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Nonlinear o model for optical media with linear absorption or gain
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In the framework of the Keldysh technique, we formulate the nonlinear o model for disordered optical media
with linear absorption or gain. The effective action for fluctuations of the matrix field about the saddle point
acquires an extra term due to the nonconservative nature of the system. We determine the disorder-averaged
Green’s function correlator, which has a diffusion pole modified by a finite absorption or gain rate. The diffusion
coefficient is found to be close to its value for conservative systems in the relevant range of parameters. In the

medium with gain, the random-lasing threshold depends on the sample size.
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I. INTRODUCTION

The transport of waves through disordered matter has been
a topic of recurring interest ever since the discovery of the
Anderson localization in electronic systems [1]. Analogous
phenomena have been subsequently studied for the transport
of classical [2-5], matter [6,7], and even seismic waves [8].

The research on classical-wave propagation in disordered
media has been motivated by the conjectured possibility of
the localization of light. Results such as the enhancement
of dwell times due to resonant scatterers (and, hence, lower
energy-transport velocities [9]) and the correction term in the
Ward identity due to frequency-dependent scattering potentials
[10] have shown that, while retaining many similarities,
the behavior of light in disordered media differs from that
of electrons in several important aspects. One of these
aspects concerns the propagation of light in nonconservative
disordered media. Such systems can be physically realized,
for example, as random lasers [11-13], which have received
much attention recently. A promising research direction in
this context are theories that combine description of wave
propagation through disordered medium with the nonlinear
laser equations [14—16].

The properties of light diffusion in absorbing media were
studied using the photon transport equation [17-19]. In
particular, it was argued that in the parameter range of validity
of the diffusion equation, the diffusion coefficient is close to
its value in the conservative medium. The treatment of light
propagation starting from the wave equation has been mainly
conducted via the self-consistent diagrammatic theory [20,21].
Interesting results such as corrections to the bare diffusion
coefficient due to the additional terms in the Ward identity
[22,23] and dynamics of Anderson localization in quasi-one-
dimensional geometry [24] and open three-dimensional media
[25] have been obtained by these methods. An alternative
description of classical wave propagation is provided by the
so-called effective models of disordered systems, commonly
known as the nonlinear o model [26,27] (NLSM). Originally
developed for electronic systems, the (supersymmetric) NLSM
describing light propagation in a conservative disordered
medium was derived in Refs. [2,28]. Later, the effects of an
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open boundary on the diffusion coefficient were studied [29]
by using a similar model. Unlike the self-consistent theory of
transport, effective models have not yet been applied to optical
systems with absorption or gain. The effective models can be
useful, for example, in describing special properties of light
localization in such systems [30-32].

In the present work we formulate the Keldysh nonlinear
o model [33] for the propagation of electromagnetic waves
in nonconservative disordered media in the diffusive regime.
Systems with absorption or gain are relatively simple to
treat in the Keldysh formalism, which makes it possible to
define an action needed for the field-theoretical description.
By following the general scheme as outlined in Ref. [33] for
electronic systems, we derive an effective NLSM action where
we obtain a term due to nonconservativeness of the medium.
A similar contribution was found in Ref. [29]; in that case the
term originated from the openness of the system.

Furthermore, by using the standard methods [33], we show
that the light propagation can be described by a diffusion
equation for a nonconservative medium. The conditions under
which the NLSM yields the diffusion equation are found to
be equivalent to the restrictions imposed in the theory of
transport equation [17]. Similarly, the diffusion coefficient that
we derive is almost independent of the absorption or gain under
these conditions. For the amplifying medium, we discuss the
applicability of the linear-gain approximation and determine
the threshold of random lasing.

II. KELDYSH APPROACH TO LIGHT PROPAGATION

A. Partition function for nonconservative medium

We consider an optical medium defined by a complex
dielectric constant €(r,w). Restricting our theory to the
transverse magnetic (TM) modes in two dimensions, we
describe the electric field by its normal component E,(r) =
iwA,(r) (in the Coulomb gauge), where A, (r) is the normal
component of the vector potential. We use the Gaussian units
with the velocity of light ¢ = 1. The transversality condition
V - (eA) = 0, with € varying in two dimensions, leads to the
two-dimensional wave equation

[V? + e(r,0) @?]A,(r) = 0. (1)
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For real e(r,w), this equation, and its complex conjugate,
can be obtained by setting to zero the functional derivatives

88 88
— =0, =0 2)
5A 8A*

of the action (Hamilton principal function)

1 d
S[4,A"] = 7— [ dr ﬁ[e(r,w) @?|A,(0))* — [V A, )]
1 do 2 2
= — [ dr —AX(D)[e(r,0) @* + VA, (r), (3)
167 2

treating A and A* as independent functions. The action can be
rewritten in the representation-free operator notation as

1
S[A,AT]= —ATG™'A, 4)
167

where the inverse Green’s function operator G~ ! =
€(r,w) w* + V? in the (r,w) representation and A [AT] is the
Hilbert-space vector A, (r) [A}(r)].

In order to construct the quantum Hamiltonian, one ex-
presses the energy of the system in terms of the vector potential.
A,(r) and A} (r) are then expanded in the normal modes of
the system, and the expansion coefficients become the photon
annihilation and creation operators.

In the Keldysh field-theoretical approach [33,34] we calcu-
late the partition function

Z =Tr(Up), 3)
where p is the density matrix at time t = —oo, with Trp = 1,

and
U=Tcexp[—i/H(t)dt:|, h=1, (6)

c

is the time-evolution operator along the Keldysh contour
C. The contour begins at t = —oo, where the state of the
system is known, and then goes forward in time up to t = oo,
where it turns back and goes to t = —oo. T¢ denotes the

time ordering along the contour. The Hamiltonian H(z) is
switched on adiabatically, starting from a trivial Hamiltonian
H(—o0). H(t) is the same on the forward and backward
branches of the contour. This condition leads to U = 1 and,
hence, Z = 1. If the source terms that are different on the
two branches are added to the Hamiltonian, then Z # 1. The
(functional) derivatives of the type § Z[J]/8 J | j—¢ with respect
to the sources J generate averages with the density matrix
propagated from ¢ = —oo to relevant times.

The partition function can be written in the form of a
functional integral over the fields (i.e., the classical functions)
A and AT, To this end, we represent the classical action along
the Keldysh contour as

1 L _
Se = 11416 A, — AL GTA_]
1
= —[(AN G AY 4 (ADT 1A, (7)
167

where the subscripts + and — denote the fields on the forward
and backward branches respectively of the contour and the

so-called classical and quantum fields are defined by
1 1

ACI - Aq —

V2 V2

(Ay +A), (Ap—A).  (®)
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The minus sign in front of the At G~ 'A_termin Eq. (7) takes
care of the time reversal on the backward branch, whereas
A_ is the representation-free (vector) notation for the function
A_(r,t) with the forward time ordering. It is convenient to
consider A°! and A9 as components of a single field

" cl
(5

in the Keldysh space, which is twice the size of the original
Hilbert space. (We furnish the vectors and operators in this
space with a hat.) Then the contour action can be written in
the form (dropping the subscript C)

| PRI
—ATGT'A, (10)
16

S[A,AT] =
where G~! has a 2 x 2 matrix structure with zeros on the
diagonal and equal off-diagonal elements.

In order to use S [A,AT] in the functional integral for Z,
the operator G~! has to be regularized [33] by imposing the
causality structure on its matrix:

G = 0 G™H* 11)
B <<G1>R <G‘)K> ’ (
(GTHRAM) = e(r,w) * + V2 10T, (12)

(G H = (G HRF - F(G™HM (13)

Here, (G~")RAK are the retarded, advanced, and Keldysh
components respectively of the inverse Green’s function
operator. The operator F that parameterizes (G~')X depends
on the thermal distribution. Equation (12) is written under
assumption of real €(r,w). In the medium with absorption, it
is generalized to

(GTHRAM) = € (r,w)w* + V2 2 i (rw)0?,  (14)

€'(r,w) = Re[e(r,w)], €'(r,w) =Iml[e(r,w)], (15)

where €” > 0. Inthe case of the gain medium, €” < 0, the time-
dependent Green’s function is exponentially diverging, and its
Fourier transform to the frequency domain does not exist.
The frequency representation can be defined with the help
of the Laplace transform, which is equivalent to introducing
a fictitious absorption to the system. When the results of a
calculation are transformed back to the time representation,
they should not depend on the fictitious absorption. This means
that one can perform the calculations in the frequency domain
assuming €” > 0 and obtain the final results by analytic
continuation to €” < 0.

The functional-integral representation of the partition func-
tion becomes

7 = NfD[A,AT] iSIAAT (16)

where A is the nonessential normalization constant that
ensures Z = 1 and the measure is defined by

d[Re A(r)] d[Im AL(r)]

T

DI[A, A = ]_[

j=clq

a7
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Here and below we set to unity the step size for the grid used
to discretize the integral.

We note that the Keldysh formalism is especially
appropriate for the description of systems with absorption or
gain as it naturally takes into account the finite €”(r,w) in the
causality structure of the inverse Green’s function, Egs. (11),
(14), and (13).

B. Disorder average

We study the effect of disorder in the refractive index and
assume the absorption or gain in the system to be spatially
uniform. Hence, we represent the dielectric constant in the
form

e(r,w) = €' (w) + Aé'(r,w) + i’ (w), (18)

with the averages over disorder realizations (A€’'(r,w)) =0
and (A€'(r,w) Ae'(r,w)) «x 8(r —1').
In order to define the scattering time t, let us, for

a moment, neglect €”(w). The wave equation (1) can be
interpreted as a time-independent Schrodinger equation with
the energy £(w) = €’(w) w? and the potential energy V (r,w) =
—A€'(r,w) w?. The scattering time T and other characteristic
time scales of the system are assumed to be much larger
than w; ! where wy is the typical optical frequency. The
slowly varying amplitude Z(r,t) = A(r,t)exp(iwpt) satisfy
the approximate equation

~0A ) ~

zhg = [V 4+ V(r,wy) — E(wp)]A, (19)
which is the time-dependent Schrodinger equation with the
“optical Planck constant”

> _ d&(wo)

20
don (20)
The scattering time can now be defined by analogy with the
quantum scattering time via the correlation function [35]

~

(V(r,wo) V(r',a9)) = o 8(r—r), 2D
2rvt
where v =dn/d€ is the quantum density of states (per
unit volume). Note that v = vy/h, where vy = dn/dw is the
standard optical density of modes.
A disorder average of the partition function can be obtained
by evaluating the functional integral

(Z) = /D[V]Z exp [—%/drV r, wo):| (22)

pvi=T] /"h; AV (r.wp). 23)

r
The disorder-dependent part of the action is

AstAAT VI = ———atvsd, p=(° 1), e
AT e STV V= o)
where V(r,wp) appears as an operator V diagonal in r; F' is
assumed to be diagonal in r, as well. By completing the square,

we obtain the disorder contribution to the partition function

<eiAS> —ex |:_ I3 [d < 1 Ao A >2:|
= exp r| —A'(rpAr ) (. (25
vt 16
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The shorthand notation A(r) is used for the Keldysh space
vector A with the fixed index r; that is, it is a vector in the space
with the reduced dimensionality. In this notation, Af(r)A(r)
involves a summation over the remaining indices, for example,
o and the Keldysh index.

The negative sign in the exponent (25) is essential for the
properties of nonlinear o model in the optical medium. In
contrast to a fermionic system, the sign cannot be changed by
commuting the fields.

III. NONLINEAR 0 MODEL

A. Hubbard-Stratonovich transformation. Saddle point

The term of the fourth order in the fields in Eq. (25) can be
converted to a second-order term with the help of the Hubbard-
Stratonovich transformation, yielding

= 2
__h /dr <LAT(P)AA(I‘))
exp dmvt 16w Y

) N U
_NQ/D[Q]exp[—?TrQ +1327”A QA]
(26)
wf= Y [arS? sl @7)

Jj=cl,q

The auxiliary field  is the Hermitian operator diagonal in
r. The measure D[Q] is defined over the independent matrix
elements by analogy to Eq. (17). The normalization constant
Ny is determined by setting A =0and A = 0. The negative
coefficient in front of Tr Q2 determines the scale of O and can
be chosen freely. The present choice leads to the simple form of
matrix A introduced in Eq. (34).In order to prove Eq. (26) more
easily, one can define the matrix fl(r) = A(r) ® AT(r) where
the tensor product applies to the Keldysh and @ subspaces.
Then one represents

Atp QA =Tr(Q Ap). (28)

Now the field Q can be integrated out after completing the
square.

Using Egs. (25) and (26) in Eq. (16) and integrating out
the fields A and A, we obtain the disorder-averaged partition
function

(z) =N, / D[O] 5191, (29)

iS[0] = —Tr [—Q +In (6;01 + ;—Tﬁéﬂ, (30)

where Ga !is the inverse Green’s function operator that does
not include the disordered part of the dielectric constant and
all Q—indgpendent factors are included in the normalization
constant NVg.

In the limit of large scattering time, the main contribution
to (Z) comes from the neighborhood of a saddle point. The
saddle-point equation

-1

A 1 (o, Hh 4
o)y = —— <Go + 2—VQ> 3D
T rr

TV
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follows from the condition of stationary variation of S| Q] with
respect to p Q. In the (k,w) representation,

(Go")s ") = (@)

is diagonal. We look for the solutions QE’A in the (cl,cl) and
(q,q) blocks of Q, respectively, which are uniform in r and
diagonal in w. Equation (31) yields for these blocks

1
= —— . (33
Q T[UZS(Q)) kziif/,(w)a)z—i-zh—ng'A ( )

The sum over the modes can be converted into an integral
over vd&, where £ = k2. In the limit wt > 1 and €’ K €/,
the lower integration limit can be extended to —oo. Then
(Qg’A)w = =i is the solution. The full matrix can be written

in the form
. IS I?R 2F
Oo=ih. A=( L) (34)

— k>t i€’ (w)w? (32)

which includes the regularization in 184 = ¢*0" and the
Keldysh block. The regularization leads to an important
property Tr Qo =0.

We note that the saddle point Qo lies outside of the
manifold of Hermitian matrices Q. The diagonal part of Qy is
anti-Hermitian; this property can be traced back to the negative
sign in the exponent in Eq. (25). The Q manifold can be
continuously deformed to pass through the saddle point by
making the transformation Q — ¢4 in the neighborhood
of O =A. As ¢ changes from 0 to /2, the logarithm
argument in Eq. (30) has no zero eigenvalues if ¢’ > 0.
Thus, no singularities are crossed by exp(i S[Q]) during the
deformation.

B. Effective action

The main contribution to (Z) arises from the fluctuations
about the saddle point that satisfy the condition Tr 0% = 0.
Such fluctuations produce weak variations of the action S [Q]
(30). The matrices O having the above property can be
represented in the general form

Or)=iR'(r) AR(®), (35)

where R is diagonal in the r representation.

In what follows we present the results of the calculation and
refer the reader to the appendix for details. After substituting
the parametrization (35) in Eq. (30) and omitting the 0-
independent contribution, we arrive at

iS[Q1=—TrIn(1+GpR[pG,".R7"))
~ —Tr(CPR[p Gy R )+ATe(Cr R Gy RT'])’,
(36)
where
. (A oy
G = (Gol +iZ)7A) (37)

is the disorder-dependent Green’s function operator [see
Sec. IV B]. The action is expanded in the fluctuations about
the saddle point, which are described by the commutator
[)7@5 1,1?"]; at the saddle point R =1 the commutator
vanishes. The disorder-free inverse Green’s function consists
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of the conservative and nonconservative parts:
7 (Gy"), & =[E@) — K1l +ie" (@A (38)

The latter results in a nontrivial contribution to the commutator
due to the Keldysh structure of A.

There are three leading-order contributions to S[Q]. Using
the £(w) part of P Ga !in the linear term in Eq. (36) we arrive at

iSI[0] ~ imvRA Tr(3,0), (3 0)ii = (3 Qu)ier.  (39)

The contribution of the k* part of )76;6 ! to the linear term
of Eq. (36) is neglected compared to its contribution to the
second-order term, which gives

i$[0] ~ ——thTr(a 0). (40)

To derive this result, we used the property [35]

ﬁ 1 2 4 2 1
Z—Z(Jﬁo(k)gﬁn(k):(— — ) =7, @D
v o T h

yielding the effective scattering time 7, and defined the
effective diffusion coefficient in two dimensions,
=1, 2€ o
D=—-vT= T,
2 72
where v is the group velocity of light in the medium. In
Sec. IV we show that T and D are the relevant parameters to
describe the diffusive light propagation [see Eq. (75)]. Finally,
the nonconservative part of ?Ga ! yields, in the linear order
in the commutator,

i$3[0] = mve"w} Tr(iAQ + A?). (43)

(42)

The contributions 51,2,3[Q] sum up to yield the NLSM
effective action

iS[0]

an D ., €
=—7T1)0TI‘ —thQ—i-Z(arQ) —

//

(lAQ +A )]
(44)

The action vanishes at the saddle point, S[i A] = 0. The key
assumption behind the NLSM is the smallness of the action for
fluctuations of @ restricted to the manifold Tr 9% = 0, com-
pared to the action for arbitrary fluctuations about the saddle
point. The terms Sl’g[Q], which also appear in the NLSM for
disordered fermionic systems [33], depend only on the deriva-
tives of Q Therefore, the dominant contribution to the partition
function comes from the fluctuations Q,,r (r) [or R, »(r)] that are
slowly varying functions of r and (¢ 4 ¢')/2. These “massless
modes” are associated with the diffusive light propagation. The
assumption of slow variation justifies neglecting of higher-
order terms in the expansion (36). The contribution S; (0]
results from the nonconservative nature of the medium. It is, in
general, comparable to the to the “massive” Tr O term, unless
the rate of absorption or gain is smaller than the scattering rate:

le"lof 1
n T
This condition specifies the regime when the light propagation

is diffusive. If this requirement is not fulfilled, the massive
fluctuations beyond the NLSM have to be taken into account.

(45)
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IV. LIGHT DIFFUSION

In this section we calculate the disorder-averaged Green’s
function correlator. In particular, we consider the contribution
that arises from the fluctuations of the field Q in the
neighborhood of the saddle point. The correlator possesses
a diffusion-pole structure modified by a finite absorption or
gain rate.

A. Fluctuations about the saddle point

We consider the parametrization

0= il Vg, V201 O = = (é 3 ) . 46
where 6, is the Pauli matrix. Because A = U6,U " (if the reg-
ularization of unit operators is neglected), this parametrization
is equivalent to Eq. (35) with R=0U exp(W/Z) U~'.Itcanbe
verified by explicit calculation that the diagonal blocks of W
do not contribute to S [Q] and the Green’s function correlator,
at least, up to the second order in W. We, therefore, represent
this field in the form

(v 47
_(wT O>' @7

The specific choice of W as a Hermitian matrix is justified by
the requirement of convergence of the functional integral for
the partition function (see below). The operator w is diagonal
in the r representation.

By expanding the parametrization (46) in the powers of W
we find the first- and second-order deviations from the saddle

point,
500 — ; —Fw' —w— FuwlF 48
Q =1 wT wa £ ( )
. ; T tF+F T
8Q(2) _ i fww' ww ww 49)
2 0 —wwf

We note that only the latter matrix has the causality structure;
however, the fluctuations of O are not required to obey
causality. By using §Q0? in Eq. (44) we can calculate
fluctuations of the effective action.

The first-order variation of S[Q] depends on the derivatives
[36] of the distribution function F' generated by the first two
terms in Eq. (44); the third term yields an identically van-
ishing first-order contribution. The saddle-point equation (33)
determines the retarded and advanced sectors of (), but not
the function F. By setting to zero the variation of the effective
action near the saddle point, we obtain the Usadel equation

(=8 + Dd;) Foy(r,) =0 (50)

for F;,(r) in the mixed representation of the slow time variable
f = (t +t')/2 and the large frequency w, conjugate tot — t'.
The second-order variation is

i8SPw,w

R D A
= —nvOTr|: —i0,80? + Z(arzSQm)2
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+z—(a A3 80?) — = OASQ(Z)}

", 2
= =2 o (O [—l(w W)+ DK + 26;’0},

ww'k

(51

where w(K) is the Fourier transform of w(r). Of the two terms
with spatial gradients, the second term has a zero trace. The
first term yields the Dk? contribution to S, as well as the
additional correction

i8SP 1w = —%D tr[w’ (8, F)]?, (52)
where “tr”” denotes the trace of operators that do not have the
Keldysh matrix structure. This correction vanishes when F(r)
is uniform, which we will assume. With the help of Eq. (51),
the disorder-averaged partition function can be approximated
by the functional integral

o ;
@)~ N, [ Dlwwles e, (53)
where N, is a normalization constant. For a medium with
gain, the divergence of the integral for the modes with

”,,2
_ 2€"awy

k<kminE ~=
hD

(54)

indicates that the long-scale fluctuations become unstable due
to onset of lasing (see Sec. IV C). Thus, in the long-wavelength
limit the linear-gain theory breaks down and the nonlinear
effects have to be taken into account [15,16].

B. Disorder-averaged correlator

Green’s functions and their combinations can be expressed
in terms of derivatives of the partition function with respect to
the source fields:

i 827[J,J1
16 8[J7(1)]*8J%(2) i
G’*(1,2) G'"™3,4) + G'™(1,4) G'*(3,2)
1 8*z1J,J1
(1671)2 S[JI(D]* 8J%(2) 8[J(B)]* 8J™(4)

G*1,2)=—

. (55)
0

Jj=Jt=0
(56)

Z[f’ff] _ ,/\//D[A,AT]e"S[A’ATHﬁAM”, (57)

where j,k,[,m = cl,qand 1,2, ... are full sets of coordinates
in some representation, for example, 1 = (k;,w;), etc. By
inverting the matrix (11), we identify the sectors of the
Green’s funct10n as G =GR, G99 = GA, G = GK £
[(G™H¥]™!, and G99 = 0.

The disorder-averaged Green’s functions and correlators
are obtained by using the above expressions with the disorder-
averaged partition function [37]

(Z1J,JMy = J\N/Q/D[Q] exp(iS[Q] + 16w JTG 5 J),  (58)
—1

NS
GQE(GOI 77 Q) : (59)
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We find, in particular,
(GRAR(1,2)) = (G5 (1,2) . (60)

(GR(1,2)G*(3.4))
= (651, 2G53.4 + G5(1.HG33.2) 5 (6D

where the average (---)p over 0 is performed with the
exponential weight exp(i S| Q]). Equation (60) shows that G =

~

G;4 [Eq. (37)] is the disorder-averaged Green’s function in

the lowest-order saddle-point approximation. The component

gg = gq in Eq. (61) is, in general, nonzero when Q does not

have the causality structure. This observation is essential for

the following calculation.

We calculate the Green’s function correlator
R(1,2,3,4) = (GX(1.2) G*(3.,4) — (GR(1.2))(G*(3.4))

(62)

by expansion about the saddle point. The lowest-order correc-

tion to the Green’s function (59) is

s 4 B aia
s —G~——GpsQM
Gp =G =—5-0Gps07¢
B[ GRwGA + FGAWIGRF - FGAwiGR )
' —GrwiGRF —GArwigR
The Gaussian averages with the action (51) are as follows:

(why = (why, =0, (W(1,2)w'(3,4), =0, (64)

(w(1,2)w'(3,4)u
2 By ki ks o S
= — ki —k;,ks—k; 0wy, 2,03 —. (65)
V0 D(k) — kp)? — (01 — wp) + =2
Therefore, the leading contribution to the correlator comes
from the (62(1,4) Qg (3,2))p term in Eq. (61), which is given
by the product of diagonal blocks in Eq. (63). We find

~

/)
2rvt?

R(1,2,3,4) = GR(1GR2 G 3) G &)

8k| —k4,ko—k3 80)1 @ 8604,603

x — . (66)
D(k; —kg)* —i(w] — 1) + =52

The correlator has a diffusion pole with the diffusion coeffi-
cient D. The pole is modified by the €” term that arises from the
corresponding contribution in the effective action (44). This
term defines the absorption rate
I 2¢" W]

; (67)

Ta h
negative for gain.

C. Discussion

The pole structure of the correlator implies that the light
intensity / in the medium satisfies the diffusion equation with
a nonconservative term:

(3 —DV* + 1, I =0, (68)
15—]2-—121+1_1 (69)
B )
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We compare this equation with

T 4 1+1/1
———3*+08,— D'V? — 2 11=0, (70
|:1+2r/ra o T 1+2r/ra:| 70)

1,1 2\
D=-0-+=2) (71)
2 T T,

which follows from the photon transport equation (see Eq. (15)
of Ref. [17]). According to Ref. [17], the light propagation
is diffusive if the second derivative with respect to time in
Eq. (70) can be neglected. This is the case when

T L At, (72)

where At is the characteristic time scale of intensity variation.
The reaction of the medium on a fluctuation of intensity will
be determined by the shortest time scale, so that Ar < |1,]
can be assumed. Therefore, when neglecting the corrections
of the order of v /At in Eq. (70), we also have to neglect the
contributions of the order of t/7,. In particular, it is consistent
with the diffusion approximation to set

D' ~D =t (73)
The independence of absorption for the diffusion coefficient
was also supported by the numerical evidence in Ref. [17]. It
is worth commenting on the claim [18,19] that the diffusion
coefficient in the medium with absorption must be equal to
D even for /7, ~ 1. A closer look at the derivation of the
diffusion coefficient from the transport equation in Ref. [18]
reveals that the time-derivative terms neglected in Eqs. (A9)
and (A11) of that article would yield the diffusion coefficient

" 1 2 < T ) ’
D"'=-vt|(l—-2—|)=~D (74)
2 Ta
were they taken into account. Thus, the (approximate) in-
dependence of the diffusion coefficient of absorption is a
consequence of the self-consistent application of the diffusion-
approximation conditions (45) and (72).

The NLSM effective action (44) is derived under the
condition (72) as well. This condition guarantees the slow
variation of O and makes it possible to neglect the contribution
of £(w) part of 77@5 ! [Eq. (38)] to the second-order term in
Eq. (36). This contribution would result in a second-time-
derivative term in the effective action. Again, the diffusion
approximation requires that we set

D~D, t~1t (75)
in the NLSM expressions. Thus, the NLSM and the theory of
transport equation agree in the diffusive regime.

In the medium with gain, the diffusive relaxation competes
with the amplification. Because the long-scale intensity fluctu-
ations disperse slower, they become unstable, and the random
lasing sets in. The cutoff wave number ky;, (54) determines
the critical sample size

=Dl (76)

above which the system is lasing and the linear-gain theory
does not apply. Alternatively, the above expression yields the
lasing-threshold value of |z,| if / is given.
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V. CONCLUSIONS

We obtained the functional-integral form of the partition
function for an optical medium with linear absorption or gain.
The Keldysh technique is particularly suitable for description
of nonconservative systems because it provides a natural
representation for the action. The disorder-averaged partition
function is expressed as a functional integral over the auxiliary
matrix field Q Within the framework of nonlinear o model,
we considered the fluctuations about the saddle point that
fulfill the condition Tr Q% = 0. We found that the effective
action § [Q] for these fluctuations contains an extra term due
to absorption or gain.

With the help of the NLSM partition function, we computed
the disorder-averaged Green’s function correlator. The leading
contribution from the vicinity of the saddle point has the
diffusion-pole structure modified by a finite absorption or gain
rate. The diffusion coefficient is found to be approximately
independent of the absorption or gain in agreement with the
theory of photon transport equation. In the medium with gain,
the linear theory is not applicable in the long-wavelength limit.
If the sample size exceeds a certain critical length, the random
lasing sets in.
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APPENDIX: DERIVATION OF THE EFFECTIVE ACTION

1. Derivation of Eq. (36)

After substitution of the parametrization (35) in Eq. (30)
we obtain

1 ’E[A\
+12r >i|
R™')). (AD

By separating Tr In(G ") and dropping the Q-independent
terms we arrive at Eq. (36).

iSI0] = —Tr In [ﬁw@—l (1%;7(;011%—

=-Trlnp —TrIn(pG~" + R[pG,".

2. Derivation of Eq. (39)
The conservative part of Ga ! when substituted in the first
trace in Eq. (36), yields

i$i1[0] = =Tr ) Gu(K)P Ruur(k —K) R\ (K' — k)
P

x [E(@) — E(w) — kK? + k2]
~Tr Y Go®)P Ro i ao(—AK) R}y, ,(AK)

w,Aw
k, Ak

x [iAw — (2k + AK) - Ak], (A2)

where Aw =@ —w and Ak = k' — k. We note that R is
peaked at small wave vectors in the k representation. The sum

> Gy = —imvA
k

I

(A3)
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folloyvs from the saddle-point condition; furthermore,
>k Go(K)k = 0 due to the symmetry. After calculating the
AK sum we arrive at

iS$i[0]=imvTr Z /

w,Aw

x [ + 2] R, 5, (1)

=vTr f drdrdt’ i ARy, (v)[ifd, + 82 R, (v).

dl‘[\ R\w,w-&-Aw(r)

(A4)

Applying the representation (35) we obtain Eq. (39) from the
o; part. The 82 part is neglected compared to zSz[Q] the latter
contribution is multiplied by iD ~ woT > 1.

3. Derivation of Eq. (40)

We substitute the k> part of )7@5 "in the second trace in
Eq. (36) to get

PN

1 A A N
i5[01=Tr ) Gkp Rk —ka) R™' (ko — ks)

k.. ks

x G(k3)P R(ks —ka)R™" (ka —k1) (k3 k3 ) (k3 —K&7)

_ Ak + AK'\ .
~2Tr Y G)p R <Ak - ;> RY(AK)
k Ak
Ak AK’
s _ Ak + AK\ .
x G(K)p R (—Ak - +> R7'(AK)
x (K - AK)(Kk - AK)), (AS)

where k = Z?:l k;/4 and we neglected the contributions of
higher order in Ak = (k; + ks — ky — k3)/2, Ak = ks — ki,
and AK’ = k; — k3. We use the representation

gy =3G"d+AM+5id-Agh (A6)
and the well-known relations [see Eqs. (42) and (41)]
Zg}j(k) G (K) kokp = VR DS, (A7)
k
> GRM k) GRM(K) kykg ~ 0, (A8)
to find g
i[01 = —3mvDTr[(1 + AR (3R
(1= MR@BR ™ = I AD Tr [8:(RTTAR)P,
(A9)

from which Eq. (40) follows.

4. Derivation of Eq. (43)

The nonconservative part of )?Ga ! being substituted in the
first trace in Eq. (36) yields

i$310] ~ —ie"wy Tr Y GR)PR(k — k)
kk’
x [ART'K —k)— R7'(K —Kk)A]l. (A10)
We change the variable k' = k + Ak and apply Eq. (A3).

After cyclically moving the operators under the trace we obtain
Eq. (43).
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