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We study the families of nonlinear modes described by the nonlinear Schrödinger equation with the PT -
symmetric harmonic potential x2 − 2iαx. The nonlinear modes found display a number of interesting features.
In particular, we have observed that modes bifurcating from different eigenstates of the underlying linear
problem can actually belong to the same family of nonlinear modes. We also show that by proper adjustment of
the coefficient α it is possible to enhance the stability of small-amplitude and strongly nonlinear modes compared
to the well-studied case of the real harmonic potential.
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I. INTRODUCTION

Interest in the stationary modes of the nonlinear
Schrödinger equation with a potential was raised about two
decades ago in connection with applications to the mean-field
dynamics of Bose-Einstein condensates [1] and later on in
the context of optical applications [2] and in particular of
propagation of dispersion-managed solitons in fibers [3].
Various aspects of the nonlinear modes in a parabolic trapping
potential with homogeneous [4–7] and inhomogeneous [8]
nonlinearities have been intensively studied. A comprehensive
analysis of the structure of the nonlinear modes and their
stability can be found in [5–7]. Further, taking into account
that interaction of a particle with a potential in practice is not
absolutely elastic and energy losses are possible, the authors
of [9] addressed nonlinear modes in a complex parabolic
potential (1 − i)x2 supported by a homogeneous gain. Due
to its dissipative nature, the complex parabolic potential has
properties very different from those of its real counterpart. In
particular, for fixed parameters of the dissipative model, the
stable nonlinear modes appear as isolated attractors and do
not constitute continuous families. Another interesting feature
of the complex parabolic potential is that in the limit of
strong defocusing (or repulsive) nonlinearity, the so-called
Thomas-Fermi approximation of the model is described by
the balance between the losses and the gain. This is not the
case for the conservative potential, where the behavior of the
nonlinear modes in the Thomas-Fermi limit is determined by
the balance between the dispersion (or diffraction) and the
nonlinearity.

In the meantime, recently there has been a rapidly increas-
ing interest [10] in linear and nonlinear properties of systems
with potentials obeying the so-called PT symmetry. This
interest was initiated by the paper [11], and more recently
by the experimental observation of PT symmetry breaking in
optics [12], as well as by several theoretical suggestions of
realization of PT -symmetric optical systems [13].

Nonlinear extensions of the PT -symmetric structures were
first considered in [14]. Later on the nonlinear modes were
studied in periodic [15], Gaussian [16], and sech2-shaped [17]
PT -symmetric potentials, as well as in a harmonic trap with a
rapidly decaying PT -symmetric imaginary component [18].
We also mention studies of gap solitons in PT -symmetric

optical lattices combined with real superlattices [19] and
optical defect modes in PT -symmetric potentials [20]. The
modes and their stability in systems with PT -symmetrically
modulated nonlinearity landscapes have been recently reported
in [21].

It turns out, however, that nonlinear modes in a PT -
symmetric parabolic trap have not received any attention,
so far, while such a potential, namely, (x − iα)2, has been
introduced and well studied in linear theory [22–24]. Mean-
time, as will be shown below, the nonlinear modes in the
PT -symmetric harmonic potential display rather unusual
properties, which cannot be observed either in conservative
or in dissipative potentials of a general kind. The main aim of
the present work is to perform a detailed study of such modes.

The rest of the paper is organized as follows. In the
next section we introduce the nonlinear model with a PT -
symmetric harmonic potential and briefly discuss its physical
relevance. In Sec. III we discuss some properties of the
underlying linear model. Next, in Secs. IV and V we report the
families of nonlinear modes, as well as a detailed investigation
of their stability. Section VI concludes the paper.

II. THE MAIN MODEL

Our main object in this paper is the nonlinear Schrödinger
equation with a PT -symmetric parabolic potential:

iqz = −qxx + (x2 − 2iαx)q − σ |q|2q, (1)

where α � 0 and σ = 1 and σ = −1 correspond to focusing
and defocusing nonlinearities (hereafter we use terminology
relevant to optical applications). Physically the dimensionless
Eq. (1) naturally appears as an equation modeling beam
guidance in a medium whose refractive index n(x) = nr (x) +
ini(x) has parabolic modulation of the real part, nr (x) = x2,
and linear modulation of the imaginary part, ni(x) = 2αx.
Even more generally, any smooth enough symmetric profile
of the refractive index nr (x) = nr (−x) and antisymmetric
modulation of its imaginary part ni(x) = −ni(−x) leads to
the model (1) if a guided beam is narrow enough to allow for
the use of the first-order terms of the Taylor expansion of the
complex index n(x).
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In this paper we are interested in stationary modes, which
are sought in the form q(z,x) = w(x)eiβz, where β is the
propagation constant. We consider localized solutions which
obey the zero boundary conditions

lim
|x|→∞

|q(z,x)| = 0. (2)

For the next consideration it is convenient to introduce the
representation β = b − α2, where b is a new parameter, which
allows one to arrive at the following stationary equation:

wxx − bw − (x − iα)2w + σ |w|2w = 0. (3)

Recalling that the existence of the modes implies a balance
between the diffraction and the nonlinearity, as well as between
gain and losses, we also rewrite Eq. (3) in the hydrodynamic
form

ρxx − (b − α2 − x2)ρ + σρ3 − j 2

ρ3
= 0, (4a)

jx = −2αxρ2, (4b)

where ρ(x) = |w(x)| is the field modulus, while j (x) =
θx(x)ρ2(x), with θ (x) = arg w(x), is the real-valued current.
From (II) one readily concludes that both ρ(x) and j (x) =
θx(x)ρ2(x) are even functions. The current j (x) has a local
maximum at x = 0, while ρ(x) has either a local maximum or
a local minimum at x = 0. Moreover, it follows from Eq. (2)
that j → 0 at x → ∞, and hence taking into account that jx(x)
does not change sign for x �= 0, we deduce from Eq. (4a) that
j (x) does not become zero at any finite x, and hence the same
is valid for ρ(x) [since otherwise the last term in Eq. (4a)
would give a singularity]. The absence of zeros of the field
contrasts with the known behavior of the nonlinear modes
in a real harmonic potential, while is known for the linear
PT -symmetric modes [23], which are briefly outlined in the
next section.

III. LINEAR MODES

Let us recall some relevant properties of the linear problem
[22–24]:

Lnw̃n = 0, Ln = d2

dx2
− b̃n − (x − iα)2, (5)

which can be formally obtained by setting σ = 0 in Eq. (3).
Hereafter a tilde distinguishes solutions of the linear problem.
The set of eigenvalues of the problem (5) does not depend
on α and consists of an equidistant sequence b̃n = −(2n + 1),
n = 0,1, . . .. The corresponding eigenfunctions can be written
as w̃n(x) = cnψ̃n(x − iα), where ψ̃n(x) = Hn(x)e−x2/2 is the
nth Gauss-Hermite mode,

∫
ψ̃n(x)ψ̃∗

m(x)dx = δn,m

√
π2nn!,

Hn(x) is the nth Hermite polynomial, and cn are pos-
itive coefficients providing the normalization condition∫

w̃n(x)w̃∗
n(x)dx = 1 (hereafter we omit the integration limits

wherever the integration is over the whole real axis, and the
asterisk denotes complex conjugation).

Unlike in the conservative case α = 0, for α > 0 the
eigenfunctions w̃n(x) are not orthogonal. Using the relation
(see, e.g., [25]) Hn(x + x0) = ∑n

k=0 Ck
n(2x0)n−kHk(x) where

Ck
n = n!/[k!(n − k)!] are the binomial coefficients, for any n

and m one finds∫
w̃n(x)w̃∗

m(x)dx

= cncmeα2√
π

p∑
k=0

Ck
nC

k
m2kk!(−1)n−k(2iα)n+m−2k

= cncmeα2√
π2(n+m+g)/2i3n+mαgp!L(g)

p (−2α2),

where p = min(n,m), g = |n − m|, and L
(g)
p (x) is the gen-

eralized Laguerre polynomial. Setting n = m we obtain the
expression for the normalization coefficients cn:

cn = e−α2/2√√
π2nn!Ln(−2α2)

. (6)

For α = 0 the eigenfunctions w̃n(x) are real valued (up to
an irrelevant phase shift). Moreover, w̃n(x) is an even (odd)
function if n is even (odd). For α �= 0 the eigenfunctions are
complex valued and are neither even nor odd. Instead, they can
be chosen to have even real parts and odd imaginary parts.

IV. BIFURCATIONS OF NONLINEAR MODES

Turning now to the nonlinear problem, we observe that the
eigenvalues b̃n, n = 0,1, . . ., are the bifurcation points where
families of nonlinear modes branch off from the zero solution
w(x) ≡ 0. The nonlinear modes wn(x) belonging to the nth
family have the same symmetry as the corresponding linear
eigenfunction w̃n(x). In the vicinity of the nth bifurcation
point, the nonlinear modes wn(x) can be described by means
of asymptotic expansions

wn(x) = εw̃n + O(ε3), bn = b̃n + σε2b(2)
n + o(ε2), (7)

where ε � 1 is a formal small parameter. Since w̃n(x) were
chosen normalized, in the leading order the total energy flow
U = ∫ |wn(x)|2dx (hereafter all the integrals are taken over
the whole real axis) is equal to ε: U ∼ ε2. The solvability
condition for the ε3-order equation yields

b(2)
n =

∫
w̃3

n(x)w̃∗
n(x)dx∫

w̃2
n(x)dx

. (8)

Since for α = 0 the eigenfunctions w̃n(x) are real valued,
one has that b(2)

n > 0 for any n. For α > 0 the eigenfunctions
w̃n(x) are complex valued. However, parity of their real and
imaginary parts ensures that b(2)

n is nevertheless real for any n

and α. It is straightforward to obtain explicit expressions for
b(2)

n . For the two lowest families (n = 0 and n = 1) one has

b
(2)
0 = e(1/2)α2

√
2π

, b
(2)
1 = 3e(1/2)α2

4
√

2π

1 + 2α2 − α4

1 + 2α2
. (9)

It follows from Eqs. (9) that b(2)
0 is positive for all α while b

(2)
1 is

positive for small α, but becomes negative for α >
√

1 + √
2.

Regarding the next families, we have found that for n = 2 the
coefficient b

(2)
2 changes sign twice. For n = 3, however, the

coefficient b
(2)
3 changes sign only once, becoming negative for

all sufficiently large α.
From Eqs. (9) we also arrive at another interesting observa-

tion: the coefficients b
(2)
0,1 grow exponentially fast with α. This,

in particular, means that limα→∞ ∂U
∂b

∣∣
b=b̃0,1

= 0. Taking into
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FIG. 1. The lowest families of nonlinear modes for different α.
The fragments of curves corresponding to stable nonlinear modes are
shown in bold. The nonlinear modes indicated with the points (a)–(d)
in the panel α = 1 are explicitly shown in Fig. 2.

account that the coefficients b
(2)
0 and b

(2)
1 have opposite signs

for α 
 1, one can expect that for large α the nonlinear modes
bifurcating from b̃0 and b̃1 merge (or intersect) at some value
of the energy flow U .

The latter situation seems to be counterintuitive and
strongly contrasts with what is known for the conservative
harmonic potential, where the modes bifurcating from differ-
ent eigenstates of the linear problem do not merge. In order
to check this issue we performed a direct numerical study of
the families of nonlinear modes. The characteristic results are
summarized in Fig. 1, where the families of nonlinear modes
are shown on the plane (b,σU ) for several different values
of α. Respectively, the modes corresponding to the focusing
(defocusing) nonlinearity are situated above (below) the axis
σU = 0, which is indicated with the dashed line.

For the sake of comparison, in the left upper panel of Fig. 1
we show the families of nonlinear modes for the well-studied
real harmonic oscillator [4,6,7], which in our case corresponds
to α = 0. On increasing α (see the other panels of Fig. 1),
we observe that already at α = 1 in the defocusing medium
the nonlinear modes bifurcating from b̃0 = −1 and b̃1 = −3
(as well as the ones bifurcating from b̃2 = −5 and b̃3 = −7)
indeed appear to be connected in a single family. For larger α

(e.g., for α = 2) the structure of the nonlinear modes becomes
more complicated and the higher families (the ones bifurcating
from b̃4 = −9 and b̃5 = −11) also become involved in creation
of a single family snaking through the linear eigenstates with
n = 2, 3, 4, and 5. For α = 2 one can see the connection of
the modes not only in the defocusing but also in the focusing

medium. Since α = 2 >
√

1 + √
2, Eqs. (9) imply that the

coefficient b
(2)
1 is negative for α = 2, and thus, in contrast to

the cases α = 0, 0.15, and 1, the slope ∂(σU )/∂b is negative
in the vicinity of the bifurcation from the point b̃1. In Fig. 2 we
show the field modulus ρ(x) and the superfluid current j (x)

(a) (b)

(c) (d)

FIG. 2. (Color online) The modulus ρ(x) and the current j (x)
for stable nonlinear modes corresponding to α = 1. Panels (a)–(d)
correspond to nonlinear modes indicated by the points (a)–(d) in the
panel α = 1 of Fig. 1.

for several stable nonlinear modes corresponding to α = 1. In
accordance with the discussion in Sec. II, both ρ(x) and j (x)
are even functions, and for all the shown modes the current
j (x) has a maximum at x = 0. The field modulus ρ(x) has
a maximum at x = 0 for the nonlinear modes (a), (c), and
(d). For the nonlinear mode (b) the field modulus has a local
minimum at x = 0.

It is interesting to observe that the described behavior of
the modes allows one to suggest that it is possible to use
continuous deformation to transform one of the modes of the
conventional linear harmonic oscillator to another one having
different parity. Indeed, to this end it is enough to properly
change the strength of the nonconservative potential α and the
intensity of the beam U . The stability of the modes, important
for any practical realization of such a deformation, is discussed
in the next section.

V. STABILITY OF THE NONLINEAR MODES

A. Analytical results

Now we turn to analysis of the linear stability of the modes.
Following the standard procedure, we use the substitution
q(z,x) = eiβz[w(x) + u(x)eiωz + v∗(x)e−iω∗z] and arrive at
the eigenvalue problem

Lp = ωp, (10)

where

L =
(

L + 2σ |wn|2 σw2
n

−σ
(
w2

n

)∗ −L† − 2σ |wn|2
)

, p =
(

u

v

)
,

L = d2/dx2 − b − (x − iα)2, and L† is the Hermitian adjoint
operator. The nonlinear mode wn(x) is unstable if there exists
an eigenvalue ω such that Im ω < 0.
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It is straightforward to check the properties of the operator
L as follows. If ω is an eigenvalue of L with an eigenvector
(u(x),v(x))T , then −ω∗ is also an eigenvalue with the
eigenvector (v∗(x),u∗(x))T . Employing the symmetry of the
nonlinear modes [wn(x) = w∗

n(−x)] one finds that ω∗ is also an
eigenvalue with the eigenvector (u∗(−x),v∗(−x)). Also, ω = 0
is always an eigenvalue of the operator L. The eigenvector
corresponding to ω = 0 reads (wn(x), − w∗

n(x))T .
Let us now analyze the spectrum of the operator L in the

vicinity of the nth bifurcation point. In the linear limit (i.e., for
ε = 0) the operator L acquires the form

L = L̃n ≡
(Ln 0

0 −L†
n

)
, (11)

where Ln is defined in (5). The spectrum of the operator L̃n

consists of two sequences. The eigenvalues and eigenvectors
of the first sequence read ω

(I )
n,k = 2(n − k), p(I )

n,k = (w̃k(x),0)T ,

k = 0,1, . . .. The second sequence reads ω
(II )
n,k = −2(n − k),

p(II )
n,k = (0,w̃∗

k (x))T , k = 0,1, . . .. First, we notice that the
operator L̃n has a double zero eigenvalue ω(I )

n,n = ω(II )
n,n = 0.

Generically, passing from the linear limit ε = 0 to ε > 0, a
double eigenvalue splits into two simple eigenvalues. However,
in the case at hand, the splitting of the double zero eigenvalue
cannot occur. Indeed, if the zero eigenvalue splits into two
simple ones, they will be either both real and of opposite signs
or complex conjugated. Either of these possibilities means that
for ε �= 0 the eigenvalue ω = 0 is no longer in the spectrum
of the operator L. This, however, contradicts the properties of
the operator L established above. Thus, for ε �= 0 the operator
L also has the double zero eigenvalue.

Besides of the double zero eigenvalue, the operator L̃n

has 2n double eigenvalues: 
n,k = ω
(I )
n,k = ω

(II )
n,2n−k , where k

runs from 0 to 2n except for k = n. Again, the double
eigenvalue 
n,k generically splits into two simple eigenvalues,
which will be either both real or complex conjugated. At the
same time, the opposite double eigenvalue 
n,2n−k = −
n,k

will split in the same manner. Since the double eigenvalues

n,k and 
n,2n−k behave in the same way, it is sufficient
to analyze only n positive double eigenvalues 
n,k which
correspond to k = 0, . . . ,n − 1. The double eigenvalue 
n,k

is semisimple; the corresponding eigenvectors read p(I )
n,k =

(w̃k,0)T and p(II )
n,2n−k = (0,w̃∗

2n−k)T .
In order to examine splitting of the double eigenvalues, we

employ Eqs. (7), which yield the following asymptotic ex-
pansion for the linear stability operator: L = L̃n + σε2L(2)

n +
o(ε2), where

L(2)
n =

(−b̃(2)
n + 2|w̃n|2 w̃2

n

−(w̃2
n)∗ b̃(2)

n − 2|w̃n|2
)

. (12)

Following the standard arguments of perturbation theory for
linear operators [22], in order to explore the behavior of a
double eigenvalue 
n,k we introduce a 2 × 2 matrix

Mn,k =

⎛
⎜⎜⎜⎝

〈
L(2)

n p(I )
n,k ,p

(I )∗
n,k

〉
〈
p(I )

n,k ,p
(I )∗
n,k

〉
〈
L(2)

n p(II )
n,2n−k,p

(I )∗
n,k

〉
〈
p(I )

n,k ,p
(I )∗
n,k

〉
〈
L(2)

n p(I )
n,k ,p

(II )∗
n,2n−k

〉
〈
p(II )

n,2n−k,p
(II )∗
n,2n−k

〉
〈
L(2)

n p(II )
n,2n−k,p

(II )∗
n,2n−k

〉
〈
p(II )

n,2n−k,p
(II )∗
n,2n−k

〉

⎞
⎟⎟⎟⎠ ,

where 〈a,b〉 = ∫
b†(x)a(x)dx for any two column vectors a

and b. If both the eigenvalues of the matrix Mn,k are real, then
the simple eigenvalues emerging from 
n,k are real, at least
for ε � 0 sufficiently small. If such a situation takes place for
all k = 0,1, . . . ,n − 1, then one can state that the nonlinear
modes wn(x) belonging to the nth family are stable in the
linear limit. On the other hand, if for some k the matrix Mn,k

has a complex eigenvalue, then the double eigenvalue 
n,k

gives rise to a pair of complex-conjugated eigenvalues. This
is sufficient to conclude that the nonlinear modes of the nth
family are unstable in the linear limit. For n = 0 no double
eigenvalues 
n,k exists. Therefore the lowest family n = 0 is
always stable in the linear limit.

Taking into account the symmetry of the eigenfunctions
w̃n(x), one finds that the entries of the matrix Mn,k have the
form

(Mn,k)1,1 = −b(2)
n + 2

∫ |w̃n|2w̃2
kdx∫

w̃2
kdx

,

(Mn,k)2,2 = b(2)
n − 2

∫ |w̃n|2w̃2
2n−kdx∫

w̃2
2n−kdx

,

(Mn,k)2,1 = −
∫

w̃2
nw̃

∗
k w̃2n−kdx∫

w̃2
2n−kdx

,

(Mn,k)1,2 =
∫

w̃2
nw̃kw̃

∗
2n−kdx∫

w̃2
kdx

.

One also observes that all these entries are real.
Using the above expressions, the matrices Mn,k as well as

their eigenvalues can be found explicitly. One observes that for
any n and k an expression for the eigenvalues of the matrix Mn,k

contains a term
√

Pn,k(α), where Pn,k(α) is a polynomial with
real coefficients. Such polynomials are different for different
n and k and are computable explicitly. Their properties (for
n = 1,2, . . . ,5) are summarized in Table I.

The terms
√

Pn,k(α) represent the only possibility for the
eigenvalues eventually to have a nonzero imaginary part.
Splitting of the double eigenvalue 
n,k for α = 0 is determined
by the sign of Pn,k(0), while the behavior of 
n,k in the limit
α 
 1 is determined by the sign of the leading coefficient of
the polynomial Pn,k(α).

Turning now to Table I, the following comments can be
given: (i) the degree of the polynomial Pn,k(α), denoted by
Dn,k , obeys the relation Dn,k = 12n − 4k; (ii) more impor-
tantly, the leading coefficients of all the considered polynomi-
als are positive. This means that for any n there exists a critical
value αcr

n such that for all α > αcr
n the nth family is stable in

the linear limit, even if this family is unstable in the case of the
real harmonic potential (i.e., for α = 0). For n = 0 and n = 1
the critical values are zero: αcr

0 = αcr
1 = 0. These families are

stable in the linear limit both for the case of the real harmonic
oscillator (α = 0) and in thePT -symmetric case for any α. For
the next families, n = 2 and n = 3, Table I yields αcr

2 ≈ 3.60,
and αcr

3 ≈ 4.17. This means that, although these latter families
are unstable in the linear limit for α = 0, they become stable in
the linear limit for α sufficiently large. The same situation holds
for the families n = 4 and n = 5. Moreover we conjecture that
it also persists for all higher families.
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TABLE I. Properties of the polynomials Pn,k(α). Here Dn,k is the degree of the polynomial, Sn,k is the sign of the leading coefficient, and
sn,k is the sign of the constant term Pn,k(0). Approximate values of all the positive roots are also reported.

n k D S s Positive roots

1 0 12 + + No positive roots

2 0 24 + − 0.05 2.47 2.54 3.21 3.60
1 20 + + No positive roots

3 0 36 + − 0.12
1 32 + − 0.05 1.68 1.94 3.18 4.17
2 28 + + No positive roots

4 0 48 + + 0.08 0.14 3.35 3.40 4.77 4.82
1 44 + − 0.11
2 40 + − 0.05 3.64 4.66
3 36 + + No positive roots

5 0 60 + + 0.12 0.14
1 56 + − 0.12 1.74 2.20 5.14 5.24
2 52 + − 0.10 2.41 2.58
3 48 + − 0.05 2.84 2.92 4.10 5.10
4 44 + + No positive roots

B. Numerical results

Passing to the numerical study of the stability (see Fig. 1),
we first recall some results known for the real harmonic
potential, which in our model corresponds to α = 0. The
nonlinear modes that belong to the two lowest families (n = 0
and n = 1) are always stable. The families n = 2 and n = 3 are
unstable in the linear limit and for small and moderate values
of U . However, both the latter families become stable if the
nonlinearity is sufficiently strong (for a stability analysis of the
modes in a strongly nonlinear defocusing medium see [7]). In
the defocusing medium, the value of U that has to be exceeded
for the families n = 2 and n = 3 to become stable is large and
does not fit within the scope of the panel α = 0 of Fig. 1.

In the next panel of Fig. 1 we consider the case α = 0.15.
For this value of α it follows from Table I that for any n =
1,2, . . . ,5 the nth family is stable in the linear limit. Turning
to the stability of the nonlinear modes of arbitrary amplitude,
we observe that the lowest family n = 0 is stable in the whole
considered region of parameters. The same situation holds for
the family n = 1 but in the defocusing medium only. For σ = 1
this family loses stability at sufficiently strong nonlinearity.
The most interesting results, however, are obtained for the
families n = 2 and n = 3. In contrast to their counterparts
for the real harmonic oscillator, these families are stable in the
linear limit. Moreover, they remain stable at least for small and
moderate values of U . In the defocusing medium, the families
n = 2 and n = 3 appeared to be stable in the whole explored
region. In the focusing medium, we found the critical values
of nonlinearity after which the onset of instability occurs. It
is interesting that in a certain sense the situations for the real
oscillator and for the PT -symmetric one are opposite: for α =
0 the families n = 2 and n = 3 are unstable in the linear limit
but become stable in the focusing medium for U sufficiently
large. Vice versa, for α = 0.15, those families are stable in the
linear limit but lose stability in the focusing medium for large
U . At this stage we emphasize that only a finite range of b and
U has been considered in our numerics, and, in principle, the

families of nonlinear modes may change stability for stronger
values of nonlinearity which have not been considered here.

Next, we considered PT -symmetric harmonic potentials
with stronger imaginary components, α = 1 and α = 2. One
can deduce from Table I that for α = 1 the families n =
1,2, . . . ,5 are stable in the linear limit, while for α = 2 the
families n = 1, . . . ,4 are stable in the linear limit and the fam-
ily n = 5 is unstable. However, for both α = 1 and α = 2 all
the considered families lose stability for relatively small values
of U . One observes that the larger α, the smaller is the nonlin-
earity strength that is sufficient for the destabilization to occur.

VI. CONCLUSION

To conclude, we have performed an analysis of the structure
and stability of the lowest families of nonlinear modes in
the nonlinear Schrödinger equation with a parabolic PT -
symmetric potential. We have found a number of striking
features, not observable for the cases of conservative and
dissipative parabolic potentials. Among these features we
emphasize transformation of the families bifurcating from
the different eigenstates of the underlying linear problem to
a single family; enhancement of the stability in the linear
limit comparing to the standard case of the real harmonic
oscillator; and the possibility that proper choice of the strength
of the nonconservative part α makes nonlinear modes that are
unstable for α = 0 become stable in the PT -symmetric case.
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