
PHYSICAL REVIEW A 85, 043832 (2012)

Strongly correlated photons generated by coupling a three- or four-level system to a waveguide
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We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields
in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom.
Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the
atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed
multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling).
As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed
system. We calculate the second-order correlation function of the transmitted field and observe bunching and
antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce
photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information
and are important for large-alphabet quantum communication.
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I. INTRODUCTION

Strong coupling between light and matter has been
demonstrated both in classical cavity quantum electrodynam-
ics (QED) systems [1–4] and in more recent circuit-QED
experiments [5–8]. This enables the generation of strong
nonlinear photon-photon interactions at the single-photon
level, which is of great interest for the observation of
quantum nonlinear optical phenomena [9–12], the control
of light quanta in quantum information protocols such as
quantum networking [13,14], as well as the study of strongly
correlated quantum many-body systems using light [15–24].
For example, both electromagnetically induced transparency
(EIT) [11] and photon blockade [9,25,26] have been observed
in recent experiments with trapped atoms in an optical cavity
[27–29] and with superconducting qubits in a microwave
resonator [30,31]. Coherent transfer of quantum states between
light and stationary qubits has been demonstrated in both
cavity-QED [32] and circuit-QED [33,34] systems. In a very
recent experiment, coherent transfer of photons between three
resonators has been realized in a superconducting circuit [35].

Recently, an alternative waveguide-based QED system
[36–48] has emerged as a promising candidate for achiev-
ing strong coupling between photons and atoms, motivated
by tremendous experimental progress [8,12,30,49–53]. The
experimental systems include a metallic nanowire coupled
to a quantum dot [12], cold atoms trapped inside a hollow
fiber [49], a diamond nanowire coupled to a quantum dot [50],
a 1D superconducting transmission line coupled to a qubit
[8,30], and a GaAs photonic nanowire with embedded InAs
quantum dots [51,52]. In particular, it has been experimentally
demonstrated that more than 90% of the spontaneously emitted
light has been guided into the desired waveguide mode [52],
deep into the strong-coupling1 regime. Theoretically, single-
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1Here, “strong coupling” means that the decay rate of the excited

atom to the waveguide modes dominates over the decay rate to all
other channels. It is similar but not identical to the definition of

photon switches [39,42,45,54] have been proposed based
on a waveguide QED scheme. An interesting photon-atom
bound state and radiation trapping have been predicted based
on numerical calculations [41,55]. It has also been shown
theoretically that EIT [44,46] and photon blockade [46] emerge
in a 1D waveguide system.

In this work, we consider using a waveguide-QED system
to generate strongly correlated photons through coupling
to a three-level or four-level system (3LS or 4LS). Such
strongly correlated photons can be used to study many-
body physics [19] as well as to implement large-alphabet
quantum communication protocols [56,57]. Specifically, to
probe the strong photon-photon correlation mediated by the
3LS or 4LS, we study photonic transport, number statistics,
second-order correlation, and spectral entanglement of the
correlated photon states. Following Refs. [43,44,46,58,59],
we explicitly construct the scattering eigenstates by imposing
an open boundary condition and setting the incident state to
be a free plane wave. In the multiphoton solutions, photon-
photon bound-states emerge, which have significant impact
on the physical quantities described above. While single-
photon transport exhibits EIT, multiphoton transport shows
photon-induced tunneling and photon blockade. A highly
entangled photon pair in frequency is obtained by scattering a
two-photon state off the 4LS. Finally, we study the scattering of
a coherent state wavepacket, whose number statistics become
non-Poissonian. Strong bunching and antibunching appear in
the second-order correlation function.

This paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian, identify relevant experimental sys-
tems, and solve for the scattering eigenstates for one-, two-,
and three-photon states. With the scattering eigenstates, the
asymptotic output states from scattering Fock states off
the 3LS or 4LS are obtained in Sec. III. In Sec. IV, we study the
photonic transport of Fock states and analyze the effect caused

“strong coupling” in the cavity case, which requires the vacuum Rabi
frequency being much larger than the atomic spontaneous decay rate
and the cavity field decay rate [1].
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FIG. 1. (Color online) Sketch of the atom-waveguide system:
(a) a �-type three-level system, (b) an N -type four-level system,
(c) photons (yellow) in a 1D waveguide coupled to an atom (blue),
which can be either the 3LS in (a) or the 4LS in (b). The transitions
|1〉 ↔ |2〉 and |3〉 ↔ |4〉 are coupled to the waveguide modes with
strength V . The transition |2〉 ↔ |3〉 is driven by a semiclassical
control field with Rabi frequency � and detuning �. Here, ωc is the
frequency of the control field.

by the photon-photon bound-states. In Sec. V, we calculate the
spectral entanglement for the two-photon case and demonstrate
that highly entangled photon pairs are obtained. In Sec. VI,
the signatures of photon correlation are revealed in the number
statistics and second-order correlation function after scattering
a coherent state wavepacket. Finally, we conclude in Sec. VII.
Some results related to photon blockade in the 4LS were
reported previously in Ref. [46].

II. SYSTEM, HAMILTONIAN, AND SCATTERING
EIGENSTATES

We consider the scattering problem of photons in a one-
dimensional waveguide side-coupled to a single atom, as
shown in Fig. 1. By “atom” we mean a local emitter with
discrete levels, which could be formed from natural atoms,
quantum dots, trapped ions, or superconducting qubits.

Here, two types of local emitter are considered: a driven
�-type 3LS and an N -type 4LS. The single-photon dynamics
for the 3LS was previously studied in Ref. [42] and a two-
photon solution was found in Ref. [44] in the limit of weak
control field. Here, without assuming a weak control field,
we solve the scattering problem for both the 3LS and 4LS
in the general case. We mainly focus on the photon-photon
correlation induced by the atom: physically, the interesting
physics originates from the interplay of quantum interference
in the 1D waveguide and interaction effects induced by the
atom. Such interaction can be understood by treating the atom
as a bosonic site and the ground and excited states as zero and
one boson states, respectively. Unphysical multiple occupation
is removed by adding an infinitely large repulsive on-site
interaction term [41], which is the underlying mechanism
responsible for the formation of photon-photon bound states
[37,38,43,44,46]. The proposed system could be realized
either in optical systems [12,51,52,60,61] or in microwave
superconducting (SC) circuits [8,30,62–64]. For the optical
systems, the driven 3LS and 4LS have been studied in both

the trapped ion [65] and cavity systems [28,29,66,67]. For the
microwave SC systems, the 3LS and 4LS have already been
realized using SC qubits [30,62,64,68–70].

We start with the Hamiltonian in the rotating wave ap-
proximation, describing a continuum photonic field in a 1D
waveguide coupled to a single atom [37,42–44,46]

H = Hwg + Hatom + Hc,
(1)

Hwg =
∫

dx(−i)h̄c

[
a
†
R(x)

d

dx
aR(x) − a

†
L(x)

d

dx
aL(x)

]
,

where a
†
R,L(x) is the creation operator for a right- or left-going

photon at position x and c is the group velocity of photons.
For the driven �-type 3LS,

H
(�)
atom =

∑
j=2,3

h̄

(
εj − i�j

2

)
|j 〉〈j | + h̄�

2
(|2〉〈3| + H.c.),

(2)
H (�)

c =
∫

dxh̄V δ(x){[a†
R(x) + a

†
L(x)]|1〉〈2| + H.c.}.

For the N -type 4LS,

H
(N)
atom =

4∑
j=2

h̄
(
εj − i�j

2

)
|j 〉〈j | + h̄�

2
(|2〉〈3| + H.c.),

H (N)
c =

∫
dxh̄V δ(x){[a†

R(x) + a
†
L(x)](|1〉〈2| + |3〉〈4|)

+ H.c.}. (3)

Here, the energy reference is the energy of the ground state |1〉,
and ε2 = ω21, ε3 = ε2 − �, and ε4 = ε3 + ω43, where ω21 and
ω43 are the |1〉 ↔ |2〉, and |3〉 ↔ |4〉 transition frequencies,
respectively. In the spirit of the quantum jump picture [71],
we include an imaginary term in the energy level to model
the spontaneous emission of the excited states at rate �j to
modes other than the waveguide continuum. The spontaneous
emission rate to the 1D waveguide continuum is given by � =
2V 2/c (from Fermi’s golden rule). Notice that the use of the
rotating wave approximation is justified by the fact that h̄� �
h̄ω21, which is the case in current experiments [8,30,51–53].

It is convenient to transform the right and left modes to even
and odd modes: a

†
e(x) = [a†

R(x) + a
†
L(−x)]/

√
2 and a

†
o(x) =

[a†
R(x) − a

†
L(−x)]/

√
2. This decomposes the Hamiltonian into

two decoupled modes. The even mode couples to the atom and
the odd mode is free: H = He + Ho with

He =
∫

dx(−i)h̄ca†
e(x)

d

dx
ae(x) + Hatom + Hc, (4a)

Ho =
∫

dx(−i)h̄ca†
o(x)

d

dx
ao(x). (4b)

The coupling Hamiltonian Hc is now

H (�)
c =

∫
dxh̄V δ(x){a†

e(x)|1〉〈2| + H.c.}, (5a)

H (N)
c =

∫
dxh̄V δ(x){a†

e(x)(|1〉〈2| + |3〉〈4|) + H.c.}, (5b)

where V = √
2V . Hereafter, we will concentrate on solv-

ing for the scattering eigenstates in the even space. Be-
cause [H, n̂e + n̂atom] = [H, n̂o] = 0 for the number operators
n̂e/o ≡ ∫

dx â
†
e/o(x)âe/o(x) and the atomic excitation n̂atom, the

043832-2



STRONGLY CORRELATED PHOTONS GENERATED BY . . . PHYSICAL REVIEW A 85, 043832 (2012)

total number of excitations in both the even and odd spaces are
separately conserved. Therefore, a general n-excitation state
in the even space (n = ne + natom) is given by

∣∣	(�)
n

〉
e

=
[ ∫

dxn g(n)(x) â†
e(x1) · · · â†

e(xn)

+
∫

dxn−1
∑
j=2,3

f
(n)
j (x) S+

1j â†
e(x1) · · · â†

e(xn−1)

]
|∅,1〉,

(6a)
∣∣	(N)

n

〉
e

=
[ ∫

dxn g(n)(x) â†
e(x1) · · · â†

e(xn)

+
∫

dxn−1
∑
j=2,3

f
(n)
j (x) S+

1j â†
e(x1) · · · â†

e(xn−1)

+
∫

dxn−2f
(n)
4 (x) S+

14 â†
e(x1) · · · â†

e(xn−2)

]
|∅,1〉,

(6b)

where |∅,1〉 is the zero-photon state with the atom in the ground
state |1〉 and S+

ij = |j 〉〈i|.
The scattering eigenstates are constructed by imposing

the open boundary condition that g(n)(x) is a free-bosonic
plane wave in the incident region [43,46,58]. That is, for
x1, · · · ,xn < 0,

g(n)(x) = 1

n!

∑
Q

hk1 (xQ1 ) · · · hkn
(xQn

), hk(x) = eikx

√
2π

, (7)

where Q = (Q1, · · · ,Qn) is a permutation of (1, · · · ,n).
Solving the Schrödinger equation with this open boundary
condition, we find the scattering eigenstates for the systems
we consider here (for a detailed derivation for a two-level
system, see the Appendix of Ref. [43]). Below, we present
the one-, two-, and three-photon scattering eigenstates, which
have the same form for the 3LS and 4LS cases. In the even
space, the one-photon scattering eigenstate with eigenenergy
E = h̄ck is given by

g(1)(x) ≡ gk(x) = hk(x)[θ (−x) + t kθ (x)], (8a)

tk = [ck − ε2 + � + i�3/2][ck − ε2 + (i�2 − i�)/2] − �2/4

[ck − ε2 + � + i�3/2][ck − ε2 + (i�2 + i�)/2] − �2/4
, (8b)

where θ (x) is the step function. The one-photon scattering
eigenstate is exactly the same for both the 3LS and 4LS because
it takes at least two quanta to excite level |4〉: for single-photon
processes, the 3LS and 4LS cases are equivalent.

For two-photon scattering, we start with a free plane wave
in the region x1,x2 < 0 and use the Schrödinger equation to
find the wave function first in the region x1 < 0 < x2 and
then for 0 < x1,x2 [43]. We arrive at the following two-photon
scattering eigenstate with eigenenergy E = h̄c(k1 + k2):

g(2)(x1,x2) = 1

2!

[ ∑
Q

gk1

(
xQ1

)
gk2

(
xQ2

)

+
∑
PQ

B
(2)
kP1 ,kP2

(
xQ1 ,xQ2

)
θ
(
xQ1

)]
, (9a)

B
(2)
kP1 ,kP2

(
xQ1 ,xQ2

) = eiExQ2

∑
j=1,2

Cje
−γj |x2−x1|θ (xQ21 ),

(9b)

where P = (P1,P2) and Q = (Q1,Q2) are permutations of
(1,2), θ (xQij

) = θ (xQi
− xQj

), and B(2) is a two-photon
bound state—Re[γ1,2] > 0. Our solution applies for the
general case of arbitrary strength of the control field. Tak-
ing the weak control field limit for the 3LS case, we
checked that one recovers the two-photon solution found in
Ref. [44].

Following the same procedure, we obtain the three-
photon scattering eigenstate with eigenenergy E = h̄c(k1 +
k2 + k3):

g(3)(x1,x2,x3) = 1

3!

{∑
Q

gk1

(
xQ1

)
gk2

(
xQ2

)
gk3

(
xQ3

) +
∑
PQ

[
gkP1

(
xQ1

)
B

(2)
kP2 ,kP3

(
xQ2 ,xQ3

)
θ
(
xQ2

)

+B
(3)
kP1 ,kP2 ,kP3

(
xQ1 ,xQ2 ,xQ3

)
θ
(
xQ1

)]}
,

B
(3)
kP1 ,kP2 ,kP3

(
xQ1 ,xQ2 ,xQ3

) = ei[kP1 xQ2 +(kP2 +kP3 )xQ3 ]
[
D1 e−γ1|xQ3 −xQ1 | + D2 e−γ2|xQ3 −xQ1 |

+D3 e−γ1|xQ3 −xQ2 |−γ2|xQ2 −xQ1 | + D4 e−γ2|xQ3 −xQ2 |−γ1|xQ2 −xQ1 |]θ(
xQ32

)
θ
(
xQ21

)
, (10)

where B(3) is a three-photon bound state and P = (P1,P2,P3)
and Q = (Q1,Q2,Q3) are permutations of (1,2,3). The coef-
ficients C1,2 and D1,2,3,4 in the bound states depend on the

system parameters and have different functional forms for the
3LS and 4LS. Expressions for γ1,2, C1,2, and D1,2,3,4 are given
in Appendix A. Notice that the bound states here have more
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structure than in the two-level case [37,38,43]; for example,
the two-photon bound state has two characteristic binding
strengths instead of one. This is due to the internal atomic
structure: for the 3LS or 4LS, the photonic field couples to the
transitions from the ground state to both of the eigenstates in
the dressed state picture of levels |2〉 and |3〉, giving rise to
two binding strengths. Such bound states are a manifestation
of the photon-photon correlation induced by having two or
more photons interact with the same atom. For the 4LS case,
this leads to strikingly different multiphoton transport behavior
compared to the single-photon transport [46].

From the scattering eigenstates, we construct n-photon (n =
1 to 3) scattering matrices (S matrices) using the Lippmann-
Schwinger formalism [38,43,72]. The output states are then
obtained by applying the S matrices on the incident states [43].

III. OUTPUT STATES OF FOCK STATE SCATTERING

In this section, we present the output states from scattering
one-, two-, and three-photon number states off of a 3LS or
4LS. We assume that the incident state propagates to the right
and the atom is initially in the ground state. Specifically, we
consider incident states in the form of a wavepacket for two
reasons: (i) in practice, any state that contains a finite number
of photons is a wavepacket; (ii) as we will show, sending in
wavepackets with a finite width is crucial in order to observe
the bound-state effects in the measurements. The continuous-
mode photon-wavepacket creation operator is given by [73]

a
†
α, M =

∫
dk α(k) a

†
M (k), (11)

where M = R or L, a
†
M (k) = (1/

√
2π )

∫
dx eikxa

†
M (x), and

the amplitude α(k) satisfies the normalization condition∫
dk |α(k)|2 = 1. An incident right-going n-photon Fock state

is defined as

|nα〉R = (a†
α, R)n√
n!

|∅〉. (12)

With the n-photon S matrices S(n), we are able to find the
asymptotic output state long after the scattering (t → +∞)
[43]. Specifically, the single-photon output state is given by

|ψ (1)〉 =
∫

dkα(k)|φ(1)(k)〉, (13a)

|φ(1)(k)〉 = tk|k〉R + rk|k〉L, (13b)

|k〉R/L = a
†
R/L(k)|∅〉, (13c)

tk ≡ (tk + 1)/2, rk ≡ (tk − 1)/2. (13d)

The two-photon output state reads

|ψ (2)〉 =
∫

dk1dk2
1√
2
α(k1)α(k2)|φ(2)(k1,k2)〉, (14a)

|φ(2)(k1,k2)〉 =
∫

dx1dx2

[
1

2
tk1,k2 (x1,x2)a†

R(x1)a†
R(x2)

+ rtk1,k2 (x1, − x2)a†
R(x1)a†

L(x2)

+ 1

2
rk1,k2 (−x1, − x2)a†

L(x1)a†
L(x2)

]
|∅〉,

(14b)

where

tk1,k2 ≡ tk1 tk2hk1 (x1)hk2 (x2) + 1

4
B

(2)
k1,k2

(x1,x2)

+ k1 ↔ k2,

rtk1,k2 ≡ tk1rk2hk1 (x1)hk2 (x2) + 1

4
B

(2)
k1,k2

(x1,x2)

+ k1 ↔ k2,

rk1,k2 ≡ rk1rk2hk1 (x1)hk2 (x2) + 1

4
B

(2)
k1,k2

(x1,x2)

+ k1 ↔ k2,

B
(2)
k1,k2

(x1,x2) ≡ ei(k1+k2)x2
∑
j=1,2

Cje
−γj |x2−x1|θ (x21)

+ (x1 ↔ x2). (15)

In Eq. (14), the output state has three components tk1,k2 ,
rtk1,k2 (which is not a product), and rk1,k2 , corresponding to
two-photon transmission, one-photon transmitted, and one-
photon reflected, and two-photon reflection, respectively. The
first term in each of these functions is the plane-wave term.
The second term is the bound-state term associated with the
momentum-nonconserved (for individual photons) processes.
The three-photon output state takes a similar form and is shown
in Appendix B.

With the output states, we can study induced photon-photon
correlation by applying various measurements on them. We
present results for transport, spectral entanglement, number
statistics, and second-order correlation in the following three
sections. Throughout the paper, we choose incident Gaussian
wavepackets with the spectral amplitude

α(ω) = 1

(2πσ 2)1/4
exp

[
− (ω − ω0)2

4σ 2

]
, (16)

where σ is the width and ω0 is the central frequency. We
assume that level |3〉 is metastable (�3 = 0) and levels |2〉
and |4〉 have the same loss rate: �2 = �4. In addition, we
assume that the transitions |1〉 ↔ |2〉 and |3〉 ↔ |4〉 are at the
same frequency, ω21 = ω43, and the detuning of the control
field is zero, � = 0. We set the loss rate as our reference
frequency unit: �2 = �4 = 1. The coupling strength to the
waveguide is characterized by the effective Purcell factor
P = �/�2 = �. Plasmonic waveguide systems have been
predicted to have a large Purcell factor [39], and a value
of P = 1.5 has been demonstrated experimentally [12]. Slot
waveguides have been theoretically shown to have large values
of P reaching 16. Recently, by carefully tailoring the ends
of photonic nanowires, J. Claudon et al. achieved a value of
P � 9 in the experiment [51,52]. Furthermore, 5.7 < P < 24
was demonstrated in a photonic crystal waveguide coupled
to a quantum dot [74]. In superconducting circuits with 1D
open superconducting transmission lines [8,30,53], even larger
values of P have been achieved, exceeding 15 [53].

IV. TRANSPORT OF FEW-PHOTON STATES

A. Single-photon

With the output state in Eq. (13), the transmission
(T ), and reflection (R) probabilities for a single-photon
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FIG. 2. (Color online) Single-photon transmission T (solid),
reflection R (dashed), and loss (dotted) as a function of incident
photon detuning, for the values of σ (the wavepacket width) and
� (the strength of the control field) shown. Throughout the paper,
we set the loss rate of level 2 as our frequency unit: �2 = 1. Here,
the effective Purcell factor is P = 9. Note the sharp EIT window,
particularly in the narrow wavepacket case.

are

T =
∫

dk |R〈k|ψ (1)〉|2 =
∫

dk α2(k)|tk|2, (17a)

R =
∫

dk |L〈k|ψ (1)〉|2 =
∫

dk α2(k)|rk|2, (17b)

which are the same for both the 3LS and 4LS cases. Figure 2
shows T , R, and the loss (1 − T − R) as a function of the
detuning δω ≡ ω0 − ω21 at P = 9. Clearly, EIT appears in
Fig. 2(b), when the control field is on. As one increases the
width of the wavepacket, as shown in Fig. 2(d), the EIT peak
is suppressed as σ becomes comparable with the width of EIT
window (∼�2/�), see Eqs. (8) and (13). In Figs. 2(a) and 2(c),
we set � = 0, which means the control field is off and the 3LS
(4LS) becomes a reflective two-level system [39,43,46]. Notice
that the width of the reflective peak in the � = 0 case is ∼ �

and, hence, is insensitive to the increase of σ from 0.01 to 0.2.

B. Two-photon

The two-photon transmission and reflection probabilities
are given by

P
(2)
RR =

∫
dk1dk2

1

2
|RR〈k1,k2|ψ (2)〉|2, (18a)

P
(2)
RL =

∫
dk1dk2|RL〈k1,k2|ψ (2)〉|2, (18b)

P
(2)
LL =

∫
dk1dk2

1

2
|LL〈k1,k2|ψ (2)〉|2, (18c)

where P
(2)
RR , P

(2)
RL, and P

(2)
LL are the probabilities to observe

two transmitted photons, one transmitted and one reflected
photons, and two reflected photons, respectively. We separate
the two-photon transmission and reflection probabilities into
two parts: (P (2))PW is the contribution from independent
single-particle transmission (denoted PW for “plane wave”),
and (P (2))BS is the contribution from both the bound-state term
in Eq. (14) and the interference between the plane wave and

bound-state terms. As an example, P
(2)
RR is split as follows

P
(2)
RR =

∫
dk1dk2|t̃2(k1,k2) + B̃(k1,k2)|2

= (P (2)
RR)PW + (P (2)

RR)BS, (19a)
(
P

(2)
RR

)
PW =

∫
dk1dk2|t̃2(k1,k2)|2, (19b)

(
P

(2)
RR

)
BS =

∫
dk1dk2[t̃∗2 (k1,k2)B̃(k1,k2)

+ t̃2(k1,k2)B̃∗(k1,k2) + |B̃(k1,k2)|2], (19c)

where

t̃2(k1,k2) = α(k1)α(k2)tk1 tk2 ,

B̃(k1,k2) = i

4c

∑
j=1,2

(
1

k1 + iγj

+ 1

k2 + iγj

)

×
∫

dk α(k) α(k1 + k2 − k) Cj (k,k1 + k2 − k).

(20)

Figure 3 shows the two-photon transmission and reflection
probabilities for both the 3LS and 4LS cases, decomposed
in this way. Because the PW term is from the single-particle
solution, it is the same for both the 3LS and 4LS. However,
(P (2))BS is quite different for the 3LS and 4LS. Figures 3(a)–
3(c) show P (2) as a function of incident photon detuning. Close
to resonance, in the 3LS case (P (2))BS enhances the two-photon
transmission P

(2)
RR while suppressing P

(2)
RL. In contrast, in the

4LS case (P (2))BS has exactly the opposite effect. This leads
to enhanced multiphoton EIT for the 3LS [44] and photon
blockade for the 4LS [46]. Such enhanced EIT and photon
blockade are caused by the interference between the two
multiphoton scattering pathways: passing by the atom as
independent particles or a composite particle in the form of
bound states (for a detailed analysis, see the Supplementary
Material of Ref. [46]).

In Figs. 3(d)–3(f), we plot P (2) as a function the ef-
fective Purcell factor P for the on-resonance case, δω = 0.
It is remarkable that, for P

(2)
RR and P

(2)
RL, (P (2))BS becomes

comparable to (P (2))PW in the strong coupling regime. An
important implication is that the bound-state effect can be
observed in photonic transport experiments, given recent rapid
experimental advances [8,30,51–53].

Figures 3(g)–3(i) show P (2) as a function of the wavepacket
width σ with P = 9 and the photons on resonance with the
atom. There are several notable features. First, as σ approaches
zero, (P (2))BS shrinks to zero for both the 3LS and 4LS cases.
This further highlights that sending in a wavepacket with a
finite width is crucial to observe the bound state effect in
photonic transport. Physically, this occurs because, in the
σ = 0 limit under EIT conditions, the atom is fully transparent
(T = 1) to the incoming photons and, hence, the atom-
mediated photon-photon interaction is absent, inhibiting any
bound state effect. For the general case without EIT conditions,
the above conclusion still holds: as σ → 0, the bound state
effect vanishes in multiphoton transport. This is because the
bound-state term in Eq. (20) originates from the coincident
photons at the atomic site: as σ → 0, the wavepacket becomes
infinitely long and the probability of coincidence vanishes.
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FIG. 3. (Color online) Two-photon transmission and reflection probabilities for the 3LS and 4LS cases. (a–c) As a function of incident
photon detuning δω with P = 9 and σ = 0.2. (a) Probability that both photons are transmitted (and hence are right-going, P (2)

RR). (b) Probability
that one photon is transmitted and one reflected (right-left, P

(2)
RL). (c) Probability that both photons are reflected (both left-going, P

(2)
LL). (d–f)

As a function of P with δω = 0 and σ = 0.2. (g–i) As a function of σ with P = 9 and δω = 0. The label PW refers to the contribution from
the plane-wave term only, while BS refers to all the other contributions involving bound-state terms [Eq. (19)]. Here, we set � = 1.6. The
bound-state effect enhances transparency in the 3LS case but blocks two-photon transmission past a 4LS. Note that a nonzero σ is crucial to
observe these effects.

Second, notice that while (P (2))BS approaches zero for P
(2)
RR

as σ increases, its magnitude for P
(2)
RL and P

(2)
LL increases after

an initial decrease. This is due to the enhanced interference
between the plane-wave and bound-state terms [Eq. (14)] for
P

(2)
RL and P

(2)
LL.

The result for three-photon scattering shows behavior
similar to the two-photon case. To avoid duplication, we do
not present it here.

C. Photon blockade and photon-induced tunneling

To quantify the observed enhancement of EIT and photon
blockade in Fig. 3, we define the strength of photon blockade
P21 for the two-photon case by the conditional probability
for transmitting a second photon given that the first photon
has already been transmitted, normalized by the single-photon
transmission probability. Similarly, we can define P31 for the
three-photon case. We thus have

P21 ≡ P
(2)
RR

T 2
, P31 ≡ P

(3)
RRR

T 3
. (21)

As shown in Figs. 4(a)–4(c), for the 3LS case, the single-
photon EIT is enhanced in two-photon and three-photon
transmission by interaction with the 3LS. Pronounced photon-
induced tunneling [75] due to the strong correlations between

transmitted photons occurs in this case: P21,P31 > 1. In
contrast, as shown in Figs. 4(d) and 4(e), scattering from a 4LS
exhibits a different behavior within the EIT window, namely,
photon blockade [46]: P21,P31 < 1. For increasing coupling
strength [Fig. 4(e)], P21 and P31 approach zero asymptotically
when the incident photons are on resonance with the 4LS.
In addition, from Figs. 4(c) and 4(f), we confirm that both
photon blockade and photon-induced tunneling go away in the
zero-width limit (σ → 0).

V. SPECTRAL ENTANGLEMENT OF PHOTON PAIRS

It is clear that the two-photon bound state in Eq. (14)
is entangled in the momentum (or equivalently frequency)
degree of freedom. To probe this spectral aspect of the
two-photon entanglement, we rewrite the two-photon output
state [Eq. (14)] in frequency space as

|ψ (2)〉 =
∫

dω1dω2[fRR(ω1,ω2)a†
R(ω1)a†

R(ω2)

+ fRL(ω1,ω2)a†
R(ω1)a†

L(ω2)

+ fLL(ω1,ω2)a†
L(ω1)a†

L(ω2)]|∅〉, (22)

where fRR(ω1,ω2), fRL(ω1,ω2), and fLL(ω1,ω2) are the
two-photon amplitudes for a transmitted pair, a pair of one
transmitted and one reflected, and a reflected pair, respectively.
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FIG. 4. (Color online) Photon blockade and photon-induced
tunneling in transmission. Photon blockade strengths P21 (solid line)
and P31 (dashed line) as a function of incident photon detuning δω,
P , and σ for (a–c) the 3LS case, and (d–f) the 4LS case. Here,
� = 1.6. The 3LS causes photon-induced tunneling while the 4LS
causes photon blockade.

Explicitly, they take the following form:

fRR(ω1,ω2) = t̃2(ω1,ω2) + B̃(ω1,ω2), (23a)

fRL(ω1,ω2) = 2[r̃ t(ω1,ω2) + B̃(ω1,ω2)], (23b)

fLL(ω1,ω2) = r̃2(ω1,ω2) + B̃(ω1,ω2), (23c)

t̃2(ω1,ω2) = tω1 tω2α(ω1)α(ω2), (23d)

r̃ t(ω1,ω2) = tω1rω2α(ω1)α(ω2), (23e)

r̃2(ω1,ω2) = rω1rω2α(ω1)α(ω2), (23f)

where B̃(ω1,ω2) is given in Eq. (20). The first term in f (ω1,ω2)
is the uncorrelated contribution, while the second term signals
photon correlation. From Eq. (23), we define the joint spectral
function of the two-photon states to be [76]

Fαβ=RR, RL,LL(ω1,ω2) = |fαβ(ω1,ω2)|2. (24)

For the purpose of comparison, we also define the uncorrelated
spectral function of the two-photon states,

GRR(ω1,ω2) ≡ |t̃2(ω1,ω2)|2, (25a)

GRL(ω1,ω2) ≡ 4|r̃ t(ω1,ω2)|2, (25b)

GLL(ω1,ω2) ≡ |r̃2(ω1,ω2)|2. (25c)

Figure 5 shows the two-photon uncorrelated and joint
spectra in the case of on-resonance photons (δω = 0) and
for a spectrally narrow wavepacket (σ = 0.01). With the
chosen parameters, the EIT peak width is much larger than
the wavepacket, ∼ �2/� ∼= 0.28  σ . Therefore, for the
uncorrelated pair of transmitted photons [GRR , Fig. 5(a)], there
is only a sharp peak at ω1 = ω2 = ω0 caused by the Gaussian
spectrum of the incident photons. For the uncorrelated pair

of one transmitted and one reflected photons (GRL), there
are two peaks resulting from the interplay of the spectrum of
the incident photons and the rapid increase of the reflection
probability away from the EIT peak (see Fig. 2). Accordingly,
there are four peaks for the case of two reflected photons, as
shown in Fig. 5(c).

Figures 5(d)–5(f) show the joint spectra for the case of
3LS scattering. It is evident that the joint spectra of the
pair of two transmitted photons (FRR), and the pair of one
transmitted and one reflected photons (FRL), are dominated by
the uncorrelated transmission. The joint spectrum of the pair of
two reflected photons [Fig. 5(f)] is slightly modified from the
uncorrelated spectrum along the diagonal line. This is caused
by the correlated bound state term B̃(ω1,ω2). For the 3LS case
with the chosen parameters, the correlation term B̃(ω1,ω2) is
of order 10−1 and hence is too weak to affect FRR and FRL.

In contrast, for the 4LS case [Figs. 5(g)–5(i)], FRL and
FLL are greatly modified by the correlation term, while FRR is
still dominated by the uncorrelated transmission. In particular,
as shown in Fig. 5(i), the joint spectrum of the reflected pair
is dominated by B̃(ω1,ω2). This pair is primarily made up
of a pure two-photon bound state: the frequencies of the
photon pair are correlated along the line ω1 + ω2 = 2ω0 with
uncertainty σ . A similar correlated photon pair was obtained
in a waveguide-cavity system [77].

The two-photon bound state is a composite object of
photons with effective attractive interaction; it displays strong
bunching behavior in photon-photon correlation measure-
ments. Such a photon pair is highly entangled in frequency
because measurement of the frequency of one photon unam-
biguously determines that of the other. This strong spectral
correlation provides more information per photon pair and
could be used to implement large-alphabet quantum commu-
nication [57].

VI. COHERENT-STATE SCATTERING

In this section, we study the scattering of a coherent state off
a 3LS or 4LS. We probe the strong photon-photon correlation
in the transmitted field by studying first the number statistics
and then the second-order correlation function.

A. Number statistics

We consider the case that the 3LS or 4LS is in its
ground state initially and there is an incident continuous-mode
coherent state of mean photon number n = 1, spectral width
σ = 0.2, and central frequency on resonance with the atom,
ω0 = ω21. In this case, the contribution from the four-photon
state can be neglected (∼ 1.6%). The photon-number statistics
in the transmitted field is obtained by first applying the
S matrices to the incident state and then measuring the
transmitted field, as described in Ref. [43].

We present the results for both the 3LS and 4LS cases in
Fig. 6 by taking the ratio of the photon-number distribution
in the transmitted field Pn (n = 0,1,2,3) to that of a coherent
state Pn,Poisson having the same mean photon number as
the transmitted field. From Figs. 6(a)–6(d), it is clear
that when the EIT condition is satisfied, the 3LS induces
strong photon-photon interactions, which in turn reduce the
one-photon probability and redistributes the weight to the
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two- and three-photon probabilities. This comes about
because the bound state in the 3LS case enhances multiphoton
EIT, as we have shown in Sec. IV B and IV C.

In contrast, for the 4LS case shown in Figs. 6(e)–6(h),
in most of the parameter space, we have enhanced single-
photon probability while suppressed multiphoton content:
P1 > P1,Poisson and P2(3) < P2(3),Poisson. This gives rise to a
sub-Poissonian single-photon source [46], which comes about
because, while EIT occurs in the single-photon transmission,
multiphoton states experience photon blockade, as shown
in Sec. IV B and IV C. Therefore, we demonstrate that the
waveguide-atom system is capable of generating nonclassical
light, which may find applications in quantum cryptography
[78–81] or distributed quantum networking [13,14].

B. Second-order correlation

To further probe the nonclassical character of the transmit-
ted field, we calculate the second-order correlation function
g(2)(τ ), which is often measured experimentally. For a steady

state, g(2) of the transmitted field is defined as

g(2)(τ ) = lim
t→∞

〈a†
R(x,t) a

†
R(x,t + τ ) aR(x,t + τ ) aR(x,t)〉

〈a†
R(x,t) aR(x,t)〉〈a†

R(x,t + τ ) aR(x,t + τ )〉
.

(26)

As shown in Appendix C, for our system, this definition
is equivalent to the following expression in the Schrödinger
picture:

g(2)(τ ) = 〈ψ |a†
R(x) a

†
R(x + cτ ) aR(x + cτ ) aR(x)|ψ〉

〈ψ |a†
R(x) aR(x)|ψ〉〈ψ |a†

R(x + cτ ) aR(x + cτ )|ψ〉
,

(27)

where |ψ〉 is the asymptotic output state. With a weak incident
coherent state (mean photon number n � 1), we consider
only the contribution of the two-photon and one-photon states
in the numerator and denominator in Eq. (27), respectively.
Substitution of the single-photon and two-photon transmission
wavefunctions from Eqs. (13) and (14) into Eq. (27) yields the
explicit expression

g(2)(τ )=
∣∣∫ dk1dk2α(k1) α(k2)

[
tk1 tk2 (e−ik1τ + e−ik2τ ) + B(τ )

]∣∣2

∣∣∫ dk1dk2 α(k1) α(k2) tk1 tk2 (e−ik1τ + e−ik2τ )
∣∣2 ,

B(τ )=π (C1e
−γ1cτ + C2e

−γ2cτ ). (28)

In the numerator, the first term and the second term B(τ ) come
from the plane wave and bound state pieces, respectively, in
Eq. (14).

Figure 7(a) shows g(2)(0), which is the same for the 3LS
and 4LS cases. The presence of level |4〉 does not contribute to
g(2)(0): it takes two quanta to excite |4〉, which then undergoes
cascaded emission with zero probability to emit two photons
at the same time. In Fig. 7(a), there is rich bunching and
antibunching behavior, caused by the two-body bound state. At
τ=0, the amplitude of the bound state term in Eq. (28) is B(0) =
−2rk1rk2 , where rk1(2) is the single-photon reflection coefficient.
Hence, in the numerator of g(2)(0), the amplitudes of the plane-
wave and bound-state terms are out of phase. When P = 0,
the bound-state term is zero and g(2)(0) = 1. As P increases,
the strength of the bound state increases, causing g(2)(0) to
decrease until the bound-state term cancels the plane wave term
exactly, producing complete antibunching. Further increase of
P leads to a rise of g(2)(0) and eventually photon bunching.

By comparing Figs. 4(c), 4(d) and Fig. 7(a), we find
that photon antibunching and photon blockade, and photon
bunching and photon-induced tunneling do not have a one-
to-one correspondence. For example, in the whole parameter
regime of Fig. 4(d), photon blockade is present; while in
Fig. 7, there is a large region of parameter space where
photon bunching [g(2)(0) > 1] instead of photon antibunching
[g(2)(0) < 1] is observed. This is because we are studying
a state of continuous modes and performing instantaneous
measurements at two space-time points (x,t) and (x,t + τ ). If
one integrates over the time t in the measurement [73], as done
in many experiments in which the detector integration time is

much longer than the wavepacket duration, one finds a one-to-
one correspondence between photon antibunching and photon
blockade, and photon bunching and photon-induced tunneling.

The time dependence of g(2)(τ ) is shown in Fig. 7(b).
There are two characteristic time scales: τ1 = 1/Re[cγ1]
and τ2 = 1/Re[cγ2]. Within the short time scale, g(2) can
display either bunching or antibunching for both the 3LS and
4LS cases, depending on the system parameters, as shown
in the inset of Fig. 7. On the long time scale, for the 3LS
case, g(2) shows bunching—g(2)(τ ) > 1—corresponding to
the enhanced multiphoton transmission already apparent
from both the photon-induced tunneling [Fig. 4(c)] and the
enhanced multiphoton content in the number statistics [Fig. 6].
For the 4LS case, antibunching [g(2)(τ ) < 1] dominates at
long times, corresponding to the photon blockade observed
in Fig. 4(d) and the enhanced single-photon content in Fig. 6.
Hence, for our pulsed output state, g(2)(τ = 0) displays rich
physics due to the induced photon-photon correlation but is
not necessarily a good guide to the photon statistics.

VII. CONCLUSIONS

In summary, we present a waveguide-QED-based scheme
to generate strongly correlated photons, of interest for both
many-body physics and quantum information science. Photon
bound-states appear in the scattering eigenstates as a mani-
festation of the photon-photon correlation. As a result, while
a single-photon experiences EIT in the proposed waveguide-
atom system, multiphoton states can display either photon
blockade or photon-induced tunneling, depending on the de-
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FIG. 7. (Color online) Bunching and antibunching. Second-order
correlation function g(2)(τ ) of the transmitted field for a weak incident
coherent state (n � 1) of width σ = 0.2, resonant with the atom
(δω = 0). (a) Color map plot of log10[g(2)(0)] as a function of the
strength of the classical control field, �, and the effective Purcell
factor P . The dashed line marks the border between bunching
[g(2)(0) > 1] and antibunching [g(2)(0) < 1] behavior. (b) g(2) as a
function of time delay τ in four cases (using � = 1.6). τ is in units
of �−1

2 . Inset: zoom at short time scales.

tailed structure of the “atom.” From either the photon blockade
or photon-induced tunneling that occurs, nonclassical light
sources can be generated by sending coherent states into
the system. In the most interesting case, a 4LS removes the
multiphoton content from the coherent state, leaving a pulse
with only zero or single photon content.

In addition, we find that the system can be used to produce
highly entangled photon pair states in frequency space,
potentially of use for large alphabet quantum communication.
Finally, we show that rich bunching or antibunching behavior is
present in the second-order correlation function as a signature
of the strong photon-photon correlation mediated by the
“atom.” Given the recent rapid experimental advances in
several realizations, the proposed waveguide-QED system is
emerging as a promising route to cavity-free open quantum
networks, which are crucial for both large-scale quantum
computation and long-distance quantum communication.
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APPENDIX A: EXPRESSIONS FOR γ1, 2, C1, 2, AND D1, 2, 3, 4

In this Appendix, we give explicit expressions for the
constants γ1, 2, C1, 2, and D1, 2, 3, 4 that appear in Eqs. (9) and
(10) for both the 3LS and 4LS scattering eigenstates. γ1,2 is
the same for both cases and is given by

cγ1 = � + �2 + �3

4
− ξ + i

(
�

2
+ ε2 + η

)
,

(A1a)

cγ2 = � + �2 + �3

4
+ ξ − i

(
�

2
− ε2 − η

)
,

ξ =
√

2

4
(
√

χ2 + 4�2�′2 − χ )1/2,

(A1b)

η =
√

2

4
(
√

χ2 + 4�2�′2 + χ )1/2,

�′ = � + �2 − �3

2
,

(A1c)
χ = �2 + �2 − �′2.

For the �-type 3LS and N -type 4LS cases, C1, 2 and D1, 2, 3, 4

take the same form

C
(�,N)
1 (k1,k2) = β(�, N)(k1,k2) − α(k1,k2)λ2

λ1 − λ2
, C

(�, N)
2 (k1,k2) = −β(�, N)(k1,k2) + α(k1,k2)λ1

λ1 − λ2
,

D
(�, N)
1 (k1,k2,k3) = β

(�, N)
13 (k1) − α13(k1)λ2

λ1 − λ2
C

(�, N)
1 (k2,k3), D

(�, N)
2 (k1,k2,k3) = −β

(�, N)
24 (k1) + α24(k1)λ1

λ1 − λ2
C

(�,N)
2 (k2,k3),

(A2)

D
(�, N)
3 (k1,k2,k3) = −β

(�, N)
13 (k1) + α13(k1)λ1

λ1 − λ2
C

(�,N)
1 (k2,k3), D

(�,N)
4 (k1,k2,k3) = β

(�, N)
24 (k1) − α24(k1)λ2

λ1 − λ2
C

(�,N)
2 (k2,k3),

λ1 = � + �2 − �3

4
+ ξ + i

(
�

2
+ η

)
, λ2 = � + �2 − �3

4
− ξ + i

(
�

2
− η

)
,

where the superscript � stands for the 3LS and N for the 4LS. α’s and β’s in the above equation read

α(k1,k2) = − (tk1 − 1)(tk2 − 1)

2π
, (A3a)

β(k1,k2)(�) = ��2

16π

[
t k1 − 1

ρk2

+ tk2 − 1

ρk1

]
, β(k1,k2)(N) = ��2

16π

[
t k1 − ν(k1,k2)

ρk2

+ tk2 − ν(k1,k2)

ρk1

]
, (A3b)
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ν(k1,k2) = ε4 − E − (i�4 − i�)/2

ε4 − E − (i�4 + i�)/2
, ρk =

(
ck − ε2 + � + i�3

2

)(
ck − ε2 + i�2 + i�

2

)
− �2

4
, (A3c)

where tk is given in Eq. (8b) in the main text. α13, α24, β13, and β24 are given by

α13(k) = α24(k) = −2(t k − 1)√
2π

, (A4a)

β13(k)(�) = 1√
2π

[
��2

4ρk

− (tk − 1)λ1

]
, β13(k)(N) = 1√

2π

{
��2

4ρk

− [tk − μ1(k)]λ1

}
, (A4b)

β24(k)(�) = 1√
2π

[
��2

4ρk

− (tk − 1)λ2

]
, β24(k)(N) = 1√

2π

{
��2

4ρk

− [tk − μ2(k)]λ2

}
, (A4c)

μ1,2(k) = ε4 − i�4/2 − ck + i�/2 + icγ1,2

ε4 − i�4/2 − ck − i�/2 + icγ1,2
. (A4d)

APPENDIX B: THREE-PHOTON ASYMPTOTIC OUTPUT STATE

In this Appendix, we present the asymptotic output state after scattering a three-photon right-going Fock state off a 3LS or 4LS.
The form of the wave functions is

|ψ (3)〉 =
∫

dk1dk2dk3
1√
3!

α(k1)α(k2)α(k3)|φ(3)(k1,k2,k3)〉,

|φ(3)(k1,k2,k3)〉 =
∫

dx1dx2dx3

[
1

3!
t t tk1,k2,k3 (x1,x2,x3)a†

R(x1)a†
R(x2)a†

R(x3) + 1

2!
t trk1,k2,k3 (x1,x2, − x3)a†

R(x1)a†
R(x2)a†

L(x3)

+ 1

2!
trrk1,k2,k3 (x1, − x2, − x3)a†

R(x1)a†
L(x2)a†

L(x3) + 1

3!
rrrk1,k2,k3 (−x1, − x2, − x3)a†

L(x1)a†
L(x2)a†

L(x3)

]
|∅〉.
(B1)

Here, t t tk1,k2,k3 (x1,x2,x3), t trk1,k2,k3 (x1,x2,x3), trrk1,k2,k3 (x1,x2,x3), and rrrk1,k2,k3 (x1,x2,x3) are the terms representing three-
photons being transmitted, two being transmitted and one reflected, one being transmitted and two reflected, and all three being
reflected, respectively. They take the following general form (α,β,γ = t or r)

αβγk1,k2,k3 (x1,x2,x3) =
∑
Q

αkQ1
βkQ2

γkQ3
hkQ1

(x1)hkQ2
(x2)hkQ3

(x3) + 1

4

∑
Q

[
αkQ1

hkQ1
(x1)B(2)

kQ2 ,kQ3
(x2,x3)

+βkQ1
hkQ1

(x2)B(2)
kQ2 ,kQ3

(x1,x3) + γkQ1
hkQ1

(x3)B(2)
kQ2 ,kQ3

(x1,x2)
]

+ 1

8

∑
PQ

B
(3)
kP1 ,kP2 ,kP3

(
xQ1 ,xQ2 ,xQ3

)
.

(B2)

where tk and rk are the single-photon transmission and reflection probabilities given in Eq. (13c), B(2)
k1,k2

(x1,x2) is given in Eq. (15),

and B
(3)
k1,k2,k3

(x1,x2,x3) is given in Eq. (10). In Eq. (B2), the first term comes from the process of three-photons passing by the
atom as independent particles. The second term corresponds to the process of one-photon passing through as an independent
particle, while the other two photons form a composite particle in a two-photon bound state (with three possible combinations).
The third term originates from the three-photon bound-state process.

APPENDIX C: SECOND-ORDER CORRELATION
FUNCTION IN THE SCHRÖDINGER PICTURE

In this Appendix, we demonstrate the equivalence between
Eq. (26) and Eq. (27) in the main text. Typically, the
second-order correlation function is defined in the Heisenberg
picture as

g(2)(x1,t1; x2,t2)

= 〈ψ0|â†(x1,t1)â†(x2,t2)â(x2,t2)â(x1,t1)|ψ0〉
〈ψ0|â†(x1,t1)â(x1,t1)|ψ0〉〈ψ0|â†(x2,t2)â(x2,t2)|ψ0〉 ,

(C1)

where |ψ0〉 is the state in the Heisenberg picture, or
equivalently, the initial state in the Schrödinger picture and
â†(x,t) is the operator in the Heisenberg picture. â†(x,t) can
be expressed in terms of the operator in the Schrödinger
picture as

â†(x,t) = eiHt/h̄ â†(x) e−iH t/h̄. (C2)

Taking x1 = x2 = x in Eq. (C1), we obtain the two-time
correlation function

g(2)(x,t1; x,t2)

= 〈ψ0|â†(x,t1)â†(x,t2)â(x,t2)â(x,t1)|ψ0〉
〈ψ0|â†(x,t1)â(x,t1)|ψ0〉〈ψ0|â†(x,t2)â(x,t2)|ψ0〉 . (C3)
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If the field operator satisfies the following relation

â†(x,t) = â†(x − ct), (C4)

g(2)(x,t1; x,t2) is then the same as g(2)(x,t1; x ′,t1) with x ′ =
x − c(t2 − t1). Using Eqs. (C2) and (C4), we can rewrite (C3)
in the Schrödinger picture as

g(2)(x,t1; x ′,t1)

= 〈ψ(t1)|â†(x)â†(x ′)â(x ′)â(x)|ψ(t1)〉
〈ψ(t1)|â†(x)â(x)|ψ(t1)〉〈ψ(t1)|â†(x ′)â(x ′)|ψ(t1)〉 , (C5)

where |ψ(t1)〉 is the state at t = t1 evolving from the initial state
|ψ0〉 under the Hamiltonian H . Therefore, as long as Eq. (C4)
holds, the definition of g(2) in the Heisenberg picture Eq. (C3)
is equivalent to Eq. (C5) defined in the Schrödinger picture.
Physically, this means that measuring the two-time correlation
at the same spatial position is equivalent to measuring the
spatial correlation at the same time for a nondispersive field.

In our problem, it is straightforward to show that Eq. (C4) is
satisfied by the right-going field. With the Hamiltonian defined
in Eq. (1) in the main text, the equation of motion for the
right-going field in the 4LS case is

(
∂

∂x
+ 1

c

∂

∂t

)
â
†
R(x,t) = iV

c
[S+

12(t) + S+
34(t)]δ(x). (C6)

Formally, the above equation can be integrated to yield

â
†
R(x,t) = â

†
R,free(x − ct)

+ iV

c
[S+

12(t − x/c) + S+
34(t − x/c)]θ (x). (C7)

A similar expression can be obtained in the 3LS case. Hence,
Eq. (C4) holds, and we use Eq. (C5) to evaluate the second-
order correlation function of the transmitted field with |ψ(t1)〉
being our final output state.
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[65] L. Slodička, G. Hétet, S. Gerber, M. Hennrich, and R. Blatt,
Phys. Rev. Lett. 105, 153604 (2010).

[66] M. Albert, A. Dantan, and M. Drewsen, Nat. Photon. 5, 633
(2011).

[67] H. Chang, H. Wu, C. Xie, and H. Wang, Phys. Rev. Lett. 93,
213901 (2004).

[68] M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl,
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