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Stochastic pulse switching in a degenerate resonant optical medium
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Using the idealized integrable Maxwell-Bloch model, we describe random optical-pulse polarization switching
along an active optical medium in the � configuration with disordered occupation numbers of its lower-energy
sublevel pair. The description combines complete integrability and stochastic dynamics. For the single-soliton
pulse, we derive the statistics of the electric-field polarization ellipse at a given point along the medium in closed
form. If the average initial population difference of the two lower sublevels vanishes, we show that the pulse
polarization will switch intermittently between the two circular polarizations as it travels along the medium. If
this difference does not vanish, the pulse will eventually forever remain in the circular polarization determined
by which sublevel is more occupied on average. We also derive the exact expressions for the statistics of the
polarization-switching dynamics, such as the probability distribution of the distance between two consecutive
switches and the percentage of the distance along the medium the pulse spends in the elliptical polarization of a
given orientation in the case of vanishing average initial population difference. We find that the latter distribution
is given in terms of the well-known arc sine law.
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I. INTRODUCTION

Resonant interaction of light with active optical media has
given rise to one of the most fruitful areas of applied physics
in having provided the foundation of numerous important
physical effects over the past six decades [1–15] and has served
as one of the basic mechanisms used in laser operation and
optical amplifiers [16–20]. While a fully quantum description
of this interaction has also been developed [17,21], probably
its most revealing description has been furnished by the
semiclassical model provided by the Maxwell-Bloch system
of equations [17,22–25]. This model has helped to uncover
the fundamentals of the resonant interaction between an
electromagnetic field and a system of active atoms in the
regime in which the field can be described classically and the
medium by quantum mechanics, and in which a great number
of the relevant experiments have been carried out [1–15]. In
fact, many physical effects observed in these experiments,
from photon echo [2] and self-induced transparency [3,4] to
chaotic laser dynamics [11], have been explained using the
Maxwell-Bloch equations in the idealized two-level approxi-
mation in which the light is assumed to be monochromatic and
to interact resonantly with only two active atomic levels in the
optical medium [17,23–28].

In the simplest case of the two-level approximation, when
the pulses interacting with the medium are much shorter than
the relaxation times of the medium, the Maxwell-Bloch system
describing this interaction is completely integrable [29]. This
feature was used to explain theoretically three important
phenomena: self-induced transparency, superfluorescence, and
quantum amplification. The McCall-Hahn phenomenon of
self-induced transparency [3–5]—a medium whose atoms
are initially in the ground state becoming transparent to
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optical pulses with the resonant carrier frequency—was first
analyzed using complete integrability in Ref. [29], after many
exact solutions hinting at possible integrability had been
found in Refs. [30,31]. For superfluorescence [8–10]—the
generation of optical pulses from the random fluctuations of
the initial medium polarization in an excited medium—the
linear stage was addressed in Ref. [32], where the statistics
of the delay time between the pumping of the medium and
the pulse maximum were derived in terms of the statistics
of the polarization fluctuations, and shown to be Gaussian.
The fully nonlinear problem was subsequently addressed
using its integrable structure in Refs. [33–35], whose main
result was the shape of the superfluorescence pulse and its
relation to the delay time. The fully nonlinear description of a
quantum amplifier—incident-pulse amplification in an excited
medium—was addressed in Refs. [36,37].

An approximate description of the medium as having more
than two levels, or degenerate levels, interacting with the light
pulses propagating through it, is more physically realistic than
the idealized two-level approximation. Such a description is
desirable, for example, because effects such as self-induced
transparency have also been measured for transitions between
degenerate levels [38]. An important special active medium
with a doubly degenerate ground level and an excited level as
its working levels is referred to as the �-configuration medium,
so named because of the shape of the corresponding quantum
transition diagram. The two types of atomic transitions in such
a medium are stimulated by and emit light of two opposite
circular polarizations [39,40]. The complete integrability of
the Maxwell-Bloch systems describing light pulses interacting
with this type of a medium was discovered in Refs. [41–44],
and self-induced transparency was described. Superfluores-
cence and amplification of incident pulses via the transfer
of energy from the initially excited medium to the pulse in
�-configuration media were studied in Refs. [45] and [46],
respectively.
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One feature distinguishing the �-configuration description
from the simpler two-level description is its ability to capture
the polarization of the propagating pulses and thus polarization
switching, which depends on the initial population of the
two degenerate lower levels [47,48]. Another distinguishing
feature of the corresponding one-soliton solution is that it is
a soliton only in the sense of being a potential in the direct
scattering problem of the corresponding Lax operator that
gives rise to a single-eigenvalue spectrum, but it is not a solitary
traveling wave. In fact, even in the simplest case of constant
initial lower-level populations, its shape is only asymptotically
stationary. It has complex internal dynamics through which
both its shape and velocity can change in space and time, and
thus it can reflect the light polarization switching.

In this paper, using the corresponding integrable Maxwell-
Bloch system, we describe random polarization switching of
pulses passing through a �-configuration medium induced
by a disordered initial population of the degenerate lower
sublevels. The dependence of the properties of an emerging
light pulse on both integrability as well as randomness in the
initial conditions appears already for the simpler ideal two-
level optical medium through the phenomenon of superfluores-
cence [33–35]. Randomness in a two-level medium, however,
appears to play a negligible role in self-induced transparency.
Richer interactions between the integrable dynamics and
random initial data emerge in a �-configuration medium, as
the flexibility of populating the degenerate lower sublevels
makes it possible for self-induced transparency to take place
in the presence of structural disorder arising from spatial
fluctuations in these populations. Such disorder often results
during the initial preparation of the resonant medium, and
subsequently induces random polarization switching of light
pulses propagating through this medium. We will compute
and analyze several statistical properties of this nonlinear
random polarization switching using exact results obtained
with the inverse-scattering-transform technique for the �-
configuration Maxwell-Bloch equations.

While, in reality, a pulse propagating through a resonant
active medium encounters several sources of losses that make
it decay on a number of relaxation scales, we have chosen
its idealized lossless integrable Maxwell-Bloch description
for two reasons: The first is that we aim to understand the
fundamental features of the polarization-switching process in
the course of this propagation; in particular, how the pulse and
medium parameters affect its statistical properties. The second
is that, at the current development level of the experimental
instrumentation, the situation in which the pulse width is much
shorter than the relaxation times is achievable, so that our
model should be realistic from the viewpoint of experiments.
Therefore, we here consider the idealized integrable model
describing pulse interaction with a degenerate active optical
medium in the � configuration with structural disorder
introduced by an inhomogeneous distribution of the degenerate
lower sublevel population in the medium.

We present the polarization statistics for the one-soliton
solution, both because we can obtain them explicitly and
because they yield a particularly transparent description of
the switching phenomenon. In our treatment, we use the
classical polarization-ellipse representation [49,50], which has
the advantage of being independent of time for the one-soliton

solution; in other words, for the single-soliton pulse, the two
angles determining the shape of the polarization ellipse only
depend on the location along the medium sample. We address
the statistics of the pulse travel time to a given location along
the medium sample, the shape statistics of the polarization
ellipse at that location, and also the statistics of the switching
between the left- and right-circular polarizations that a soliton
pulse experiences while traveling along the sample.

We explore the qualitatively different statistical dynamical
regimes that emerge for the cases when the initial degenerate-
lower-level populations have (approximately) equal or unequal
mean. In particular, we find that, when the lower levels are
equally populated on average, the polarization lingers close to
one of the two circular polarizations for long distances but can
forever switch intermittently between the two with probability
one. On the other hand, when the initial degenerate-lower-level
populations along the optical medium have distinct averages,
the polarization after a few possible initial switches asymp-
totically approaches the circular polarization corresponding to
the transition between the on-average initially less-populated
lower sublevel and the excited level, and no further switching
occurs with probability one.

The remainder of the paper is organized as follows: In
Sec. II we present the relevant background of the problem.
In particular, in Sec. II A, we review the polarization ellipse
representation of polarized light, in Sec. II B, we review the
Maxwell-Bloch equations that describe resonant interaction
of pulses with a �-configuration degenerate active optical
medium, and in Sec. II C we we review the inverse-scattering-
transform method and soliton solution used in the description
of light-polarization dynamics. In Sec. III we discuss the
soliton statistics when the initial medium population is disor-
dered in space, with the approximate white-noise description
presented in Sec. III A, and the statistics of the soliton travel
time to a given point and the two angles determining the
shape of the polarization ellipse at that point discussed in
Sec. III B. The statistical description of the polarization-
switching dynamics is given in Sec. IV, and concluding
remarks are presented in Sec. V. Appendix A further elucidates
the appearance and role of the correlation length of the
initial lower-level population difference along the optical
medium. Appendix B contains a detailed calculation of two
polarization-switching length statistics.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we describe the problem at hand by briefly
reviewing the polarization-ellipse description of polarized
light; the three-level Maxwell-Bloch equations that describe
the propagation of monochromatic, elliptically polarized light
through a �-configuration active optical medium; and the soli-
ton solution whose random polarization-switching dynamics
we will study in the rest of the paper.

A. Optical pulse polarization

The electric-field polarization is among the light character-
istics most sensitive to changes in the properties of the optical
medium. This makes it a good potential target for experimental
investigation of the stochastic behavior of the light pulses
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predicted in this paper. Therefore, in this section, we present
a brief discussion of its main properties of importance to our
subsequent discussion.

Two well-established descriptions of light polarization
are given in terms of the polarization ellipse and Poincaré
sphere [49,50]. Here, we review the basic concepts of the
polarization-ellipse description, which we will use in the rest
of the paper (see also [45]). To this end, we consider a plane
electromagnetic wave with frequency ω and wave number
k, propagating in the positive x direction in the (x,y,z,t)
laboratory coordinate frame, which has the form

�E(x,t) = Re{ �Eei(kx−ωt)} = Re{[Ey�ey + Ez�ez]e
i(kx−ωt)}. (1)

Here, Re denotes the real part of a complex number, Ey and Ez

are the two components of the complex wave amplitude �E, and
�ey and �ez are the unit vectors in the (y,z) plane, perpendicular
to the propagation direction of the wave. Defining the circular-
polarization basis vectors �e+ and �e− as

�e+ = 1√
2

(�ey + i�ez), �e− = 1√
2

(�ey − i�ez), (2)

we rewrite the complex wave amplitude �E in the circular-
polarization components as

�E = Ey�ey + Ez�ez = E+�e+ + E−�e−
= |E+|eiφ�e+ + |E−|ei(φ+2ψ)�e−
= (|E+|e−iψ�e+ + |E−|eiψ�e−)ei(φ+ψ), (3)

where φ and φ + 2ψ are the phases of the �e+ and �e− electric-
field components, respectively. This yields the expression for
the electric field

�E(x,t) = |E+| + |E−|√
2

(cos ψ�ey + sin ψ�ez)

× cos(kx − ωt + φ + ψ)

−|E+| − |E−|√
2

(−sin ψ�ey + cos ψ�ez)

× sin(kx − ωt + φ + ψ), (4)

which clearly shows that this field traces out an ellipse, whose
major and minor semiaxes have lengths (|E+| + |E−|)/√2 and
(|E+| − |E−|)/√2, respectively, and whose major semiaxis
subtends the angle ψ with the y axis. The angle ψ is called
the polarization azimuth, and takes on values 0 � ψ � π .
The ratio between the semiaxes of the ellipse is related to
the ellipticity angle η through the formula tan η = (|E+| −
|E−|)/(|E+| + |E−|). This angle takes on values −π/4 � η �
π/4 (see Fig. 1). The sign of η represents the direction in
which the electric field �E(x,t) rotates along the perimeter of
the ellipse.

Special cases of Eq. (4) include linear polarization when
η = 0 (|E+| = |E−|) and circular polarization when |η| =
π/4. In particular, the field �E(x,t) is left-circularly polarized
if η = −π/4 (|E+| = 0) and right-circularly polarized if
η = π/4 (|E−| = 0).

To compute the angles η and ψ , we proceed as follows:
First, from Fig. 1, we see that

cos η = |E+| + |E−|√
2(|E+|2 + |E−|2)

, sin η = |E+| − |E−|√
2(|E+|2 + |E−|2)

,

z

η

ψ

y

FIG. 1. (Color online) Polarization ellipse in the plane perpen-
dicular to the direction of light propagation.

so that

sin 2η = |E+|2 − |E−|2
|E+|2 + |E−|2 . (5a)

Moreover, from (3), we find E∗
+E− = |E+||E−|e2iψ , which

implies

tan 2ψ = i
E+E∗

− − E−E∗
+

E+E∗− + E−E∗+
. (5b)

Equations (5) provide a complete characterization of the
polarization ellipse.

The concepts explained above hold equally well when
the constant complex amplitude �E is replaced by a complex
amplitude �E(x,t) that varies slowly compared to the plane
carrier wave ei(kx−ωt). This is typically the case for the
interaction of monochromatic light with a �-configuration
active optical medium [39,51], during which light pulses can
be represented in the form

�E(x,t) = Re{[E+(x,t)�e+ + E−(x,t)�e−]ei(kx−ωt)}, (6)

where �e± are the circular-polarization basis vectors (2) and
E±(x,t) are the complex envelopes of the two circular-
polarization components of the light pulse inside the medium
that vary slowly compared to the wavelength and time period
of the light. As explained in the next section, the two electric-
field polarization components interact with the two active
atomic transitions in the �-configuration degenerate two-level
medium.

B. �-configuration Maxwell-Bloch equations

Propagation of ultrashort, monochromatic, elliptically
polarized light pulses interacting resonantly with a �-
configuration, two-level, active optical medium is, in the
slowly varying envelope approximation, described by the
quasiclassical system of Maxwell-Bloch equations [39,43,51]

∂Ĥ (t,x)

∂t
+ ∂Ĥ (t,x)

∂x
= 1

4

∫ ∞

−∞
[J,ρ̂(t,x,ν)]g(ν)dν, (7a)

∂ρ̂(t,x,λ)

∂t
= i[−λJ + Ĥ (t,x),ρ̂(t,x,λ)]. (7b)

Here [·,·] denotes the matrix commutator.
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Equation (7a) arises from the classical unidirectional
Maxwell’s equations for the electric-field envelopes with the
displacement currents on the right-hand side. Equation (7b)
is the Liouville equation for the density matrix, describing in
the present case a two-level quantum system with a doubly
degenerate ground level. The density matrix ρ̂, the reduced
Hamiltonian Ĥ (without the diagonal part) describing the
dipole interaction of the degenerate two-level system with the
electric field, and the matrix J in Eqs. (7) are defined as

ρ̂ =

⎛
⎜⎝
N ρ+ ρ−
ρ∗

+ n+ μ

ρ∗
− μ∗ n−

⎞
⎟⎠ , Ĥ = i

2

⎛
⎜⎝

0 E+ E−
−E∗

+ 0 0

−E∗
− 0 0

⎞
⎟⎠ ,

J =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎠ , (8)

respectively. Here, E±(x,t) are the complex-valued envelopes
of the left- and right-circular-polarization components of
the light pulse as given in Eq. (6), ρ±(x,t,λ) and μ(x,t,λ)
are the complex-valued medium-polarization envelopes, and
n±(x,t,λ) and N (x,t,λ) are the real-valued population den-
sities of the degenerate ground sublevels and the excited
level. The electric-field and medium-polarization envelopes,
E±(x,t) and ρ±(x,t,λ), are associated with the atomic transi-
tions between each of the ground sublevels and the excited
level, while μ(x,t,λ) is the contribution to the medium
polarization by the two-photon transition between the two
ground sublevels. The parameter λ describes the detuning
of the atomic transition frequency from the exact resonance
with the electric field, and g(λ) is a nonnegative function with∫ ∞
−∞ g(λ)dλ = 1 which describes the shape of the spectral line

due to the inhomogeneous broadening of the atomic transi-
tions. The speed of light in Eq. (7a) is nondimensionalized to
c = 1. In components, Eqs. (7) read

∂E±
∂t

+ ∂E±
∂x

=
∫ ∞

−∞
ρ±g(ν)dν, (9a)

∂ρ+
∂t

− 2iλρ+ = 1

2
[E+(N − n+) − E−μ∗], (9b)

∂ρ−
∂t

− 2iλρ− = 1

2
[E−(N − n−) − E+μ], (9c)

∂μ

∂t
= 1

2
[E∗

+ρ− + E−ρ∗
+], (9d)

∂N
∂t

= −1

2
[E+ρ∗

+ + E∗
+ρ+ + E−ρ∗

− + E∗
−ρ−],

(9e)
∂n±
∂t

= 1

2
[E±ρ∗

± + E∗
±ρ±]. (9f)

One condition for Eqs. (7) [or (9)] to be valid is that
the pulse width be much shorter than the time scale of the
relaxation processes in the atomic system; as discussed below,
in gases, the ratio between these two time scales typically
ranges from 10−5 to 10−3 [17]. Also, as we already mentioned
in the previous paragraph, Eq. (7a) describes unidirectional
propagation. Potential violation of unidirectionality is an
important concern even for a nondegenerate two-level system,

in which a spatially nonuniform density of active atoms can
cause backscattering of light. However, the most important
features of resonant interaction between light and two-level
atomic systems are well described within the unidirectional
approximation [17,25,26,29–31,35,51]. Since linear waves can
be treated independently, bidirectionality must be taken into
account only when the counterpropagating waves interact
nonlinearly. Nonlinear interaction, in turn, only becomes
prominent when the wave amplitudes are sufficiently large
and the characteristic time of the counterpropagating waves’
overlap is longer than the characteristic onset time of the
nonlinear interaction.

The amplitudes of the back-scattered waves are usually
small for two reasons: the low density of the active atoms,
and the disorder in the lower sublevel populations of the
�-configuration system leading to randomness in the phase
of the back-scattered light. In particular, for the typical
expected value of the electric dipole (corresponding to the
resonant atomic transition) of ∼1 Debye, and the resonant
transition frequency ∼1015 s−1, the density of the active atoms
�1018 cm−3 induces less than 2% of back scattering according
to the linear estimates carried out in Ref. [52] (see also [51]).
In addition, destructive summation of the back-scattered plane
waves with random phases, which may result from the disorder
in the lower sublevel populations of the �-configuration
system, can also lead to an overall small amplitude of the
back-scattered light. Finally, we should note that, in practical
situations, the overlap time between two counterpropagating
pulses is very short, due to the large value of the speed of light,
and therefore the duration of the nonlinear interaction between
them is also very short.

The density matrix ρ̂ is Hermitian and its time evolution can
be represented by the formula ρ̂ = Uρ̂0U

†, where U belongs to
the group SU(3) and ρ̂0 is time independent; this representation
follows from Eq. (7b). Thus, the three eigenvalues of the
matrix ρ̂ are conserved in time. Alternatively, we can find three
independent conserved quantities for Eq. (7b) by computing
the traces of the matrices ρ̂, ρ̂2, and ρ̂3; three independent
functions of the eigenvalues of ρ̂. Explicitly, these conserved
quantities are

I1(x,λ) = N + n+ + n− = 1, (10a)

I2(x,λ) = N 2 + n2
+ + n2

− + 2(|ρ+|2 + |ρ−|2 + |μ|2),

(10b)

I3(x,λ) = N 3 + n3
+ + n3

− + 3[N (|ρ+|2 + |ρ−|2)

+ n+(|ρ+|2 + |μ|2) + n−(|ρ−|2 + |μ|2)

+ ρ+ρ∗
−μ + ρ∗

+ρ−μ∗]. (10c)

Note that unit normalization in Eq. (10a) is chosen.
The �-configuration Maxwell-Bloch system (7) contains

two invariant two-level subsystems [17], obtained by setting
either E+ = ρ+ = n+ = μ = 0 or E− = ρ− = n− = μ = 0,
which describe pure two-level transitions between the excited
level and the − or + sublevels, respectively. The light
involved in either of these transitions forever remains circularly
polarized.
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C. Polarization dynamics in a �-configuration medium

The solutions of the Maxwell-Bloch equations (7) can be
obtained and analyzed via the inverse-scattering transform
starting with the zero-curvature representation [43],

∂�

∂t
= U� = (iλJ − H )�, (11a)

∂�

∂x
= V � =

(
−iλJ + H + i

4
P

∫ ∞

−∞

ρ̂(x,t,ν)

ν − λ
g(ν)dν

)
�,

(11b)

where the symbol P stands for the Cauchy principal value
of the integral, and the matrices H , ρ̂, and J are defined in
Eq. (8). The 3 × 3 matrix � is a simultaneous solution of
both Eqs. (11a) and (11b). The compatibility condition of this
system, Ux − Vt + [U,V ] = 0, is equivalent to Eqs. (7).

The inverse-scattering transform is well suited to address
the Cauchy problem for Eqs. (7) formulated along the entire
real axis. Following [35], we thus introduce the asymptotically
mixed problem in which the Cauchy data represent a pulse
incident at the point x = 0 and defined along the entire t axis,

E±(t,0) = E0
±(t), −∞ < t < ∞,

∫ ∞

−∞
|E0

±(t)|dt < ∞.

(12)

The asymptotic initial state of the optical medium is given at
t = −∞ by

lim
t→−∞ ρ±(x,t,λ) = 0, lim

t→−∞ μ(x,t,λ) = 0,

(13a)
lim

t→−∞N (x,t,λ) = 0,

and
lim

t→−∞ n±(x,t,λ) = 1
2 [1 ± α(x,λ)] � 0, (13b)

with 0 < x < L, where L is the nondimensionalized length
of the sample. Here, we have assumed that only the two
degenerate lower levels are populated initially. The form of
the asymptotic condition (13b) follows from the normalization
(10a), which also implies that −1 � α(x,λ) � 1.

In gases, the lifetime of the optical pulse ranges from 10−5

to 10−3 seconds, while the typical pulse width is 10−8 s or
shorter [17]. Therefore, the above idealization of the initial
time being at −∞ is well justified.

The initial conditions (12) define the scattering problem
at the point x = 0 for Eq. (11a), which falls in the class of
Manakov’s scattering problems [53]. The evolution of the
scattering data in x can be obtained via Eq. (11b), and the
electric-field envelopes E±(x,t) can then be recovered using a
set of two Marchenko-type equations [51]. The evolution equa-
tions for the scattering data corresponding to the most general
asymptotic initial state are listed in Ref. [48]; their derivation
proceeds along the lines of the treatment given in Ref. [35] for
the single-polarization, two-level Maxwell-Bloch equations.

As mentioned in the introduction, in Ref. [48], using the
inverse-scattering transform, a polarization-switching mecha-
nism was identified in the interaction of monochromatic light
with a �-configuration optical medium initially satisfying the
conditions (13). In particular, as the pulse passes through an
x interval along which α(x,λ) > 0 is bounded below by a

positive constant, the amplitude E−(x,t) will grow in modulus
toward a saturation value and E+(x,t) will decay, and vice
versa if α(x,λ) < 0. If the initial state of the medium is pre-
pared using unpolarized, incoherent light, the initial population
difference α(x,λ) between the two lower sublevels can be
considered a random function of x. Since therefore α(x,λ)
changes sign in a random fashion, an optical pulse propagating
in such a medium will experience random switching of light
polarization. Studying the statistical properties of this random
switching is the focus of this paper.

From the inverse-scattering transform theory [54,55], it
is well known that the asymptotic behavior of the solution
will be determined by the discrete spectrum of the operator
in Eq. (11a)—the N -soliton solutions [48,51]. In fact, in the
integrable Maxwell-Bloch–type equations, if the spectral line
is not infinitely narrow [i.e., g(λ) �= δ(λ), the Dirac delta
function], the continuous radiation not only disperses away,
but also becomes absorbed in the medium via Landau damping
[29]. If the discrete spectrum of the incident pulse contains a
single eigenvalue in the upper-half λ plane (i.e., λ1 = γ + iβ,
with β > 0), this pulse asymptotically reshapes itself into a
single soliton (N = 1).

We address the case when the spectral width of the pump
pulse is much broader than the width of the spectral line due to
the inhomogeneous broadening, g(λ). In this case, the initial
populations can be considered homogeneous within the width
of the spectral line, and therefore we can take

α(x,λ) = α(x). (14)

The single-soliton solution is then given by the expression

E±(x,t) = 4iβG±(x)ei�±(x,t)

× sech

[
2β(t − x) + τx + 1

2
ln

|d+||d−|
2β2

+ 1

2
ln cosh

(
2τA(x) + ln

|d + |
|d−|

)]
, (15a)

where the functions

G±(x) =
√

1

2

[
1 ± tanh

(
2τA(x) + ln

|d+|
|d−|

)]
(15b)

control the amplitudes of the soliton components and the
functions

�±(x,t) = 2γ (t − x) + σ [x ± A(x)] − arg d± (15c)

describe their phases. The real-valued coefficients σ and τ are
given by

σ + iτ = 1

8

∫ ∞

−∞

g(ν)

λ1 − ν
dν (16)

for the given complex number λ1 = γ + iβ with a positive
imaginary part, and

A(x) =
∫ x

0
α(ξ )dξ (17)

describes the cumulative initial population difference α(x)
along the medium sample up to any given position x.

Equations (15a) and (15b) show that both the electric-field
components E±(x,t) of the one-soliton solution consist of
the same sech-profile wave, with two different x-dependent
amplitudes proportional to the functions G±(x) in Eq. (15b),
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respectively. The maximal amplitude of each component
equals 4β. The temporal width of the soliton equals
1/(2β). The constants d+ and d− determine the phase and
position of the soliton. If the cumulative initial population
difference diverges with increasing distance into the medium,
A(x) → ±∞ as x → ∞, one electric-field amplitude
saturates while the other decays, which is the one-soliton case
of the polarization switching [47,48].

From Eq. (16), since g(ν) > 0 and λ1 = γ + iβ with β > 0,
we find for the coefficient τ the inequality

τ = −β

8

∫ ∞

−∞

g(ν)

|λ1 − ν|2 dν < 0. (18)

For the Lorentzian shape of the spectral line,

g(ν) = ε

π (ε2 + ν2)
, (19)

the coefficients in Eq. (16) become

σ = γ

8[γ 2 + (β + ε)2]
, τ = − β + ε

8[γ 2 + (β + ε)2]
. (20)

Note that σ = 0 in Eq. (16) if γ = 0, which is also easily
shown to be true for any even spectral line shape g(ν).

The soliton speed and the phases of its components
depend on the position x along the optical medium. Here,
we compute the soliton speed as follows: At each position x,
both components of the soliton reach their peak intensity at the
time for which the argument of the sech-profile vanishes. This
condition and Eq. (15a) give the travel time of the soliton from
when it is injected into the medium at x = 0 until it reaches
the point x as

T (x) = x − 1

2β

[
τx + 1

2
ln

2|d+d−|
|d+|2 + |d−|2

+ 1

2
ln cosh

(
2τA(x) + ln

|d + |
|d−|

)]
. (21)

From Eq. (21), it is clear that the speed of the soliton thus
satisfies the equation

1

vsoliton(x)
= dT

dx
(x)

= 1 − τ

2β

[
1 + α(x) tanh

(
2τA(x) + ln

|d+|
|d−|

)]
.

(22)

Using Eq. (18) and the fact that |α(x)| � 1, we readily con-
clude that vsoliton(x) � 1; that is, that the soliton speed never ex-
ceeds the speed of light. If the initial population difference α is
x independent, the soliton velocity asymptotically behaves as

vsoliton(x → ∞) →
[

1 + |τ |(1 − |α|)
2β

]−1

.

To compute the polarization azimuth ψ and the angle
of ellipticity η for the one-soliton solution, we insert the
components of the solution (15a) into Eqs. (5) to obtain

ψ = −σA(x) + 1

2
arg(d∗

−d+), (23a)

sin 2η = tanh

(
2τA(x) + ln

|d+|
|d−|

)
. (23b)

Note that these two angles are independent of the time t : at
any point x along the medium, the light polarization remains
constant in time as the soliton passes by.

Note also that the polarization azimuth ψ remains constant
if the parameter σ vanishes. Recalling that the eigenvalue
λ1 is the complex number λ1 = γ + iβ and the remark after
Eq. (20), we see that this happens when γ = 0 and so λ1 = iβ

(i.e., pure imaginary), provided that the spectral line shape
g(λ) is an even function. From Eqs. (15), it is easy to see
that this case contains solitons with real-valued electric-field
components, which are obtained with the appropriate choice
of the constants d±. In other words, when the spectral line
shape g(λ) is an even function, the polarization azimuth ψ of
all solitons with real-valued electric-field components remains
constant and so is independent of the distance x into the
medium.

III. SOLITON DYNAMICS IN PRESENCE OF SPATIAL
DISORDER IN MEDIUM POPULATION

We now describe light propagation in the presence of spatial
disorder in the initial population densities, characterized
by the function α(x) in Eqs. (13b) and (14). The spatial
distribution of the initial population is determined by the
manner in which the atomic system is prepared. In general,
for the � configuration with two degenerate levels, it is
difficult to control the relative populations of the sublevels
during the preparation process. For example, if the system is
prepared using unpolarized or partially polarized pump light,
the relative distribution of the sublevel populations will be
random. We will be concerned with how this randomness
induces random polarization switching in the one-soliton
solution (15a).

A. White-noise approximation to initial population
density difference

We assume the initial population density difference α(x) in
the medium to be random and spatially homogeneous in the
statistical sense, and treat it as homogenous white noise with
amplitude a superposed upon a mean (bias) b:

〈α(x)〉 = b, (24a)

〈[α(x) − b][α(x ′) − b]〉 = a2δ(x − x ′), (24b)

where 〈·〉 denotes ensemble averaging over the statistical
ensemble of all possible realizations of the initial population
difference α(x), and δ(·) is the Dirac delta function.

The white-noise characterization (24) of the initial popula-
tion density difference α(x) is consistent with the Maxwell-
Bloch model (7) when the correlation length Lc of α(x)
(discussed in more mathematical detail in Appendix A)
satisfies three conditions. The first is that

Lc � λ0, (25)

where λ0 is the wavelength of the light interacting resonantly
with the transitions between the ground and excited levels in
the �-configuration medium under investigation. The second
is is that Lc should be much shorter than the typical spatial
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pulse width,

Lc 
 1

β
. (26)

The third condition is

Lc 
 x, (27)

where x is the position of the observation point along the
medium.

As explained below, conditions (25) and (26) are necessary
to make the modeling of the initial population difference
α(x) by random noise compatible with the Maxwell-Bloch
equations (7) [or (9)]. Condition (27) is what allows the
approximation of the true initial population difference α(x)
by the idealized white-noise model (24). In fact, condition
(27) follows from condition (26) in any realistic experimental
device, which would be long compared to the soliton width
1/β. We now proceed to discuss the need and consequence of
these three conditions in more detail.

Condition (25) must hold because Eqs. (7) [or (9)] describe
slowly varying envelopes of the electric-field and medium
polarization components, and their carrier-wave oscillations
are averaged out in the process of deriving these equations.
The correlation length Lc must therefore be sufficiently large
compared to the wavelength λ0 of the light interacting with
the medium not to be averaged out as well. In other words,
in order for the envelope approximation leading to Eqs. (7) to
be valid simultaneously with the assumption (24b), we must
assume condition (25).

Condition (26) should hold because Eqs. (7) [or (9)] employ
the approximation of unidirectionality. If the correlation length
Lc of the medium with the initial population difference α(x)
was comparable to or larger than the spatial width of the light
pulse traveling through this medium, this random population
difference could induce considerable backscattering of the
pulse. Consequently, the pulse could be destroyed and the
unidirectionality approximation violated (cf. the detailed
discussion of a similar problem in Refs. [56,57]).

To understand the meaning of the condition (27), let us
recall that Eqs. (15) describing the soliton only involve the
population difference α(x) through its cumulative spatial effect
expressed by its spatial integral, A(x) in Eq. (17). In particular,
when (27) holds, the integral A(x) can be well approximated
as

A(x) = aW (x) + bx, (28)

where W (x) is the usual Wiener process [58]. Recall that the
Wiener process W (x) is for each x a mean-zero Gaussian
random variable with variance x and probability density
function

pW (s; x) = 1√
2πx

exp

(
− s2

2x

)
, (29)

where s parametrizes the range of the random variable W (x).
The representation (28), which is equivalent to (24), also
applies to Eqs. (21) and (23) for the soliton travel time and
ellipticity angle, respectively. A soliton solution (15) with
a random initial population difference α(x) is illustrated in
Fig. 2.

0

200

400

0
50

100
150

0.2
0.4
0.6
0.8

1
1.2

 x
 t

E
+

0

200

400

0
50

100
150

0.2
0.4
0.6
0.8

1
1.2

 x
 t

E
−

FIG. 2. The two circular-polarization amplitudes, E+ and E−,
of a real-valued, polarized-light soliton pulse propagating through a
randomly prepared �-configuration optical medium, as described by
Eq. (15a). The model of the initial population difference α(x) was
sampled from the properly rescaled β distribution with mean b =
〈α(x)〉 = 0.001, variance σ 2

α = 0.71, and coherence length Lc = 1.8.
The width of the Lorentzian spectral line in Eq. (19) is ε = 0.1. The
soliton parameters are β = 1/3, γ = 0, d+ = d− = i.

The parameter a in the approximation (24) [or (28)] is
related to the correlation length Lc and variance σ 2

α of any
given physical initial population difference α(x) through the
equation a = √

2Lcσα , as follows from the discussion in
Appendix A.

We should remark, however, that the white-noise approx-
imation (24) does not make literal sense, as it violates the
constraint |α(x)| � 1 implied by the normalization (10a).
More generally, it is not a valid description of physical
quantities that depend on the initial population difference α(x)
itself, such as the local soliton speed in Eq. (22). The precise
description of such quantities would require a more detailed
model of α(x), which we do not pursue here. However, state
variables such as polarization variables and travel time, which
involve the integrated effects of α(x), have their statistics well
described by the white-noise approximation (24) under the
asymptotic conditions (25) through (27).

In an experiment, the correlation length Lc of the population
difference α(x) would be approximately the same as the
coherence length �c of the pump light used to prepare the
optical medium. The related characteristic dephasing time
td = �c/c, where c is the speed of light (set to unity in our
dimensionless coordinates), is determined by the width �νp of
the spectral line of the light source as td ∼ 1/�νp. Therefore,
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the coherence length �c is determined as

�c ∼ ctd = c

�νp

.

Taking into account that the wavelength λp is related to the
frequency νp as λp = c/νp, we obtain

dνp

dλp

= − c

λ2
p

and so, considering just the magnitudes of �νp and �λp, we
find that

�νp = c

λ2
p

�λp.

From this formula, it finally follows that the coherence length
�c is determined as

�c ∼ λ2
p

�λp

.

Here, λp is the average wavelength of the pump light and �λp

is the characteristic width of the pump light-source spectral
line (in terms of wavelength).

To demonstrate experimental feasibility, we recall that for
Ti-sapphire lasers, for example, these parameters are �λp ∼
5 nm and λp ∼ 800 nm, therefore �c ∼ 105 nm = 0.1 mm
[59]. For a typical �-configuration transition pair in the visible
regime (e.g., in sodium vapor, the wavelength corresponding to
the transition is λ0 ∼ 600 nm), this argument shows that λ0 

�c ∼ Lc on the one hand, and that a several-centimeters-long
experimental device is clearly sufficiently long to capture the
desired statistical effects. Therefore, both conditions (25) and
(27) can be satisfied simultaneously in this case.

Noting that the soliton travel time T (x) and the ellipticity
angle η(x) depend on the initial population difference only
through the product τA(x), defined in Eqs. (16) and (17),
respectively, we here identify three fundamental length scales
associated with the dynamics of this quantity, and thus, through
η(x), also the polarization switching. First, as seen from
Eq. (28),

Lb = 1

|τ ||b| (30)

is the length scale over which the deterministic bias b in
Eq. (24a) induces a significant change in τA(x). Second,

La = 2

a2τ 2
(31)

is the length scale over which the random component of the
initial population difference fluctuations in the medium, given
approximately as aW (x) in Eq. (28), creates a significant
change in τA(x). Finally,

Lfluc = L2
b

La

= a2

b2
, (32)

is the length scale before which random fluctuations dominate
the effects of the deterministic bias, and after which the
opposite is true. Because of Eq. (32), these three length scales
must obey one of the two following orderings:

La � Lb � Lfluc or Lfluc � Lb � La. (33)

Note that

Lb → ∞, Lfluc → ∞ as b → 0, (34a)

La → ∞, Lfluc → 0 as a → 0. (34b)

Note also that the lengths La and Lb depend on the initial
medium parameters a and b in Eqs. (24) as well as the soliton
parameter τ in Eq. (16), while Lfluc only depends on a and b.

The polarization azimuth ψ(x) depends on the disorder of
the initial medium occupation numbers through the product
σA(x) which, as we will see in Sec. III B 2 a, does not require
length scales analogous to La and Lb.

The question that we need to answer is how the polarization
of the pulse behaves at large distances x into the medium.
If the initial difference α(x) between the populations of the
degenerate ground states of the medium exhibits a bias,
〈α(x)〉 = b, it is reasonable to expect that the soliton will
eventually evolve into a single circular polarization, which
will depend on the sign of this bias. If no such bias exists [i.e.,
〈α(x)〉 = b = 0], then it is reasonable to expect that the soliton
will switch intermittently between left- and right-circular
polarizations over large distances. In the forthcoming sections,
we will confirm this intuition explicitly.

B. Soliton statistics at fixed observation point

In this section, we calculate the statistics of the soliton travel
time T (x) in Eq. (21) and the two angles that determine the
dynamics of the polarization ellipse; namely, the polarization
azimuth ψ and angle of ellipticity η in Eqs. (23a) and
(23b). Throughout the section, we employ the white-noise
approximation (24) of the initial population density difference
α(x) [or, equivalently, the Wiener process approximation (28)
for its spatial integral A(x)]. From the previous section, we
recall that this requires the observation point x to be sufficiently
far into the medium in comparison with the correlation length
Lc of the function α(x) [cf. Eq. (27)].

1. Soliton travel time.

As we recall from Sec. II C, the soliton travel time T (x),
given by Eq. (21), is the time needed for the peak of the soliton
to reach the observation position x. The time T (x) is a random
function with the randomness arising solely from the integral
A(x) of the initial population density difference α(x), defined
in Eqs. (17), (13b), and (14), respectively. As in Sec. III A, we
assume the Wiener process representation (28) for A(x) [i.e.,
A(x) = aW (x) + b]. In the calculations below, for each fixed
x, we parametrize the range of the random variable W (x) by
the variable s.

a. Mean and variance of the soliton travel time. The mean
and variance of the soliton travel time T (x) can be expressed
as the integrals

〈T (x)〉 =
∫ ∞

−∞

T̃ (x,s)√
2πx

exp

(
− s2

2x

)
ds, (35a)

σ 2
T (x) =

∫ ∞

−∞

[T̃ (x,s) − 〈T (x)〉]2

√
2πx

exp

(
− s2

2x

)
ds, (35b)

where T̃ (x,s) is defined as T (x) in Eq. (21) with A(x) replaced
by as + bx.
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In general, the integrals in Eqs. (35) can only be evaluated numerically. For sufficiently large distances, however, we
can exploit the formula

ln cosh(u) = |u| − ln 2 + O(e−2|u|), (36)

valid for |u| � 1, in Eq. (21), to approximate T̃ (x,s) in Eqs. (35) as

T̃ (x,s) ∼ x − 1

2β

[
τx + 1

2
ln

|d+d−|
|d+|2 + |d−|2 + 1

2

∣∣∣∣2τ (as + bx) + ln
|d+|
|d−|

∣∣∣∣
]

+ O(e−|2τ (as+bx)|). (37)

In this and the following asymptotic statements, we will treat ln(|d+|/|d−|) as a fixed quantity of order unity [which, in connection
with Eq. (23b), means the pulse polarization at the entrance to the medium is not close to circular]; otherwise, additional length
scales involving ln(|d+|/|d−|) would appear in the error estimates. The mean soliton travel time deep into the medium can then
be expressed as

〈T (x)〉 ∼
⎧⎨
⎩

x − 1
2β

[
τx(1 − |b|) + 1

2 ln |d−|2
|d+|2+|d−|2

] + O(e−x/Lb + (x/Lb),e−x/Lfluc ) for x � Lb,Lfluc

x − 1
2β

[
τx +

√
2
π
|τa|√x + 1

2 ln |d+d−|
|d+|2+|d−|2

] + O((x/La)−1/2 + (x/La)1/2(x/Lfluc)) for La 
 x 
 Lfluc,
(38a)

and its variance as

σ 2
T (x) ∼

{
τ 2a2x
4β2 + O(e−2x/Lb + (x/Lb)2e−x/Lfluc ) for x � Lb,Lfluc

(π−2)τ 2a2x

4πβ2 − 4−π
16πβ2

(
ln |d+|

|d−|
)2 + O((x/La)−1/2 + (x/La)(x/Lfluc)1/2) for La 
 x 
 Lfluc,

(38b)

where the parameter τ is defined in Eq. (16).
Note that, since τ < 0 due to Eq. (18), the expectation value of the soliton travel time T (x) in Eq. (38a) increases linearly

for large observation-point distance x. Recalling from Eqs. (30)–(32) that the regime x 
 Lfluc is dominated by the random
fluctuations in the initial population difference, whereas the drift due to the bias b in the difference dominates at length scales
x � Lfluc, we note that the first line in each display corresponds to the drift-dominated case while the second line corresponds
to the noise-dominated case. In particular, the case x � Lb,Lfluc only corresponds to nonzero average initial population density
difference b = 〈α(x)〉, while the case La 
 x 
 Lfluc also contains the case b = 0. Because of the length-scale relationships
(33), the regimes considered provide a comprehensive description for the soliton travel time deep in the medium.

b. Probability distribution of soliton travel time. The cumulative distribution function

FT (t ; x) = Prob{T (x) � t} (39)

for soliton travel time T (x) in Eq. (21), from the entrance of the medium to a given position x, can be computed in the
Wiener-process approximation using Eqs. (21) and (28), which yield the expression

FT (t ; x) = Prob{W (x) � u−(x,t) or W (x) � u+(x,t)} = min[1, Prob{W (x) � u−(x,t)} + Prob{W (x) � u+(x,t)}],
where

u±(x,t) = 1

2aτ

(
−2bτx − ln

|d+|
|d−| ∓ cosh−1 κ(x,t)

)
(40)

and

κ(x,t) = exp

(
−4β(t − x) − 2τx − ln

2|d+d−|
|d+|2 + |d−|2

)
. (41)

Since W (x) is a normally distributed random variable with mean 0 and variance x, we find

FT (t ; x) =
{

1 + 1
2 erf

(
u−(x,t)√

2x

) − 1
2 erf

(
u+(x,t)√

2x

)
for 0 < t < tmax(x)

1 for t � tmax(x),
(42)

where tmax(x) is the upper bound on the soliton travel time to a position x, given by

tmax(x) =
(

1 − τ

2β

)
x − 1

4β
ln

2|d+d−|
|d+|2 + |d−|2 ,

and the error function is defined as

erf(y) = 2√
π

∫ y

0
exp(−z2)dz. (43)
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The probability density function pT (t ; x) of the soliton travel time T (x) is given by the partial derivative of the cumulative
distribution function FT (t ; x) with respect to t . After differentiation of Eq. (42) and some algebra, we arrive at the expression

pT (t ; x) =
{√

2
πx

βκ(x,t)

a|τ |
√

κ2(x,t)−1

[
exp

( − u2
+(x,t)
2x

) + exp
( − u2

−(x,t)
2x

)]
for 0 � t � tmax(x),

0 otherwise,
(44)

with u±(x,t) and κ(x,t) as in Eqs. (40) and (41),
respectively.

A sample plot of the probability density function pT (t ; x)
of the soliton travel time T (x) is presented in Fig. 3. Note the
local maximum emerging from the boundary at t = tmax(x)
at large values of x (i.e., at locations deep into the medium
sample).

2. Polarization variables

To describe the statistics of the polarization azimuth ψ

and the angle of ellipticity η, we again use the Wiener-
process approximation (28) and replace the function A(x)
in the expressions (23) for the polarization variables with
aW (x) + bx. The statistics can then be obtained as follows:

a. Polarization azimuth statistics. As the polarization
azimuth ψ(x) is a linear function of the Wiener process W (x),
it itself behaves like a Brownian motion with drift −σb and
diffusion coefficient 1

2σ 2a2. That is, its probability density at
any position x is given by a Gaussian form

pψ (s; x) = 1√
2πxaσ

× exp

{
−

[
s − 1

2 arg(d∗
−d+) + σbx

]2

2xa2σ 2(λ)

}
, (45)

with mean

〈ψ(x)〉 = −σbx + 1
2 arg(d∗

−d+) (46)

and variance

σ 2
ψ (x) = σ 2a2x. (47)

Sample plots of the probability density function pψ (s; x) for
both vanishing and nonvanishing bias b = 〈α(x)〉 are displayed
in Fig. 4.
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FIG. 3. Probability density function pT (t ; x), with β = 1, γ = 1,
ε = 0.1, d+ = i, d− = i/3, a = 3, and b = 0.8.

Note that when σ = 0,

pψ (s; x) = δ
(
s − 1

2 arg(d∗
−d+)

)
,

where δ(·) is the Dirac delta function. That is, the dynamics of
the polarization azimuth becomes constant, as was mentioned
at the end of Sec. II A. In particular, the polarization azimuth
is constant for all solitons whose electric-field envelopes are
real-valued, so that for such solitons, the polarization ellipse
does not rotate.

b. Mean and variance of the ellipticity angle. For the angle
of ellipticity η(x), just as for the soliton travel time T (x), the
initial medium population difference α(x) again contributes
to the evolution of η(x) in the x direction through the
Wiener process τA(x). Therefore, the length scales given by
Eqs. (30)–(32) are again relevant here.

Taking H(x,s) to be defined as the expression for sin 2η in
Eq. (23b) with A(x) replaced by as + bx; namely,

H(x,s) = tanh

(
2τ (as + bx) + ln

|d+|
|d−|

)
, (48)
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FIG. 4. Probability density function pψ (s; x), with β = 1, γ = 1,
ε = 0.1, d+ = i, d− = i/3, and a = 1. Top: no bias, b = 0. Bottom:
nonzero bias, b = 0.3.

043834-10



STOCHASTIC PULSE SWITCHING IN A DEGENERATE . . . PHYSICAL REVIEW A 85, 043834 (2012)

the expectation and variance of sin 2η can be expressed as

〈sin 2η〉 = 〈H(x,W (x))〉 =
∫ ∞

−∞
H(x,s)√

2πx
exp

(
− s2

2x

)
ds,

(49a)

σ 2
sin 2η =

∫ ∞

−∞

[H(x,s) − 〈sin(2η)〉]2

√
2πx

exp

(
− s2

2x

)
ds.

(49b)

Although the integrals in Eq. (49) must, in general, be
computed numerically, they can be evaluated asymptotically
at locations deep into the medium. When La 
 x 
 Lfluc,
rescaling the integration variable as s = √

xs ′, we see that

H(x,
√

xs ′) = tanh

(
2τ (a

√
xs ′ + bx) + ln

|d+|
|d−|

)
∼ sgn s ′,

(50)

while the Gaussian integration factor becomes independent of
x. We can therefore evaluate the La 
 x 
 Lfluc asymptotics
of both the mean and variance by the asymptotic replacement
(50) and find that 〈sin 2η(x)〉 ∼ 0 and σ 2

sin 2η(x) ∼ 1 for La 

x 
 Lfluc.

On the other hand, if x � Lb,Lfluc, we have, under the same
rescaling,

H(x,
√

xs ′) = tanh

(
2τ (a

√
xs ′ + bx)+ ln

|d+|
|d−|

)
∼ − sgn b,

(51)

and so we find that 〈sin 2η〉 ∼ −sgn b and σ 2
sin 2η ∼ 0 for

large x.
To recapitulate, we have that, for large x,

〈sin 2η〉 ∼
{

−sgn b, x � Lb,Lfluc

0, La 
 x 
 Lfluc,
(52a)

σ 2
sin 2η ∼

{
0, x � Lb,Lfluc

1, La 
 x 
 Lfluc.
(52b)

Again, we must recall from Eqs. (30)–(32) that the case x �
Lb,Lfluc corresponds to only nonzero average initial population
density difference b = 〈α(x)〉, and the case La 
 x 
 Lfluc

also contains the case b = 0. We therefore see that all solitons
with nonzero bias b = 〈α(x)〉 will, with probability one, col-
lapse into a permanent circular polarization. When b = 0, the
large-x results for the mean and variance of sin 2η in Eqs. (52)
show that 〈[sin 2η(x)]2〉 = σ 2

sin 2η(x) + 〈sin η(x)〉2 → 1, which
along with 〈sin 2η〉 → 0 and the inequality | sin 2η(x)|2 � 1,
implies that sin 2η(x) must converge at large x to a random
variable concentrated at ±1, with equal weight. In other words,
for large x, the light polarization becomes one of the two
circular polarizations with equal probability.

c. Probability distribution of angle of ellipticity. The large-x
asymptotic behavior of the ellipticity angle η, described at the
end of the previous section, can also be seen from developing
the exact formula for the cumulative distribution function
Fη(s; x) of η, which can be computed from the expression
for η in Eq. (23b) via a formula analogous to Eq. (39). In this

way, we find

Fη(s; x) = Prob

{
W (x) � 1

2aτ

(
tanh−1(sin 2s)

− 2τbx − ln
|d+|
|d−|

)}
. (53)

Since W (x) is normally distributed with mean 0 and variance
x, we compute

Fη(s; x) = 1

2

{
1 − χ

[
x,

1

2aτ

(
tanh−1(sin 2s)

− 2τbx − ln
|d+|
|d−|

)]}
, (54)

where χ (x,u) = erf(u/
√

2x), with the function erf(·) defined
in Eq. (43). After differentiating Eq. (54) with respect to the
parameter s, we derive the probability density function

pη(s; x)

= 1√
2πxa|τ | cos 2s

× exp

{
− [tanh−1(sin 2s) − 2τbx − ln |d+|/|d−|]2

8a2τ 2x

}
.

(55)

Note that Eqs. (54) and (55) are only valid for −π/4 � s �
π/4, the range in which the ellipticity angle η is defined.
Sample plots of the probability density function pη(s; x) for
both vanishing and nonvanishing bias b = 〈α(x)〉 are displayed
in Fig. 5.
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FIG. 5. Probability density function pη(s; x), with β = 1, γ = 1,
ε = 0.1, d+ = i, d− = 3i/4, and a = 1. Top: no bias, b = 0. Bottom:
nonzero bias, b = 0.3.
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Very far into the active medium (i.e., for large values of x),
the distribution function pη(s; x) in Eq. (55) clearly attains
very small values at all s away from s = ±π/4, while at
s = ±π/4, it exhibits singularities. Indeed, as remarked in
Sec. III B 2 b, the large-x asymptotics of the mean and variance
of the angle of ellipticity η(x) imply that its probability
distribution must concentrate at one or both of the values
s = ±π/4 corresponding to the two circular polarizations:

pη(s; x) ∼

⎧⎪⎨
⎪⎩

1
2

[
δ
(
s − π

4

) + δ
(
s + π

4

)]
, b = 0

δ
(
s + π

4

)
, b > 0

δ
(
s − π

4

)
, b < 0,

(56)

where δ(·) is the Dirac δ function.
The discussion in the preceding paragraph shows that,

for very large distances x into the medium, the soliton will
mostly be confined to one of the two circular polarizations.
For nonzero average initial population density difference,
〈α(x)〉 = b �= 0, this polarization is fixed by the sign of
〈α(x)〉 = b and, with probability one, eventually stops switch-
ing. For 〈α(x)〉 = b = 0, at large distances into the medium,
the soliton stays in one of the two circular polarizations for
most of the time, switching intermittently between them. The
dynamics of the switching will be discussed in Sec. IV.

IV. DYNAMICS OF POLARIZATION SWITCHING

Having developed explicit formulas for the soliton statistics
as functions of depth into the optical medium when the initial
population difference α(x) is random, we now provide a
brief quantitative description of the dynamics of polarization
switching. We begin in Sec. IV A by identifying some
key length scales to describe the essential features of the
polarization dynamics. Then, in Sec. IV B, we present some
analytical results for the polarization switching dynamics in
the Wiener-process approximation.

A. Length scales of polarization-switching dynamics

Because the asymptotic states of light pulses interacting
with a �-configuration medium are given by the two circular
polarizations, crossing the linear polarization represents a key
reference point on the pulse trajectories. In particular, the key
elementary stages of the polarization switching can be cast
in terms of this crossing: The pulse will generally evolve
from a linear (or elliptical) polarization to a nearly circular
polarization, and then possibly eventually return to a linear
polarization, from which it could return to its previous or the
opposite circular polarization. The characteristic length scales
corresponding to the transitions between a linear and circular
polarization and the successive returns to a linear polarization
need not be the same, because the pulse may reside near a
circular polarization for long distances before returning to a
linear polarization. Moreover, for polarization switching in
the presence of a nonzero bias, b = 〈α(x)〉 �= 0, a pulse will
eventually remain in one circular polarization forever, and so it
is important to introduce a characteristic distance after which
there is no more switching.

In view of the discussion in the previous paragraph, we
can identify three distinct lengths of interest associated with
the light-pulse polarization-switching process: the distance

between successive switches, the length scale over which
the switching process manifests itself when it does occur,
and the distance into the medium over which switching
continues. One can distinguish these length scales more
precisely by defining the following random distances: the
switching transition distance Xtra over which the light-pulse
polarization evolves from a linear state (η = 0) to a nearly
circular-polarization state of either orientation (|η| = π/4 −
ηc), the interswitch distance Xint over which the light-pulse
polarization evolves from a linear state (η = 0) to a nearly
circularly polarized state (|η| > π/4 − ηc for some fixed ηc >

0) of either orientation and back to a linear state (η = 0), and
the switching-region depth Xdep beyond which the light-pulse
polarization remains forever in one of the circularly polarized
states |η| > π/4 − ηc for all greater distances. As noted above,
the interswitch distance Xint is not necessarily the same order
of magnitude of the switching transition distance Xtra because
Xint also includes the distance over which the soliton remains in
a circular polarization before returning to a linearly polarized
state.

B. Polarization dynamics in Wiener-process approximation

From the equation (23b) describing the spatial dependence
of the ellipticity angle η on the position x along the medium
sample, one can see that the distances Xtra, Xint, and Xdep

depend solely on the level-crossing properties of the Wiener
process 2τA(x) + ln(|d+|/|d−|). In particular, computing Xtra,
Xint, and Xdep is equivalent to finding the positions along
the medium sample for which this process first reaches the
absolute value tanh−1[cos(2ηc)] after having passed through
the origin, first returns to the origin after such an excursion,
and remains further from the origin than this absolute value
for all subsequent x. We consider separately the case in which
the initial population density difference α(x) in the medium
has no bias [b = 〈α(x)〉 = 0] and in which it does have bias
[b = 〈α(x)〉 �= 0].

1. Case of no medium bias

When the initial population-density bias vanishes, Eq. (52)
implies that the polarization observed at any given position
deep into the medium is likely to be circular, with probability
1/2 for each orientation. From a dynamical perspective, in fact
the polarization switches infinitely often, arbitrarily far into
the medium, with probability one, because the Wiener process
is recurrent in one dimension. Consequently Xdep = ∞ with
probability one. The polarization does indeed reside over great
distances within one or the other circular-polarization state,
punctuated occasionally (but persistently) by switches (over
relatively short distances) into the opposite polarization.

Finding the statistics of the distances Xtra and Xint is
equivalent to finding the corresponding distance statistics
for the Wiener process 2τaW (x) without drift. Therefore,
we can apply the well-known first-passage-time formulas
(see, for example, Sec. 7.3 in Ref. [60] or Sec. 2.8 in
Ref. [61]), including their convolution computed via Laplace
transforms, as described in Appendix B, to obtain the following
expressions for the probability density function pXtra (x) for the
transition switching distance Xtra, and the probability density
function pXint (x) for the interswitch distance Xint, using the
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FIG. 6. Distributions pXtra (x) (solid line) and pXint (x) (dashed
line) for a medium with no bias, b = 〈α(x)〉 = 0, computed using
Eqs. (57) with Ltra = 4.53. Note the faster decay of the distribution
pXtra (x). Inset: Distributions pXtra (x) (solid line) and pXfluc (x) (dashed
line) for a medium with strong bias, computed using Eqs. (63) and
(66), respectively, with a = 1, b = −0.5, and Ltra = 4.26.

definitions in Sec. IV A:

pXtra (x) =
√

2Ltra

πx3

∞∑
n=−∞

(4n + 1) exp

[
−(4n + 1)2 Ltra

2x

]
,

(57a)

pXint (x) =
√

2Ltra

πx3

{ ∞∑
n=0

(4n + 2) exp

[
−(4n + 2)2 Ltra

2x

]

−
∞∑

n=1

4n exp

[
−16n2 Ltra

2x

]}
, (57b)

where

Ltra = Lint =
[

1

2a|τ | tanh−1[cos(2ηc)]

]2

(58)

set the corresponding switching length scales [cf. the distance
La in Eq. (31)]. These two distributions are depicted in Fig. 6.

Note that the interswitch length and transition switching
length appearing in the probability density functions are the
same, but the probability distributions are quite different. In
particular, the transition switching distance has finite mean and
variance:

〈Xtra〉 = Ltra, σ 2
Xtra

= 2
3L2

tra. (59)

On the other hand, the probability density function for the
interswitch distance Xint decays so slowly that Xint has
an infinite mean, even though we have identified a finite
interswitch length scale (58). The meaning of this is that,
while many polarization-switching events do take place with
interswitch distances comparable to Lint, on occasion a much
longer distance is observed between polarization switches, and
these rare events still have a sufficiently large probability to
imply an infinite mean interswitch distance. The transition
switching distances are, however, much more likely to be on
the order of Ltra, as can be seen from Eq. (59). That is, the
polarization will fairly often tarry in a circular-polarization
state for a distance much larger than Lint, but it will usually
move out of the linear-polarization state over the length scale
Ltra, as shown in Fig. 7. This is naturally reflected in the
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FIG. 7. (Color online) Polarization state in a medium without
bias under the Wiener-process approximation (a = 1.00, b = 0). The
length scales for the transitions and distances between switches are
here Ltra = Lint = 4.53, but note that the distance between switches
has higher probability to take values large compared to this typical
length scale.

polarization statistics developed in Eq. (52), which indicates
that the polarization will, deep in the medium, tend to be in
one of the two circular-polarization states.

Another quantifiable statistic for the case of no bias in
the initial population density is the fraction � of the length
over which the polarization η takes a certain sign. One can
show (see [62] or Sec. 1.4.4 in Ref. [63]) that its probability
distribution is given by the arc sine law, which has the feature
of having a rather large probability to take values near φ = 0
or φ = 1, meaning that, even though the medium is unbiased,
an individual realization is rather likely to spend most of its
observed time in one or the other circular-polarization state:

Prob(� < φ) = 2

π
sin−1

√
φ =

∫ φ

0
p�(φ′)dφ′,

p�(φ) = 1

π
√

φ(1 − φ)
.

2. Case of nonzero medium bias

If the initial population of the atomic ground levels in the
medium does have a bias [b = 〈α(x)〉 �= 0], then polarization
switches due to random fluctuations can occur for a while,
but the bias in the population density of the optical medium
will with probability one eventually collapse forever into the
preferred circular-polarization state associated with the sign
of the initial population density bias b = 〈α(x)〉 [48]. More
precisely, if the bias b has opposite sign to that of the ellipticity
angle,

η0 = 1

2
sin−1

[
tanh

(
ln

|d+|
|d−|

)]
, (60)

of the pulse upon entering the medium, the polarization
of the soliton will proceed through the following stages:
achieving a linear polarization for the first time after a distance
Xlin,0, moving into a favored circular-polarization state over
a subsequent distance Xtra, and never leaving this ultimate
circular-polarization state after a subsequent distance Xfluc.

The polarization-switching depth Xdep would then be
the sum of the lengths corresponding to these stages
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Xdep = Xlin,0 + Xtra + Xfluc. The interswitch distance Xint is
not well defined for the case of a medium with bias because
eventually the soliton will stop switching. If the bias were of
the same sign as the initial polarization state, then Xlin,0 would
be meaningless and should just be treated as 0 in what follows,
and the probability distribution for Xtra would be changed only
by replacing the length scale for Ltra in Eq. (64) below by

Ltra = 1

2|τb|
[

tanh−1[cos(2ηc)] −
∣∣∣∣ ln

|d+|
|d−|

∣∣∣∣
]
.

First we develop formulas for the statistics of these lengths,
then we discuss the qualitative differences between soliton
polarization evolution in a medium with weak bias and with
strong bias. The probability density function pXlin,0 (x) for the
distance Xlin,0 until a linear polarization η = 0 is first reached
can be expressed through another first passage time formula
for Brownian motion with drift (see Sec. 7.5 in Ref. [60]),

pXlin,0 (x) = |b|Llin,0

a
√

2πx3
exp

[
−b2(Llin,0 − x)2

2a2x

]
,

where

Llin,0 = 1

2|τb| ln
|d+|
|d−| (61)

and

〈Xlin,0〉 = Llin,0, (62a)

σ 2
Xlin,0

= a2Llin,0

b2
. (62b)

After reaching the linear-polarization state, the polarization
will tend to move toward its favored circular-polarization state,
reaching it after a further distance Xtra which has probability
density function (see Sec. 7.5.5 in Ref. [60])

pXtra (x) = |b|Ltra

a
√

2πx3
exp

[
−b2(Ltra − x)2

2a2x

]
, (63)

where

Ltra = 1

2|τb| tanh−1[cos(2ηc)] (64)

and

〈Xtra〉 = Ltra, (65a)

σ 2
Xtra

= a2Ltra

b2
. (65b)

Once the polarization achieves a value |η| > π/4 − ηc

corresponding to a circular polarization with the same sign as
b, it will continue to revisit the linear-polarization state η = 0
over a further distance Xfluc, for which a last passage time
formula (see Sec. IV.5 in Ref. [63]) shows that it is distributed
as LflucG

2, where G is a standard Gaussian random variable
with mean zero and unit variance, and Lfluc ≡ a2/b2, as defined
in Eq. (32), sets the length scale over which switching behavior
continues. In other words, Xfluc is governed by a χ2 distribution

with one degree of freedom and has probability density [62]

pXfluc (x) =
√

Lfluc

2πx
exp

(
− x

Lfluc

)
(66)

and mean 〈Xfluc〉 = Lfluc. The distributions pXtra (x) in Eq. (63)
and pXfluc (x) are depicted in the inset of Fig. 6.

The qualitative character of the soliton trajectory will
depend on the ratio

〈Xfluc〉
〈Xtra〉 , (67)

where, from (66), 〈Xfluc〉 = Lfluc = a2/b2, and 〈Xtra〉 = Ltra is
given in Eq. (65a). The numerator describes the distance over
which the polarization continues to fluctuate between the two
circular polarizations, whereas the denominator characterizes
a single transition from linear to circular polarization. From
Eqs. (64) and (65a), we see that the numerator is a more
sensitive function of the bias than the denominator, in partic-
ular diverging faster as b → 0. We consequently divide our
subsequent discussion into two cases: the strong-bias regime
in which 〈Xtra〉 � 〈Xfluc〉, and the weak-bias regime in which
〈Xtra〉 
 〈Xfluc〉. We always assume 〈Xlin,0〉 � 〈Xtra〉 in what
follows, which can be ensured by simply taking a sufficiently
small choice of ηc in the definition of circular polarization at
the beginning of Sec. IV A.
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FIG. 8. (Color online) Realizations of the soliton polarization
for a medium with strong bias (a = 0.1, b = −0.5, Llin,0 = 0.64,
Ltra = 4.26, Lfluc = 0.04) on the top and a medium with not-so-strong
bias (a = 0.3, b = −0.5, Llin,0 = 0.64, Ltra = 4.26, Lfluc = 0.36) on
the bottom.
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a. Strong-bias regime. When 〈Xtra〉 � 〈Xfluc〉, then the bias
dominates the dynamics to the extent that the key distances
characterizing the polarization dynamics are well-described by
deterministic expressions. We will for the most part consider
the typical case in this regime, in which 〈Xlin,0〉 � 〈Xfluc〉 as
well, and comment on what happens when this is not true later.
Proceeding under the assumption that 〈Xlin,0〉 � 〈Xfluc〉, the
standard deviation of the distances Xlin,0 and Xtra is compa-
rable to or smaller than their mean, so that these distances
are indeed comparable to the deterministic length scales Llin,0

and Ltra with high probability. Moreover, the distance Xfluc is
negligible relative to these other distances. Consequently, the
switching region depth is approximately deterministic with
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FIG. 9. (Color online) Realizations of soliton polarization for a
medium with bias becoming progressively weaker from the top to
bottom panel. Top: a = 0.5, b = −0.5, Llin,0 = 0.64, Ltra = 4.26,
Lfluc = 0.04. Middle: a = 1.0, b = −0.5, Llin,0 = 0.64, Ltra = 4.26,
Lfluc = 4.00. Bottom: a = 3.0, b = −0.5, Llin,0 = 0.64, Ltra = 4.26,
Lfluc = 36.0.

Xdep ∼ Llin,0 + Ltra. This means that, with high probability,
the soliton experiences exactly one polarization switch (as
it moves into the favored polarization state) and does so
in an approximately deterministic manner after a distance
Llin,0 + Ltra, as shown in the top panel of Fig. 8. When the ratio
in Eq. (67) becomes of order unity, the polarization switch
becomes a bit more random (bottom panel of Fig. 8), but
usually multiple switches are not seen.

The case in which 〈Xlin,0〉 � 〈Xfluc〉 is only a minor
modification of the above description, in that now Xlin,0

behaves randomly but plays a negligible role in the dynamics
since necessarily 〈Xlin,0〉 
 〈Xtra〉, given the definition of the
strong-bias regime.

b. Weak-bias regime. For weak bias, when 〈Xfluc〉 � 〈Xtra〉,
the distances Xlin,0 and Xtra become highly variable. This is
to be expected since the limit of no bias b = 0 involves a
qualitatively different scenario described in Sec. IV B1. The
weak-bias regime involves features of both the no-bias and
strong-bias regimes. On the one hand, the polarization will
eventually collapse into a permanent circular polarization with
the same sign as the bias b. However, for the case of weak bias
we expect several or even many visits to the linear-polarization
state before the ultimate collapse into a circular-polarization
state. Indeed, in the limit of no bias, the linear-polarization
state is visited infinitely often, as discussed in Sec. IV B1.

The dynamics are in fact dominated by the extended
period of random polarization switching since the initial
approach toward the favored circular-polarization state is short
by comparison (〈Xfluc〉 � 〈Xlin,0〉,〈Xtra〉), although as noted
above this initial approach has a highly random character
because the standard deviations of Xlin,0 and Xtra are large
compared to their means. The polarization-switching depth
is therefore determined predominantly by the length scale
Xdep ∼ Xfluc which has statistics described in Eq. (66).
Figure 9 illustrates how, as the bias is weakened (proceeding
downward), the pulse polarization switches randomly over an
extended random distance Xfluc before finally collapsing into
the favored polarization state.

V. CONCLUSIONS

We have analyzed the resonant interaction of single-soliton
light pulses with a �-configuration degenerate optical medium
in the idealized integrable Maxwell-Bloch approximation.
This is an example of a phenomenon for which integra-
bility and structural disorder produce nontrivial stochastic
nonlinear dynamics, yet whose statistics can be analyzed
in closed form. We have found explicit dependence of the
soliton polarization on the average difference between the
initial populations of the degenerate lower sublevels along
the medium sample, with infrequent but persistent random
switching between the two circular polarizations when this
difference vanishes, and almost certain asymptotic approach
to one of the two circular polarizations determined by this
average difference when it does not vanish. Moreover, we have
provided a precise quantification of the statistical dynamics of
polarization switching, including probability distributions for
the key distances describing transitions.

At least one question still remains about these results, which
is whether they are robust under the random fluctuations of
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the medium polarization induced by finite-temperature effects.
Our preliminary numerical results confirm that they should
be robust. These results, and also an analysis based on the
full evolution equations for the spectral data corresponding to
random, nonvanishing initial medium polarization variables,
as presented in Ref. [48], will be relegated to future work.
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APPENDIX A: CORRELATION LENGTH
IN OPTICAL MEDIUM

In this Appendix, we give a mathematically precise de-
scription of the correlation length, which is assumed to be
effectively zero in the white-noise approximation (24) in
Sec. III A. In general, without the white-noise assumption
(24b), the correlation function of the population density
difference α(x) in the medium is defined as

Rα(x) = 〈[α(x ′) − b][α(x ′ + x) − b]〉, (A1)

where we use the statistical spatial homogeneity of α(x). We
further assume

0 <

∫ ∞

0
Rα(x)dx < ∞, (A2)

which means that the correlations are sufficiently short ranged.
Using Eqs. (A1) and (A2), the correlation length Lc is

defined as

Lc = 1

Rα(0)

∫ ∞

0
Rα(x)dx = 1

σ 2
α

∫ ∞

0
Rα(x)dx. (A3)

Physically, Lc is the shortest length scale over which the
initial population density difference α(x) exhibits significant
variations.

Under the condition (A2) and for x � Lc, the functional
central limit theorem for random fields [58] implies that the
function A(x) = ∫ x

0 α(x)dx, defined in Eq. (17), is statistically
equivalent at large x to the random process aW (x) + bx, where
b = 〈α(x)〉 is defined in Eq. (24a),

a =
(

2
∫ ∞

0
Rα(x)dx

)1/2

, (A4)

and W (x) is the standard Wiener process.

APPENDIX B: PROBABILITY DISTRIBUTIONS FOR
TRANSITION SWITCHING AND INTERSWITCH

DISTANCE IN ABSENCE OF MEDIUM BIAS

From the definition of Xtra, the formula (23b) for the evolu-
tion of the ellipticity angle, and the white-noise approximation
for the case of no medium bias [A(x) = aW (x)], we deduce

Xtra = min
x�x0

{x − x0 : |η(x)| � π/4 − ηc} = min
x�x0

{
x − x0 :

∣∣∣∣W (x) + 1

2aτ
ln

|d+|
|d−|

∣∣∣∣ � 1

2a|τ | tanh−1(cos 2ηc)

}

= min
x�x0

{
x � x0 :

∣∣∣∣W (x) + 1

2aτ
ln

|d+|
|d−|

∣∣∣∣ �
√

Ltra

}
,

where in the above, x0 is a position where η(x0) = 0 [equiv-
alently W (x0) = −(1/2aτ ) ln(|d+|/|d−|)]. We see then that
Xtra is just the distance of the first position x after x0 at
which the Wiener process W (x) escapes a given interval,
given an initial position within that interval at x0, also known
as a first exit time. The formula (57) then follows directly
from the first exit time formula (2.8.24) in Ref. [61] and
the translational invariance of the statistics of Wiener process
increments.

The random variable Xint has a two-step definition, which
in mathematical terms can be translated as follows:

Xint = Xtra + Xret, (B1)

where the “return distance” is defined as the distance over
which the soliton returns from a nearly-circular-polarization
state of either orientation (|η| = π/4 − ηc) to a linear

state (η = 0):

Xret = min
x�x1

{x − x1 : η(x) = 0}

= min
x�x1

{
x − x1 : W (x) = − 1

2aτ
ln

|d+|
|d−|

}
,

with x1 being a position where η(x1) = ±(π/4 − ηc) [equiva-
lently W (x1) = −(1/2aτ ) ln(|d+|/|d−|) ± √

Ltra]. Because of
the statistical reflection symmetry of the Wiener process, either
sign of the ± for the conditions at x1 will give the same result,
which is the first position x after x1 at which the Wiener
process W (x) achieves a certain value, given that it was situated
at a different value at x1. This is known as a first passage
time, and we can apply formula (2.8.5) in Ref. [61], again
using statistical translation invariance, to obtain the probability
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density function for Xret:

pXret (x) =
√

Ltra

2πx3
e−Ltra/2x for x � 0.

Now, by the strong Markov property of the Wiener process,
the summands Xtra and Xret in Eq. (B1) are independent
random variables, so the probability density of Xint is the
convolution of the probability densities of the summands.
Equivalently, the moment generating function

MXint (s) ≡ 〈esXint〉 =
∫ ∞

0
esxpXint (x)dx

is the product of the moment generating functions of the
summands [60]. These moment generating functions can be
computed through the Laplace transform identity:∫ ∞

0
est b√

2πt3
e−b2/tdt = e−b

√
2s for b > 0, (B2)

which can be derived either by calculus tricks [64] or, more
elegantly, by computing the probability density function for

the first passage time of Brownian motion by the reflection
principle (Sec. 2.6 in Ref. [61]) and its moment generating
function by the optional stopping theorem (Sec. 2.8 in
Ref. [61]) and connecting these results. Applying this Laplace
transform identity, we obtain:

MXint (s) = MXtra (s)MXret (s)

= 2
∞∑

n=0

e−(4n+1)
√

Ltra
√

2se−√
Ltra

√
2s

−2
−∞∑

n=−1

e(4n+1)
√

Ltra
√

2se−√
Ltra

√
2s

= 2
∞∑

n=0

e−(4n+2)
√

Ltra
√

2s − 2
−∞∑

n=−1

e4n
√

Ltra
√

2s .

But then we can infer the probability density (57b) for Xint by
again applying the Laplace transform identity (B2) in reverse
to each summand.
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