy factor for different nuclear spin states having
the same rotational eigenvalue [6]. The important aspect
of Eq. (16) is that it is periodic with period τ = 2πM/h̄:
for nitrogen and oxygen at τ = 8.375 and τ = 11.57 ps,
respectively. We note that there are also half and quarter
revivals at τ = πM/h̄ and τ = πM/2h̄, but here, we are
interested in the evolution of a second pulse placed near the
full recurrence time of nitrogen.

A convenient feature of Eq. (16) is that, when inserted into
the convolution integral in Eq. (13), the sine functions in the
summation are multiplicatively separable limiting the number
of operations to ∼NξNj , where Nj is the number of terms in the
summation. However, at standard atmospheric temperatures,
j = 10 is the most populated state of N2. Thus, a reasonable
representation of the Green’s function would require keeping
about 30 terms in Eq. (16). Furthermore, each term would have

to be followed for 8.4 ps, near 2 orders of magnitude longer
than the pulse lengths.

Instead, we propose a delayed version of Eq. (15).
Figure 1(b) shows a fundamental recurrence in the susceptibil-
ity of atmospheric N2 at T = 294 K for the case of a δ-function
pulse at t = 20 fs with fluence

∫
I (t)dt = 5 × 10−5 J/cm2

as calculated by the QM density-matrix method. Plotted is
the susceptibility that a probe pulse, with an electric field
rotated 90◦ with respect to the pump, would experience.
The recurrence time is τ = 8.375 ps, and the recurrence is
antisymmetric about this time. Note also that the wave form
for t > τ is an inverted (because of the rotated polarization)
replica of the fundamental response shown in Fig. 1(a). To
model this response with harmonic oscillator equations, it is
necessary to first introduce a time delay τ accounting for the
recurrence. Second, it is necessary to introduce two harmonic
oscillator equations: one accounting for t > τ and the other
for t < τ . A single equation delayed by τ would reproduce
the curve shown in Fig. 1(a) but shifted by τ . To capture
the response for t < τ , a second equation must be introduced
that is integrated backward in time. The two equations are
written

[
d2

dξ 2
± 2γN

d

dξ
+ ω2

N

]
χns

rot,± = ± 1

2π
ω2

Nn̄2,NI0|a1(ξ − cτ )|2,
(17)

where a1 is the vector potential for the first laser pulse. The total
delayed susceptibility caused by the pump is then χns

rot = χns
+ +

χns
− , where the superscript ns refers to the susceptibility not

generated by the second pulse itself. A comparison, showing
reasonable agreement near the recurrence time of Eq. (17)
with the full density-matrix results is presented in Fig. 1(b). In
Fig. 1(b), the polarization of the probe pulse is rotated 90◦ with
respect to the pump pulse’s polarization. The result of the cross
polarization is the introduction of an additional factor of −1/2
into Eq. (17). The total rotational susceptibility for the first
and second pulses is then χrot = χs

rot and χrot = χs
rot + χns

rot,
respectively.
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B. Ionization and plasma response

During self-focusing, the laser pulse intensity can become
large enough to ionize the nitrogen and oxygen, generating free
electrons. The free-electron dipole oscillation in the laser field
is π out of phase with the bound-electron dipole oscillation.
As a result, the free-electron-plasma susceptibility is negative
contributing to refraction. The generation of plasma and loss
of gas density is governed by the rate equations,

dρe

dξ
= 1

c
[νNρN + νOρO], (18)

dρi

dξ
= −1

c
νiρi, (19)

where the νi are the intensity-dependent ionization rates.
Noting that �ppl = −e2 �E/mω2, Eq. (18) can be expressed as
an equation for the time evolution of the plasma susceptibility,

dχpl

dξ
= −1

c

e2

mω2
[νNρN + νOρO]. (20)

The ionization rates are calculated via the Popruzhenko,
Mur, Popov, and Bauer (PMPB) model [26], which involves
only two parameters: the ionization energy UI and the
post-ionization atomic core charge Z. For low frequencies,
the PMPB model limits to the multiphoton ionization rates in
which the electron becomes ionized by transitioning through
intermediate excited states in discrete steps of the laser pulse
photon energy. For N photon absorption, ν ∝ IN , where
N = 〈UI/h̄ω0 + 1〉 and the brackets indicate rounding down
to the nearest integer. For high intensities, the PMPB model
limits to the tunneling ionization rates where the electric field
of the laser pulse modifies the molecular potential such that
previously disallowed unbound states are accessible through
tunneling. In the tunneling limit, ν ∝ exp[−βU

3/2
I /I 1/2].

Because the PMPB model is an ionization model for atoms,
some of the parameters must be adjusted to recover the
ionization rate for molecules. Here, we use the values quoted
by Talebpour et al. for nitrogen UN = 15.6 eV and Z = 0.9,
whereas, for oxygen UO = 12.1 eV and Z = 0.53 [25]. The
ionization rates as a function of intensity are shown in
Fig. 2. Around I = 2 × 1014 W/cm2, multiphoton ionization
transitions into tunneling ionization.

During the process of ionization, energy is transferred from
the laser pulse to the electrons. Thus, in addition to the plasma
response, there is an imaginary component of the susceptibility
representing ionization depletion of the laser pulse. Following
Sprangle et al. [11], the total energy loss is simply the product
of the energy required for ionization and the number of free
electrons generated. The energy loss due to ionization along
the propagation path is then

d

dz
Uion = −

∫
(UNρe,N + UOρe,O)dσ , (21)

where ρe,j denotes the plasma density created from that
particular gas species and σ is the cross-sectional area. Noting
that UL � 1

8π
∫ dσ dξ |k0A|2, the effective susceptibility can

be expressed as

χion = i
2

ω0

[
UNνNρN + UOνOρO

|k0A|2
]
. (22)

ν

Mo

FIG. 2. (Color online) Ionization rates for molecular oxygen
and nitrogen as a function of intensity from the PMPB model
[26] used in our propagation simulation. For intensities below
I = 1 × 1014 W/cm2, the generation of plasma is predominately due
to the ionization of oxygen molecules.

The total free-electron susceptibility is then χfree = χpl +
χion.

IV. SIMULATION RESULTS

We solve Eq. (7) numerically in two spatial dimensions,
one transverse and one longitudinal, with the susceptibilities
defined in Sec. II. We use a split step technique in which we as-
sume the group-velocity dispersion, β2∂

2
ξ , acts independently

from diffraction, ∇2
⊥, for small time steps. The group-velocity

dispersion is solved via a dual-sweep matrix inversion. In the
second half of the split step, the remaining ξ evolution is treated
using a three-point scheme for the derivative [29], whereas, the
transverse Laplacian is handled implicitly using a dual-sweep
matrix inversion.

Our simulations are based on the experiments reported in
Ref. [24]. The propagation of the laser pulse is simulated from
a final focusing lens to an aperture, a total propagation distance
of 5.5 m. In the experiments, an iris of radius 0.29 cm is placed
after the final focusing lens defining the initial radius of the
pulse. The initial spatial profile of the pulse is shown in Fig. 3.

ξξξξξ

FIG. 3. (Color online) Initial intensity profile of the laser pulse.
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FIG. 4. (Color online) Red line: the radius containing 10% of the
pulse power as a function of propagation distance on the left vertical
scale. Dotted line: the radius containing 10% for an identical pulse
propagating in vacuum is plotted for reference. On the right vertical
scale, the electron density is plotted. Self-focusing is evident in the
smaller radius of the solid line near the focus. The smaller radius
leads to increased intensity and enhanced plasma generation.

The profile is initially flat and transitions to zero at 0.29 cm at
the edge of the iris because of numerical issues associated with
using an exact flattop profile. The initial transverse phase of the
pulse is set as φt = − 1

2k0r
2/Lf , where Lf is the focal length

of the lens. The radial extent of the simulation domain is 1.06
times the initial aperture size, and we use 600 radial zones.
The initial longitudinal intensity profile is sin4(πξ/σ ) for 0 <

ξ < σ with a corresponding FWHM of σFWHM � 0.36σ . The
total longitudinal extent of the simulation box is 2σ with 400
zones.

For brevity, we will refer to the first laser pulse as the
pump and the second laser pulse as the probe even though the
energy of both pulses is comparable. For evaluating the pump’s
rotational susceptibility experienced by the probe, we record
the intensity profile of the pump in both the r and ξ coordinates
every 0.8 cm along the entire propagation path. The recorded
intensity is then used at the corresponding axial positions when
evaluating Eq. (17) for the susceptibility experienced by the
probe.

A. Pump propagation

We now consider the individual propagation of the pump
with a central wavelength λ = 800 nm, FWHM σFWHM =
77 fs, and an energy of UL = 1.34 mJ. Figure 4 shows the
radius containing 10% of the pulse energy as a function of
propagation distance, solid red line, and the electron density
created during the filamentation process, sold black line. The
10% radius for the same pulse propagating in vacuum is also
plotted as the dashed red line. Self-focusing is evident: near
focus, 10% of the laser pulse’s power is contained in about half
the transverse area as compared to the vacuum propagation
case. As the pulse focuses, the intensity becomes large enough
to generate a significant electron population, which then causes
the pulse power to refract to larger radii.

We define, as follows, “core-average” quantities X, which
allows us to better interpret the presences of self-focusing and
filamentation that are most active near the axis of propagation,

〈X(a,z)〉core = 2

R2
c

∫ Rc

0
X(a,z,r)d2r, (23)

where Rc = 200 μm about 1/15 of the entire radial simulation
domain and a is either ξ or its associated Fourier-transform
variable. Figure 5(a) depicts the core-averaged laser pulse
spectrum as a function of propagation distance. For plotting,
the amplitude has been normalized to the maximum at each
distance; pump depletion is not observable in the plot. The
pulse spectrum remains centered around 800 nm until the
pulse begins to focus, at which point, the pulse drives a large
molecular alignment, resulting in significant redshifting.

To examine this, we consider the Hamiltonian model for
wave-packet dynamics in which the frequency acts as the
Hamiltonian, the wave vectors act as the momenta, and the
susceptibility acts as the potential. In particular, we can
write the Hamiltonian as (ω/c) = [(k2

z + k2
⊥)/(1 + 4πχ )]1/2.

Consequently, the evolution of the wavelength shift during
propagation can be expressed in terms of the susceptibility as

∂

∂z

(
δλ

λ0

)
= 2π

∂χNL

∂ξ
. (24)

In Fig. 5(b), the core average of ∂ξχNL is plotted as a function
of propagation distance and the pulse frame coordinate. The
centroid of the pulse is also plotted as the dotted black line. The
positive (negative) regions in Fig. 5(b) are where the pulse can
acquire red (blue) shifts. The positive region in Fig. 5(b) is the
result of the pulse driving a large instantaneous and molecular
response in the atmosphere, whereas, the negative region is the
decay of the molecular response due to phase mixing, which
can be observed in Fig. 1(a).

Ionization also plays a role in ∂ξχNL, but in Fig. 5(b),
its susceptibility contribution is not directly noticeable. In
Fig. 6, the on-axis total nonlinear susceptibility and the plasma
susceptibility are plotted at peak ionization, 50 cm before
vacuum focus. The ionization plays a significant role in the
total susceptibility but is never large enough to generate a
negative gradient in the susceptibility, which, in turn, precludes
blueshifting of the laser pulse. Furthermore, we note that
the intensity of laser pulse is clamped at an intensity of
∼3 × 1013 W/cm2. The plasma response from ionization also
reduces the susceptibility reducing the degree of self-focusing.

B. Probe propagation

For the probe pulses, we consider nine delays near one
full nitrogen molecule recurrence period each separated by
13 fs. The delays are measured in time with respect to a full
recurrence period where the recurrence susceptibility crosses
through zero. Figure 7 shows the delays used in the simulation
and where their peaks initially lie on the molecular index
modification left behind by the pump. The red circles show
the probe pulse delays with the polarization rotated 90◦ from
the pump, whereas, the blue triangles are delays for probe
pulses with identical polarization as the pump. Most of our
investigation will involve probe pulses cross polarized with
respect to the pump, which introduces a factor of −1/2 in
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FIG. 5. (Color online) (a) Laser pulse spectrum averaged within the radial core as a function of propagation distance. The intensity has
been normalized along the distance. (b) Differential susceptibility averaged within the radial core as a function of propagation distance and
position in the moving frame window. The centroid of the laser pulse is plotted as the dashed black line. As the laser pulse self-focuses, the
fluence increases, greatly enhancing the molecular wake. The redshifting results from the increase in molecular alignment within the pulse.

the pump’s index modification experienced by the probes.
However, we briefly consider identical polarization at the end
of this section. The recurrence susceptibility acts as a lens
that co-propagates with the probe pulses. Unlike a steady lens,
however, the index changes along the propagation path due to
the evolution of the pump pulse one recurrence period earlier.
As with a lens, a larger index of refraction leads to stronger
focusing, and we expect probes starting in higher (lower) index
phases of the recurrence susceptibility to focus more strongly
(weakly). We will refer to the positive and negative regions
of recurrence susceptibility as the focusing and defocusing
phases, respectively.

In the simulations, the pulse evolution is determined by
competition between refraction due to the radial gradient of
the index and diffraction. (Phase modulation and dispersion are
of secondary importance). Figure 8 depicts the total on-axis
electron-density profiles for three probe delays and the initial
electron density (black curve) due to ionization by the pump as
functions of propagation distance. The density profiles show

χ

ξ

χ

FIG. 6. (Color online) The total on-axis susceptibility at peak
ionization, 50 cm before vacuum focus, as a function of the pulse
frame coordinate in the solid red curve. The plasma contribution to the
total susceptibility is plotted as the purple solid line. The black dotted
curve shows the on-axis intensity profile at the same propagation
distance. The total susceptibility is positive within the pulse but is
significantly reduced by the presence of plasma.

three types of behavior. For the − 52-fs delay, the probe
pulse encounters the strongest focusing phase of the pump’s
recurrence and focuses earlier than the pump. It generates
additional plasma, refracts, and still has enough power to
focus downstream in the combined pump-probe index, creating
the second electron-density population. The − 13-fs probe
pulse encounters a smaller focusing effect from the pump’s
recurrence. It focuses slightly earlier than the pump, enhances
the existing plasma density but is unable to re-self-focus, and
continues to refract without generating an additional plasma
population. Finally, the 26-fs probe pulse encounters the
defocusing phase of the pump’s recurrence, focuses further
downstream than the pump, and generates additional plasma
closer to the vacuum focus. This behavior is demonstrated
more clearly in Fig. 9, which shows the radius containing 10%
of the laser power as a function of propagation distance for
delays in the middle column of Fig. 8: −52, −13, and 26 fs.
The −52-fs delay focuses earliest and refracts the earliest but is
able to refocus, the −13-fs delay focuses slightly later, remains
collimated and then refracts strongly, while the 26−fs delay

χ

ξ

FIG. 7. (Color online) Delays of probe pulses with respect to
pump pulse. The red dots show where the peaks of the probe pulses
initially fall with respect to the index modification generated by the
pump in the cross-polarization simulations. The blue triangles show
the delays of the probe pulse in the identical polarization simulations.
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FIG. 8. (Color online) The total electron-density profiles for each
probe delay for cross polarization. The red curve is the sum of the
electron density initially created by the pump and the additional
density generated by the probe. The black curve (at lower densities)
shows the initial electron density created by the pump. For the first
three delays, the probe pulse experiences the positive index region of
the probe’s molecular wake and focuses upstream where it generates
plasma and refocuses downstream. For the next three delays, the probe
starts near the zero crossing of the pump’s molecular wake, focuses
near the same point, and enhances the existing plasma density. For
the last three delays, the probe sees the negative index region, focuses
downstream, and generates little to no additional plasma.

focuses the latest and remains collimated over the longest
distance.

In Fig. 10, the fraction of power in the core is plotted as a
function of propagation distance and pulse frame coordinate
for the −52- and 26-fs delays discussed above. The remaining
power is contained in the annulus surrounding the core.
The white dashed lines demarcate at which propagation
distance the electron-density peaks. The fraction of pulse

-52 fs

-13 fs

26 fs

FIG. 9. (Color online) The radius containing 10% of the pulse
power as a function of propagation distance for three different probe
delays: red curve, −52 fs; black curve, −13 fs; and purple curve,
26 fs. The power remains collimated over the longest distance for the
probe delay of 26 fs.
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FIG. 10. (Color online) Fraction of power within the core as a
function of propagation distance and pulse frame coordinate for two
delays: −52 and 26 fs. The dashed white lines show the propagation
distances at which the electron density peaks. Each longitudinal
position within the pulse focuses and refracts differently. For both
delays, the back of the pulse refracts earliest but is able to refocus
further downstream.

power within the core provides insight into how the pulse
energy is transported transversely at different positions within
the pulse. The core intensity acquires a temporal structure
due to the different rates of focusing for the different time
slices of the pulse. As seen in Fig. 10, there are three distinct
transverse dynamics for each region of the pulse. The back of
the pulse undergoes three cycles of focusing and refraction,
the middle of the pulse undergoes two cycles, and the front of
the pulse undergoes one cycle. This is observed as the number
of maxima in Fig. 10 as a function of the propagation distance.
The refocusing of the back of the pulse is responsible for the
creation of the downstream electron density seen in Fig. 8. For
the −52-fs delay, the pulse power within the core increases
as the pulse focuses. The front of the pulse evolves as if in
a weak nonlinear media, focuses near vacuum focus but well
after the middle and back of the pulse, then refracts. The back
of the pulse focuses slightly before the middle: the rotational
susceptibility increases from the front to the back of the pulse.
This can be observed as the slanting of the first maxima in the
fractional power in Fig. 10. Even before the front of the pulse
has focused, the energy in the middle and back of the pulse
has diffused transversely. This initial refraction of the middle
and back of the pulse is the result of plasma generation.

Figure 11 shows the nonlinear susceptibility experienced
at three different time slices, 42, 106, and 171 fs within
the −52-fs delay probe pulse as a function of propagation
distance and radius. In the front of the pulse, 42 fs, the large
susceptibility minimum is due to the electron density generated
by the pump pulse. In the middle of the pulse at 106 fs,
the hole in the susceptibility is due to a combination of the
plasma generated by the pump and the self-generated plasma
of the probe. When plasma is generated, its susceptibility
contribution is comparable to the molecular and electronic
susceptibilities over a small transverse area. This is the result of
the ionization rate having a nonlinear relationship to intensity,
whereas, the molecular and electron susceptibilities are linear
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FIG. 11. (Color online) Nonlinear susceptibility as a function of
propagation distance and radius for three different positions within the
−52-fs delay probe pulse. The transverse dynamics of the front of the
pulse (42 fs) are dominated by the molecular wake and plasma density
generated by the pump, whereas, the back of the pulse experiences
the index modifications of both the pump and itself.

in the intensity. The width of the molecular and electronic sus-
ceptibilities is approximately the root-mean-squared (RMS)
radius of the pulse at peak intensity, whereas, the plasma
susceptibility in the N -photon regime is N times smaller
than the RMS radius at peak intensity. In the region where
plasma is generated, there is a transverse minimum in the
susceptibility, which causes the pulse energy to move outward
from the center. As the pulse energy is transferred outward,
the intensity goes down, and ionization terminates. When
ionization terminates, the on-axis minimum vanishes, and the
transverse profile of the susceptibility again has a maximum
on axis. As seen in the nonlinear susceptibility plot at 171 fs,
if the power within the core of the pulse remains sufficiently
large after ionization, the pulse can refocus. This process is
aided by the recurrence in susceptibility generated by the
pump, which reduces the power required for self-focusing.
As the pulse refocuses, the intensity goes up, and additional
plasma is generated: the second density maxima in the first
three profiles of Fig. 8. Again, an ionization index minimum
forms, resulting in refraction, and the process can repeat. For
the 171-fs slice, there are three index minima. The first is the
result of the plasma generated by the probe, the middle is the
plasma generated by the pump, and finally, the last minimum
is the second density maximum generated by the probe. After
refracting from each minimum, the probe pulse refocuses until
it finally diffracts away.

For the 26-fs delay, the same features are observable, but
they occur farther back in the pulse frame. Here, because
the probe pulse initially sits in the defocusing phase of the
recurrence, the pulse focuses further downstream and does not
focus as strongly. Because the intensity is not as large, less
plasma is generated, and the on-axis index minimum is not
as severe, causing refraction to occur later. Refraction occurs
first in the back of the pulse: an on-axis minimum in the index
occurs from the transversely localized plasma contribution of
the pump. The region right behind the initial peak of the pulse
begins to refract 50 cm further downstream after the creation
of the second density population as seen in Fig. 8. However,
the front and peak of the pulse, which remain well collimated
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26 fs 39 fs 52 fs

65 fs 78 fs 91 fs
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FIG. 12. (Color online) The total electron-density profiles for
each probe delay for identical polarization. The red curve is the
sum of the electron density initially created by the pump and the
additional density generated by the probe. The black curve (at lower
densities) shows the initial electron density created by the pump. As
the delay time increases, the index experienced by the probe due
to the pump’s molecular wake increases. The increase in the index
of refraction causes the probe to focus more strongly, resulting in
additional plasma generation.

for close to 1 m after the initial focus, have not refracted yet. As
a result, the region right behind the peak experiences a large
positive index due to the molecular response as ionization
begins to terminate. While the front and peak of the pulse
refract away, this region is able to refocus. This leads to the
observation of a greatly shortened probe pulse ∼30-fs FWHM
within the core after 5.4 m. However, when considering the
total power, integrated over all radii, the final FWHM of the
probe pulse, ∼75-fs FWHM, is not considerably different from
the initial FWHM.

Figure 12 shows the on-axis density profiles resulting from
probe pulses with identical polarization to the pump pulse and
delays seen as blue triangles in Fig. 7. The general trend is
that the enhancement in filament density is larger for pulses
starting in the positive rotational susceptibility recurrence:
Density increases as initial recurrence susceptibility increases.
For delays of 26 fs or longer, two discernible density peaks
form separated by 40 cm. The peaks are approximately split by
the maximum in pump-generated density. Because the pulses
begin in a large positive susceptibility, they self-focus, reach
high intensity upstream from the pump pulse, and generate
additional plasma earlier. By the same process described above
for cross-polarized pulses starting in the positive region of
the recurrence susceptibility, the pulses can refocus further
downstream and can generate additional plasma.

V. SUMMARY AND CONCLUSIONS

We have considered the propagation through atmosphere
80% N2 and 20% O2 of two delayed ultrashort laser
pulses either cross or identically polarized. To examine the
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propagation, a self-consistent paraxial propagation simula-
tion was developed that includes physics models for the
instantaneous electronic response, delayed rotational response,
plasma response, and ionization energy damping. For the
models of the instantaneous and delayed response, calibrations
were performed using recent experimental results [27]. The
delayed responses were also calibrated using density-matrix
simulations [7].

In addition to the self-index modifications described above,
a computationally efficient model for the index due to rota-
tional recurrences in the oxygen and nitrogen was proposed.
The model is a modification of the simple-harmonic oscillator
(SHO) model already used for the self-rotational susceptibility.
The susceptibility at the full recurrence is found by integrating
two delayed SHO equations one forward and one backward in
time, which, when summed together, provide the response at
one full rotational recurrence period. The response is driven
by the pump pulse intensity one recurrence period earlier at
the same longitudinal position. This model was also calibrated
using density-matrix simulations.

The main focus of this paper was to examine the propa-
gation of probe pulses under the influence of not only their
own index modifications, but also the molecular recurrence
modification and electron-density profiles generated by the
pump pulse. The probe pulses were initialized at various
positions within the recurrence index structure. For cross
polarization, this resulted in three types of behavior depending
on whether the probe began in the focusing or defocusing
phase of the recurrence susceptibility. If the initial recurrence
susceptibility was positive, the probe pulses would focus
upstream compared to the pump pulse, extending the plasma
filament in the upstream direction. Additionally, these pulses
maintained enough power within their radial core that they
were able to refocus further downstream and to generate
additional plasma. When the initial recurrence susceptibility
was small or zero, the probes would focus near the same
longitudinal position as the pump and simply would enhance
the electron density already generated. Finally, if the initial
recurrence susceptibility was negative, the probe pulses would
focus downstream. This trend is to be expected as the larger
(smaller) the index of refraction, the stronger (weaker) the
focusing.

Each section of the probe pulse was found to have distinct
focusing dynamics. The front of a probe pulse generated little
self-index modification and evolved only due to the plasma
density and molecular recurrence modifications generated by
the pump. The middle and back of the pulse experienced both
self-modifications and the pump’s modifications. In particular,
it was found that the back of the pulse was responsible
for the refocusing downstream and generation of additional
electron-density populations. This situation was even more
evident when the probe pulse was identically polarized to the
pump due to the larger recurrence susceptibility, providing
even larger densities in the plasma filament.

ACKNOWLEDGMENTS

The authors would like to thank P. Sprangle, J. K.
Wahlstrand, A. Fallahkhair, W. Zhu, L. Johnson, T. Rensink,

and N. Jain for fruitful discussions. The authors would also
like to thank the ONR, NSF, and DOE for support.

APPENDIX: ENERGY AND ACTION

In this appendix, we consider how the source term 4π∂ξPNL

in the wave equation, representing frequency shifts of the
polarization, affects the energy evolution of the laser pulse.
For simplicity, we ignore dispersion β2 � 0 and approximate
cf � c. Equation (7) with the additional term is then

[
2

∂

∂z

(
ik0 − ∂

∂ξ

)
+ ∇2

⊥

]
A

= 4π

(
ik0 − ∂

∂ξ

)
χNL

(
ik0 − ∂

∂ξ

)
A, (A1)

where we have written PNL = −χNL(ik0 − ∂ξ )A. Upon mul-
tiplying Eq. (A1) by −(ik0 + ∂ξ )A∗ and adding the complex
conjugate, we have

∂

∂z

∫ ∣∣∣∣
(

ik0 − ∂

∂ξ

)
A

∣∣∣∣
2

d �x

= −4π

∫ ∣∣∣∣
(

ik0 − ∂

∂ξ

)
A

∣∣∣∣
2
∂χNL

∂ξ
d �x, (A2)

where we have taken χNL to be real. Identifying the
LHS with the laser pulse energy and using UL �

1
8π

∫ dσ dξ |(ik0 − ∂ξ )A|2, we can write Eq. (A2) as follows:

∂UL

∂z
= −1

2

∫ ∣∣∣∣
(

ik0 − ∂

∂ξ

)
A

∣∣∣∣
2
∂χNL

∂ξ
d �x. (A3)

Similarly, we can show that the wave action is conserved
by multiplying Eq. (A1) by A∗ and subtracting the complex
conjugate. In particular, ∂zI = 0 where

I = 1

16π

∫ [
A∗

(
k0 + i

∂

∂ξ

)
A + A

(
k0 − i

∂

∂ξ

)
A∗

]
d �x.

(A4)

Using the Hamiltonian model for wave-packet dynamics
where H = (ω/c) = [(k2

z + k2
⊥)/(1 + 4πχ )]1/2, we can write

the longitudinal wave number as

kz = k0 − 2π

∫
∂χNL

∂ξ
dz. (A5)

We identify δk = kz − k0 as the wave-number shift with
δk � iA−1∂ξA = −2π ∫ ∂ξχNLdz. Substituting i∂ξ = δk into
Eqs. (A1) and (A3), we see that these terms provide corrections
on the order of χ2

NL to the phase and energy, respectively.
Thus, neglecting the wave-number shifts in the polarization
is fine so long as the index contribution due to the nonlinear
susceptibility remains small.
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