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Generic model of the molecular orientational distribution probed by polarization-resolved
second-harmonic generation
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In this work we investigate a generic method able to extract information on molecular organization in biological
samples from polarized second harmonic generation (SHG) microscopy, without the need to infer an a priori
model for the molecular orientational distribution. The mean orientation of this distribution, as well as its first
and third orders of symmetry, are estimated by monitoring SHG intensity signals under a varying incident
polarization. We introduce, in particular, a reduction of the problem to a two-dimensional approach appropriate
to the microscopy geometry. This method allows us to retrieve determining information which is not available in
the traditional model-oriented methods, as illustrated in molecular-order imaging in collagen fibrils. The precision
of the parameters estimation is evaluated by a Monte Carlo analysis, based on the Poisson noise statistics of the
measured signal.
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I. INTRODUCTION

Second harmonic generation (SHG) microscopy, since its
first development [1–3] and its introduction in bio-imaging
[4–6], is now widely used to image ordered biomolecular
assemblies in complex samples. Coherent SHG occurring
naturally in noncentrosymmetric structures such as collagen
[2], skeletal muscles [5], and microtubules [6], is today
exploited as a functional contrast [7,8], possibly in conjunction
with other nonlinear optical signatures [9], with the ultimate
goal of developing diagnostics of pathological effects related to
tissues and cell architecture. In addition to their unique imaging
capabilities, nonlinear contrasts are dependent on the incident
light polarization, providing an interesting way to probe
molecular orientation and order. Structural information, from
membrane architecture and proteins aggregates to biopolymers
and tissue assemblies, is a key parameter in a large variety of bi-
ological phenomena. Polarization-sensitive imaging has been
exploited a long time ago in fluorescence [10,11] and SHG
[12] in ordered molecular samples. SHG-polarization-resolved
imaging has allowed us to retrieve molecular orientation and
order information in molecular materials [13,14] and crystals
down to the nanometric size [15], as well as collagen and
muscle structural quantitative information in tissues [16–21].

Deducing structural information (molecular orientational
order) from SHG-polarization-resolved data in microscopy
has so far been based on the use of a priori known models
in the orientation distribution of the probed system. Polarized
SHG applied to collagen type I has shown that its hexag-
onal crystalline structure can be reduced to an equivalent
orientational distribution with a cone surface shape [19–21],
similar to what would be obtained from a collection of active
molecules assembled along the triple helix structure of the
collagen protein. Many works have developed analyses in this
direction, using as an unknown parameter the aperture of this
cone to quantify molecular order in collagen assemblies. In
complex environments however such as tissues or micrometric
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assemblies of fibrils, much more complex orientational be-
havior can be expected. It is delicate to infer a model in
this case, although tentative analyses have been performed
in this direction, introducing an additional disorder parameter
in the surface cone aperture [19]. Adding unknown parameters
which are possibly correlated can, however, lead to ambiguous
determinations. In addition, these parameters remain model
dependent and can lead to an over interpretation of the retrieved
information. At last, the estimation quality of the parameters
strongly depends on the noise level of the measurements [22].

In the interpretation of SHG polarized responses, the use of
an a priori model ultimately fails in giving a general picture
of the measured molecular orientational distribution, primarily
because there is no possibility to validate this model. In this
work, we propose a generic approach capable of encompassing
all available orientational information without the need to rely
on a specific model for the orientational distribution in the
sample. Along the same lines as what has been developed in
the past for polarization analysis in poled polymers doped by
SHG active molecules [23], we base our approach on order
parameters related to symmetry properties of the molecular
orientation distribution function in a sample. This general
model includes possible geometries that are not of cylindri-
cal symmetry, which was not accessible in the previously
developed cone models for collagen. It also gives general
information on the shape of the orientational distribution
with estimated parameters which are model independent. We
develop this model in a two-dimensional (2D) approach that
is adapted for the SHG microscopy geometry, and apply it
to the quantitative imaging of molecular order parameters in
assemblies of isolated collagen fibrils. A numerical model
based on Monte Carlo analysis is furthermore implemented to
quantify empirically the precision of the estimation of these
parameters, assuming signals limited by Poisson noise.

II. MOLECULAR DISTRIBUTION

A. Reduction of molecular orientational three-dimensional
distribution to a 2D distribution

A polarized second harmonic generation signal from an
ensemble of molecules excited in a focal volume originates
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from the radiation of a macroscopic nonlinear induced dipole
P2ω, resulting from the orientational average of molecular
nonlinear induced dipoles p2ω:

P2ω = N

∫
�

p2ωf (�)d�, (1)

with N being the molecular density. f (�) defines the
molecular angular distribution function with � = (θ,ϕ,ψ)
being the Euler angles set defining the molecular orientation.
This function models the molecular scale organization of a
sample in the macroscopic laboratory frame and describes
the probability to find a molecule oriented along �. It is
normalized such as

∫
�

f (�)d� = 1.
The nonlinear molecular induced dipole originates from the

coupling between the molecular nonlinear susceptibility tensor
β and the incoming fundamental field Eω at the frequency ω:

p2ω
i =

∑
jk

βijkE
ω
j Eω

k , (2)

with i, j, k in the molecular frame (x, y, z).
Writing this dipole in the macroscopic frame (X, Y,Z)

and averaging over orientation angles [Eq. (1)] results in a
macroscopic dipole

P 2ω
I =

∑
JK

χ
(2)
IJKEω

J Eω
K, (3)

where χ
(2)
IJK are the tensorial components of the macroscopic

nonlinear susceptibility χ (2) with I,J,K in the (X, Y,Z) frame
[Fig. 1(a)], and

χ
(2)
IJK = N

∫
�

βIJK (�)f (�)d�, (4)

FIG. 1. (a) Geometry of the SHG polarized microscopy. (X, Y )
is the sample plane and Z is the direction of propagation of the
fundamental beam. α is the angle of the incident polarization E
relative to X. In one-dimensional symmetry molecules, (θ,ϕ) defines
the orientation of the molecular axis m in the (X, Y,Z) frame.
(b) Orientation of the 2D distribution (ϕ0) represented as a gray
shape. ϕ is the orientation of the molecular axis m relative to X

in the sample plane. (c) Example of a three-dimensional molecular
distribution f (θ,ϕ) (left) and its modified shape when read by a SHG
polarized contrast f (θ,ϕ) sin4 θ (right).

where βIJK (�) are the molecular susceptibility components
expressed in the (X, Y,Z) frame:

βIJK (�) =
∑
ijk

βijk(I · i)(J · j)(K · k)(�), (5)

with (I · i) being the transformation matrix components be-
tween the (x, y, z) and the (X, Y,Z) frames.

Note that Eq. (4), which relates molecular-scale to
macroscopic-scale properties, is based on a purely additive
model. Accounting for molecule-molecule interactions and
molecular packing in dense media [24,25] is often done by
introducing a phenomenological tensorial local field correction
factor [26] compatible with this additive approach. In what
follows, we implicitly embed this correction factor inside the
expression of χ

(2)
IJK , meaning that all molecular-order interpre-

tations contain the existence of possible local interactions in
the medium.

In what follows we consider the case of molecules of
one-dimensional symmetry, therefore only (θ,ϕ) are required
to define its orientation [Fig. 1(a)], and f (�) can be rewritten
f (θ,ϕ). This assumption on the molecular structure is gener-
ally made for the investigation of SHG polarized signals from
biomolecular assemblies has been shown to be appropriate
in collagen [27]. It can nevertheless be generalized to more
complex symmetries by introducing the appropriate β tensor
structure. The consequence of multipolar molecular symme-
tries on the determination of molecular-order information is
discussed in Sec. V.

Polarization-resolved SHG consists in rotating the incident
fundamental polarization in the sample plane (X, Y ), the Z

axis defining the propagation direction. Assuming a negligible
nonlinear coupling in the Z direction, which is generally
the case in samples investigated by nonlinear microscopy
imaging [28,29], the only accessible information is restricted
to a projection in the (X, Y ) 2D plane. The projectors (I · i)
with I = X, Y thus only contain terms such as sin θ cos ϕ or
sin θ sin ϕ and Eq. (4) can be rewritten in a general form which
is demonstrated in detailed in Appendix A:

χ
(2)
IJK = N

∫ 2π

0

∫ π

0
β∗

IJK (ϕ)f (θ,ϕ) sin4 θdθdϕ, (6)

with β∗
IJK (ϕ), defined in Appendix A, encompassing the sum

over the microscopic coefficients βijk and the ϕ dependence
of its macroscopic projection.

Due to the 2D constraint of the problem in the plane
of polarization, we introduce a new distribution function
P (ϕ) which only depends on ϕ, orientation of the molecule
projection in the (X, Y ) plane [Fig. 1(b)]:

P (ϕ) =
∫ π

0
f (θ,ϕ) sin4 θdθ. (7)

Equation (7) shows that the relevant distribution function
which is effectively read out in a polarized SHG process is
of the form f (θ,ϕ) sin4 θ ; a function which emphasizes the
role of molecules close to the (X, Y ) plane compared to out-of
plane molecules, as depicted in Fig. 1(c). In addition, the 2D
distribution P (ϕ) can be used to define the effect of molecular
orientation on the polarization-resolved SHG signals, using
only the molecules orientation information ϕ in the (X, Y )
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sample plane. P (ϕ) is not a geometrical projection of the three-
dimensional (3D) distribution function f (θ,ϕ) in the (X, Y )
frame but is rather a horizontal sectioning of the 3D molecular
distribution imposed by the SHG contrast [Fig. 1(c)]. The
macroscopic SHG tensor components in the (X, Y ) plane can
finally be written as

χ
(2)
IJK = N

∫ 2π

0
β∗

IJK (ϕ)P (ϕ)dϕ. (8)

Hereafter we develop the polarization-resolved SHG re-
sponse of the 2D molecular distribution P (ϕ). In the sample
plane, this function can be decomposed on the basis of circular
functions, appropriate to its 2D geometry:

P (ϕ) = p0 + p1 cos(ϕ − ϕ0) +
∑
n�2

pn cos[n(ϕ − ϕ0)]

+
∑
n�2

qn sin[n(ϕ − ϕ0)]. (9)

The (pn,qn)-order terms in Eq. (9) are the signature of
different orders of symmetry of the P (ϕ) function, n = 0
being representative of its isotropic contribution, and even
or odd n-order terms being representative of its even or odd
orders of symmetry, respectively. Moreover, high-symmetry
orders are representative of more defined angular details. ϕ0

is the mean orientation, in the sample plane, of the first-order
term n = 1 [Fig. 1(b)], introduced as a reference orientation
angle of the 2D distribution function. Therefore, there is no
need to introduce a q1 parameter. The qn�2 terms quantify
the orientation of the n-order terms with respect to the X

axis. Therefore, qn�2 are also signatures of the absence of a
symmetry axis in the distribution function.

Since SHG, in the dipolar approximation used here, is only
sensitive to noncentrosymmetric contributions of a distribution
function up to the third order of symmetry [30,31], only the
orders 1 and 3 of the distribution function P (ϕ) in Eq. (9)
contribute to the SHG response. For this reason, the 2D
orientational distribution function P (ϕ) can be reduced to a
truncated P̃ (ϕ) function, which is no longer considered as a
probability function:

P̃ (ϕ) = p1 cos(ϕ − ϕ0) + p3 cos[3(ϕ − ϕ0)]

+ q3 sin[3(ϕ − ϕ0)]. (10)

The information present in P̃ (ϕ) is therefore the relative
noncentrosymmetric contribution, of first and third orders, to
the complete molecular angular distribution P (ϕ).

B. Single-molecule polarized SHG response

Assuming molecules of one-dimensional symmetry along
a z direction in the sample plane [Fig. 1(b)], βijk possesses a
single nonvanishing component βzzz in the molecular frame,
denoted β in what follows. In the 2D molecular distribution,
the z axis is oriented with an angle ϕ relative to the
macroscopic axis X. Denoting α the angle of the incident linear
polarization E relative to X, the amplitudes of the molecular
nonlinear induced dipole along the X and Y axes are therefore
proportional to

p2ω
X = E2

0β cos ϕ cos2(α − ϕ),
(11)

p2ω
Y = E2

0β sin ϕ cos2(α − ϕ),

with E0 being the amplitude of the incoming fundamental
field.

The polarization dependence of the total SHG intensity
I (α), measured without the use of any analyzer, can be written
in the plane-wave approximation as

I = IX + IY = ∣∣p2ω
X

∣∣2 + ∣∣p2ω
Y

∣∣2
. (12)

Therefore,

I (α) = E4
0β

2 cos4(α − ϕ). (13)

The cos4(α − ϕ) function can be decomposed on the basis
circular functions cos[n(α − ϕ)] with n = 0, 2, 4, which leads
to

I (α) = a0 + a1 cos[2(α − ϕ)] + a2 cos[4(α − ϕ)], (14)

with

a0 = 3E4
0β

2
/

8, a1 = E4
0β

2
/

2, a2 = E4
0β

2/8. (15)

C. Polarized SHG response in a 2D angular distribution

The nonlinear response from an ensemble of molecules
requires calculating the orientational averaged of single-
molecule nonlinear induced dipoles [Eq. (1)]. The polarization
dependence of the total SHG intensity can then be written, in
the plane-wave approximation, as a quantity proportional to the
macroscopic expression |P 2ω

X |2 + |P 2ω
Y |2. Introducing P̃ (ϕ) in

Eq. (8) and using the methodology developed in Appendix B,
it can be shown that, similar to the single-molecule case,
this function is decomposed on the basis circular functions
cos[n(α − ϕ0)] and sin[n(α − ϕ0)] with n = 0, 2, 4:

I (α) = a0 + a1 cos[2(α − ϕ0)] + a2 cos[4(α − ϕ0)]

+ b1 sin[2(α − ϕ0)] + b2 sin[4(α − ϕ0)], (16)

with

a0 = A

16

(
5p2

1 + p2
3 + q2

3

)
, a1 = A

4

(
p2

1 + p1p3
)
,

(17)

a2 = A

8
p1p3, b1 = A

4
p1q3, b2 = A

8
p1q3,

where A = N2E4
0π

2β2.
This development shows that the total SHG intensity can be

decomposed in a simple Fourier decomposition, in a similar
manner as already introduced in previous works [22,32], with
coefficients depending on the orders of the P̃ (ϕ) function. Due
to the coherent nature of the SHG process, this dependence
is, however, not a pure linear combination of the p1, p3, q3

orders, but rather a nonlinear mixing which prevents the simple
resolution of an inverse problem. In the most general situation,
all the orders can, however, be determined as a unique solution,
as long as the first order p1 does not vanish. Indeed, in the
case of a pure third-order distribution (p1 = 0), only a0 does
not vanish and the total intensity will be a constant function
of α, the distribution function exhibiting in this case a 2π/3
invariant rotation while the fundamental electromagnetic field
exhibits a π invariant rotation, making any signal modulation
impossible. This property has been previously exploited in
octupolar molecular media to obtain polarization-independent
nonlinear responses [30,33].
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III. ESTIMATION OF ORDER PARAMETERS

A. Principle of estimation of order parameters

As mentioned above, the nonlinear expression of the Fourier
coefficients a0, a1, a2, b1, b2 as functions of the unknown
parameters A,p1, p3, q3 makes an analytical resolution of
the inverse problem impossible. In a polarization-resolved
measurement, A is not relevant since it is a pure magnitude
factor. The measurement being not absolute, a normalization
is necessary and, for this reason, we chose to estimate three re-
maining parameters: the ratios p = p3/p1, q = q3/p1 (called
“order parameters” in what follows), and ϕ0. The distribution
function becomes, therefore, a more simple expression:

P̃ (ϕ) = cos(ϕ − ϕ0) + p cos[3(ϕ − ϕ0)]

+ q sin[3(ϕ − ϕ0)]. (18)

The SHG intensity I (α), which depends on the mean
orientation ϕ0 and the (p,q) parameters, will be written
I (w(p,q),ϕ0,α) with w(p,q) = (a0,a1,a2,b1,b2), the mea-
sured Fourier coefficients of Eq. (16), which depend only
on p and q. A typical experimental measurement leads to
intensity values Iexpt(αi) for m regularly spaced measurement
angles αi with i = 1, . . . ,m, with m high enough to allow
the unambiguous determination of the Fourier coefficients
of Eq. (16). To retrieve the ϕ0 and (p, q) information, a
minimization can be performed of the mean-square error be-
tween the measured intensity Iexp(αi) and the model intensity
I (w(p,q),ϕ0,αi). In practice, we implement a minimization
procedure on the Fourier coefficients of the intensities. A
minimization is separately performed on the ϕ0 parameter
since it appears as a pure phase parameter in Eq. (16). For
each ϕ0, the estimation operation consists of finding the couple
(p,q) which minimizes the error function

E (w(p,q),ϕ0) = ||wexpt(ϕ0) − w(p,q)||2, (19)

where wexpt(ϕ0) is the set of Fourier coefficients measured on
the experimental SHG intensity artificially rotated by an angle
ϕ0.

B. Experimental setup

The nonlinear polarimetric microscope used in this work
has been described in previous works [28]. The excitation
light source is a tunable Ti:sapphire laser that delivers 150 fs
pulses at a repetition rate 80 MHz. The incident wavelength
is set at 800 nm for SHG with a typical averaged power of
a few mW at the sample plane. The laser beam is reflected
by a dichroic mirror and focused on the sample by a high-
numerical-aperture (N.A.) objective (×40, N.A. 1.15). The
backward-emitted signal is collected by the same objective
and directed to an avalanche photodiode. The total intensity
is collected without any analyzer. Previous works have shown
that using no analyzer can lead to misleading interpretation in
case of polarization distortions by the sample [34], therefore
in the present case we first verify that the sample does not
exhibit such distortions following the methodology developed
in Ref. [34]. Images are performed by scanning the sample
with two galvanometric mirrors. The linear polarization of the
incident laser beam is continuously rotated in the sample plane
by an achromatic half-wave plate mounted on a step rotation

motor at the entrance of the microscope. For each value αi of
the polarization angle relative to X (in total 32 angles between
0◦ and 180◦), a SHG image is recorded. Finally, polarization
distortions (dichroism and ellipticity) originating from the
mirror reflection are preliminarily characterized following a
calibration procedure described previously [28]. The ellipticity
is found to be close to 20◦ (with a dichroism factor close to 0),
which is seen to induce a negligible bias in the estimation of
the p and q parameters. At last, the polarization mixing effects
induced by the high numerical aperture at both excitation
and collection steps can be ignored in a first approximation
for nonlinear dipoles principally lying close to the sample
plane [28,29], therefore the planar approximation used above
to calculate the SHG intensity radiation can be considered as
valid.

C. Results

As an illustration of the technique, polarization-resolved
SHG experiments have been performed on fibrils of collagen
type I of submicrometric diameters, coated on a glass substrate
following a procedure already established [35]. The choice of
this biological model is motivated by the fact that the fibrils
are quite isolated from each other and not embedded in a
dense tissue, which might distort polarization properties by
scattering or birefringence [34,36]. The structure of collagen
type I fibrils is furthermore well known and has been studied
previously by polarization resolved SHG imaging [19–21].

The usually proposed model supposes that collagen fibrils
or larger fibrils are made of SHG active one-dimensional
molecules oriented along a triple helix structure of given pitch
angle and period [19], which confers to them an averaged
orientation distribution function lying along a cone surface.
In this work we only assume that molecules are of one-
dimensional geometry, without any further hypothesis on the
orientational model. This allows us in particular to address
the question of distribution functions distortions in fibrils
assemblies which are not necessary of cylindrical symmetry.
At last, the macroscopic orientation of single fibrils can be
directly visualized from the SHG image, which allows direct
comparison with the estimated orientation parameter obtained
for ϕ0.

A typical SHG image from collagen fibrils depicted in
Fig. 2(a) shows elongated fibrils of various diameters and
lengths, averaged intensities and orientations. For each pixel
of this image, the mean orientation ϕ0 of the molecular
distribution, as well as the p and q order parameters, are
estimated by minimization of the E(w(p,q),ϕ0) estimator
introduced in Eq. (19), using sampling values of 10◦ between
0◦ and 180◦ for ϕ0, and 0.02 between −3 and 3 for (p,q).
The range values chosen for (p,q) are specific to collagen (see
Sec. V) and can be adapted for other types of samples. As
can be observed in Fig. 2(b), the ϕ0 values obtained are in
good agreement with the macroscopic orientation of the fibrils
in the sample plane, supporting the fact that molecules orient
on average along a main fibril direction (note that ϕ0 = 0◦ and
ϕ0 = 180◦ are equivalent angles, therefore leading to a mixture
of these two values in the image of horizontal fibrils). The p

and q order parameters images are represented in Figs. 2(c)
and 2(d), and also as histograms in Figs. 2(e) and 2(f). Note
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FIG. 2. (Color online) (a) SHG Intensity image of isolated colla-
gen type I fibrils coated on the sample plane surface. The intensity
scale is the sum of SHG signals over the 32 incident polarizations
(threshold: 60 photons/pixel). (b)–(d) Images of the parameters
obtained from a Fourier decomposition of the intensity polarization
dependence: (b) ϕ0 (degrees), (c) p, (d) q, (e) histogram of p on
the whole image, (f) histogram of q on the whole image. For the
histograms, the threshold of the analyzed pixels is 150 photons/pixel.
(g) Polar representation of the truncated distribution function P̃ (ϕ)
deduced from the averaged p and q values obtained over the whole
image.

that we chose to represent the images [Figs. 2(a)–2(d)] with
a threshold of 60 photons/pixel (SHG signal summed over
all 32 incident polarizations) in order to depict the large
population of fibrils and intensities available in this sample.
The threshold intensity chosen to represent the histograms
(150 photons/pixel) is higher since a high signal-to-noise ratio
is required to analyze the data with sufficient precision (see
Sec. IV).

The averaged value of p obtained over the whole image
is −0.47, which means that the first- and third-order contri-
butions to the angular distribution function P̃ (ϕ) are pointing
in opposite directions. This value leads to a depression in the
truncated distribution in its center, represented in Fig. 2(g),
meaning that there are more SHG-active molecules on the
side of the distribution than in its center. The two lobes of
this distribution are separated by an angular aperture of about
50◦, which is also close to the cone half-aperture angle found
in previous works on dense collagen structures, assuming
a cone surface shape [19,21]. This result provides direct

FIG. 3. (Color online) (a) SHG image of a selected region of
Fig. 2. (b) Corresponding image of p. (c) Polar representation of the
averaged distribution function P̃ (ϕ) obtained from the retrieved (ϕ0,
p, q) parameters on three regions of interest represented as white
rectangles in the SHG image. These functions are obtained using the
average of the retrieved parameter within the region of interest (only
active pixels are used): 1 (p = −0.4, q = 0.04, ϕ0 = 8◦), 2 (p =
−0.98, q = 0.04, ϕ0 = 42◦), and 3 (p = −0.38, q = 0.01, ϕ0 = 80◦).
The error of estimation on the parameters produces an error bar on
the angular distribution which is smaller than the thickness of the line
used to draw the distribution function; therefore, it is not represented
here.

evidence that the traditionally assumed distribution shape of
the cone surface can be considered as valid in ordered collagen
structures, which would be otherwise impossible to verify.
Third, the averaged value of q close to 0 means that the
first- and third-order-contribution functions exhibit the same
averaged orientation, supporting the fact that the global angular
distribution function exhibits an axis of symmetry (in 3D, this
would correspond to a cylindrical symmetry).

In order to visualize the distribution function obtained
locally in collagen fibrils, a small image section is selected
and represented in Fig. 3(a). This image contains different
populations: isolated collagen fibrils of different orientations
and an overlap between fibrils. In the regions where collagen
fibrils are clearly isolated, the truncated distribution function
P̃ (ϕ) is globally oriented in the direction of the fibrils, with a
two-lobes shape resembling the averaged distribution function
[Fig. 3(c)]. In a region where the two fibrils intersect, the
distribution function shows more-pronounced fine lobes at a
larger aperture angle. This distribution could be interpreted
as the result of a higher disorder, although it is not possible
to discriminate between a molecular origin for this disorder
(change of chemical composition and helix structures in
collagen) and a microscopic-scale disorder made of a different
fibrils orientations. Nevertheless this example illustrates the
potential of this method to provide a direct visualization of
the local disorder in a collagen fibrils sample. Using a pure
cone surface model as usually inferred would not be able to
provide this level of information, since it is not sensitive to
pure distribution shape changes.
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IV. ESTIMATION ACCURACY

A. Monte Carlo simulations

The accuracy of the estimation of the order parameters is
studied assuming that measurements are limited by Poisson
noise, which is verified in the present case. To quantify the
accuracy of the method, Monte Carlo experiments have been
performed. A polarization-resolved signal is created using
Eqs. (16) and (17), for a chosen set of parameters ϕ0, p1,
p3, and q3, and furthermore introducing Poisson noise to the
signal. The values of the parameters have been chosen to
be close to the averaged ones found experimentally. From
this signal, the parameters ϕ0 and (p, q) are then estimated
following the same methodology as previously described on
experimental data. Two thousand realizations are executed
for several levels of noise (varying the SHG total intensity
from 10 photons to 160 photons, summed over all 32 incident
polarization angles). For each level of noise the mean value
and the variance of the ϕ0 and (p, q) parameters are calculated.
These results are reported in Fig. 4. As expected, the variances
of the estimated parameters are seen to decrease linearly with
the number of photons. Moreover, stronger variance values are
observed for the q parameter. This can be due to the fact that
the determination of q relies on a set of equations [Eq. (17)]
which contains some redundancies, contrary to p. Overall, this
result indicates the level of signal to reach in order to estimate
the order parameters with a reasonable quality. For instance,
it is visible that the total number of photons should be above
150 to reach a good estimate of the precision with variances
below 0.05, for all parameters in the situation considered here.

B. Experimental accuracy

To give a quantitative picture of the experimental accuracy
and compare it to predictions from Monte Carlo simulations,

FIG. 4. Variances of the p, q, and ϕ0 parameters as functions
of the total number of photon (summed over the 32 incident
polarizations). Circles p, squares q, triangles ϕ0. Dashed lines show
Monte Carlo simulations using the initial parameters p = −0.4,
q = 0, ϕ0 = 45◦. Continuous lines show experimental variances
measured over seven experiments performed for a same region of
interest on a fibril of orientation ϕ0 ∼ 45◦ relative to X. Each point
represents the average of the variances obtained in a range of photon
number: [0–10] photons, [10–20] photons, etc.

seven experiments were performed on a same region of the
collagen type I fibrils sample, using identical experimental
conditions. A fibril with orientation ϕ0 ∼ 45◦, lying in the
middle of Fig. 2, is chosen to evaluate the (ϕ0, p, q) parameters
for each of its pixels (in total 78 pixels are analyzed) and
for each experiment. The variance of these parameters is
calculated for each pixel based on their seven estimated
values. This procedure allows a direct calculation of the
parameters’ variance, avoiding any dependence on possible
sample heterogeneities within the same collagen fiber. For
each pixel, the variance of the ϕ0 and (p, q) parameters
is determined as well as the corresponding total number
of photons, defined as the average of the total number of
photons measured over the seven experiments. Although this
procedure does not permit the exploration of a large range
of total number of photons and is based on a small number
of measurements, it gives a rough idea of the experimental
accuracy of the parameters. To represent the global behavior
of a given parameter in Fig. 4, the variances obtained for all
78 measured pixels are grouped by intensity ranges (of [0–10]
photons, [10–20] photons, etc.) and averaged for each range.
The obtained variances are seen to lie globally close to values
expected from the Monte Carlo simulation, which emphasizes
the role of Poisson noise in our measurement.

V. INTERPRETATION OF ORDER PARAMETERS

It is possible to relate the obtained p and q parameters to the
models used previously in the literature, using their definition
in terms of Fourier decomposition coefficients of the molecular
distribution.

A. Relation between order parameters and explicit molecular
distribution function

In a 2D molecular orientational distribution model where
P (ϕ) is a priori assumed, the pn and qn parameters of the
Fourier decomposition of P (ϕ) are defined as

pn =
∫ 2π

0
P (ϕ) cos(nϕ)dϕ,

(20)

qn =
∫ 2π

0
P (ϕ) sin(nϕ)dϕ.

We first consider the case of an f (θ,ϕ) distribution made of
a 3D cone filled with molecules with a total angular aperture
2ψ0, lying in the (X, Y ) plane along the X axis (we choose here
ϕ0 = 0 for simplification). In this situation, the corresponding
2D function P (ϕ) can be approximated by

P (ϕ) = 1

2ψ0
Rect(ϕ, − ψ0,ψ0), (21)

with the Rect function defined as 1 for −ψ0 � ϕ � ψ0 and 0
elsewhere. This leads to

pn = sin(nψ0)

πnψ0
, qn = 0. (22)

When ψ0 → 0 (small-cone apertures) then pn → 1/π , and
when ψ0 → π/2 (large apertures) then p2n+1 → (−1)n

(2n+1)π2/2 ;
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FIG. 5. (Color online) (a) Dependency of the p parameters as a
function of the cone half aperture ψ0 for two models of the molecular
2D distribution function P̃ (ϕ): filled cone (continuous line), cone
surface (dashed line). (b) Different distributions P̃ (ϕ) represented as
polar plots in the sample plane, for p = 0.5, 0, −1/3, −1, −3.

therefore, p = p3/p1 → −1/3, which fixes a lower limit of
the measurable p parameter in this case.

We then consider the case of a cone surface distribution
where the molecules only lie on the surface of a cone of angular
aperture 2ψ0. This situation is specifically used to explore
molecular order in collagen based samples. In this case,

P (ϕ) � 1
2 [δ(ϕ − ψ0) + δ(ϕ + ψ0)], (23)

which leads to

pn = 1

π
cos(nψ0), qn = 0. (24)

When ψ0 → 0 then pn → 1/π , and when ψ0 → π/2 then
p2n+1 → 0. Furthermore, for ψ0 = π/2 − ε, then p2n+1 �
1
π

(−1)n(2n + 1)ε and thus p = p3/p1 � −3. In this case, the
minimum expected value for p is therefore lower than for a
filled cone distribution.

The dependencies of p as a function of the cone half
aperture ψ0 are represented in Fig. 5(a) for the two models,
filled cone and cone surface. From this figure one can make
several observations. First, using p to determine ψ0 can
lead to different solutions depending on the model used,
since the interpretation of ψ0 is model dependent. In the
present approach, a cylindrical symmetry distribution, is
defined by one unique order parameter p, which is not model
dependent and is representative of the accessible quantity from
polarization-dependent SHG. Second, one can draw additional
conclusions on the shape of the distribution, based on the
measurement of p and q. Indeed, in the case where p takes
large negative values (typically p < −1/3), the 2D distribution
function exhibits angularly a depression in its center, which
makes it resemble more a surface cone distribution than a
filled cone. This is illustrated in the polar representation of
the P̃ (ϕ) distribution [Fig. 5(b)]. Note that any kind of hollow
distribution in its center would lead to a similar behavior as
observed for the cone surface.

In the case of investigations on collagen, models of cone
surfaces have been extensively used and typical values found in
the literature lie close to ψ0 ∼ 45◦ to 60◦ [17,21], leading to p

ranging from −0.3 to −1.4, which is the range found in single
isolated fibrils in our measurements. The determination of p

and q provides, however, extra information here which is not
accessible in approaches based on a priori supposed models, in
particular by revealing explicitly the hollow shape distribution
and possible deviations from a cylindrical symmetry.

Finally, note that this whole derivation is based on the initial
assumption that the angular distribution is made of pure 1D
molecules exhibiting a unique diagonal βzzz coefficient, which
has been shown to be robust in the case of collagen studies.
Introducing a more complex molecular symmetry in Eq. (5)
would lead to a deviation of the p values deduced here, which
can be strong if significant off-diagonal molecular nonlinear
coefficients arise. Along the same line as previously developed
approaches [16,17,19–21], the estimation of p therefore relies
on either an assumed or an a priori known molecular structure.

B. Relation between order parameters and microscopic
tensorial coefficients

The structural parameters of molecular assemblies are often
expressed in terms of their microscopic tensorial nonlinear
coefficients, which relate the molecular-order information to
a crystallographic point of view. In the case of collagen, a C6

symmetry is assumed from the known crystalline structure of
this macromolecule [2]. Denoting by 3 the high-symmetry
axis of the C6 symmetry cylinder and (1, 2) its perpen-
dicular plane, the collagen symmetry is therefore reduced
to two microscopic tensorial coefficients under nonresonant
excitation conditions: χ

(2)
333 and χ

(2)
311 = χ

(2)
322 (with all index

permutation permitted in case of valid Kleinman symmetry
conditions). The ratio χ

(2)
333/χ

(2)
311, often used to characterize

molecular order in collagen, has been found to range between
0.8 and 2.6 [2,16,17,19–21]. A relation between χ

(2)
333/χ

(2)
311 and

the aperture angle ψ0 of the equivalent cone surface model
mentioned above can be deduced from an expression similar
to Eq. (4), leading to Ref. [21]

tan2(ψ0) = 2
χ

(2)
311

χ
(2)
333

. (25)

In the present analysis, the value found for p = −0.4 in
isolated fibrils leads to χ

(2)
333/χ

(2)
311 = 1.85, which lies in the

range of values previously found in tissues.

VI. CONCLUSION

We have introduced a generic approach for the analysis
of polarization-dependent SHG microscopy measurements
applied to molecular and biological structural imaging. This
approach is based on a 2D derivation of the problem, account-
ing for the fact that the read-out of the polarization information
in the sample plane necessarily reduces the problem to the
investigation of an angular distribution function lying in this
plane. We derived a simple way to retrieve molecular-order
parameters from a Fourier decomposition of the SHG polar-
ization responses and showed their estimation precision as a
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function of the signal level based on a Poisson noise statistics.
The obtained parameters, based on a circular decomposition of
the molecular distribution function, are shown to contain richer
information than the traditional model-oriented estimations.
We illustrated the application of this new approach for the
imaging of molecular order in collagen type I fibrils, where
order information can be obtained at the microscopic scale
without the need to infer a specific orientational model.
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APPENDIX A: FROM 3D TO 2D EXPRESSIONS OF THE
NONLINEAR SHG MACROSCOPIC RESPONSE

The expression of the macroscopic nonlinear SHG response
is based on calculation of the βIJK (�) molecular components
expressed in the macroscopic frame (X, Y,Z). Assuming
molecules of one-dimensional symmetry along a z direction
in the sample plane, βijk possesses a single nonvanishing
component βzzz (denoted β) in the molecular frame. We denote
by (θ,ϕ) the orientation of the z axis in the (X, Y,Z) frame. In
the case that the incident polarization lies in the (X, Y ) plane,
only four macroscopic coefficients need to be considered
(index permutation are allowed):

βXXX(θ,ϕ) = β sin3 θ cos3 ϕ,

βXYY (θ,ϕ) = β sin3 θ cos ϕ sin2 ϕ,
(A1)

βYYY (θ,ϕ) = β sin3 θ sin3 ϕ,

βYXX(θ,ϕ) = β sin3 θ cos2 ϕ sin ϕ.

Therefore, the βIJK coefficients [with (I, J,K) = (X, Y )]
can be written in a general way as

βIJK (θ,ϕ) = β∗
IJK (ϕ) sin3 θ, (A2)

with β∗
IJK (ϕ) encompassing all ϕ-dependent sinusoidal func-

tions. Finally, the macroscopic nonlinear tensorial coefficients
can be written as

χ
(2)
IJK=(X, Y ) = N

∫ 2π

0

∫ π

0
βIJKf (θ,ϕ) sin θdθdϕ

= N

∫ 2π

0

∫ π

0
β∗

IJK (ϕ)f (θ,ϕ) sin4 θdθdϕ. (A3)

APPENDIX B: SHG RESPONSE FROM ENSEMBLE
OF MOLECULES

In this part we derive the expression of the Fourier
coefficients of the SHG intensity polarization dependence for
an ensemble of molecules. We consider a one-dimensional
planar molecule lying in the sample plane, its main nonlinear
coefficient βzzz being denoted β. The z axis is oriented with an
angle ϕ relative to the macroscopic axis X. α is the angle of

the incident linear polarization E relative to X. The amplitudes
of the molecular nonlinear induced dipole along the X and Y

axes are proportional to

p2ω
X = E2

0β cos ϕ cos2(α − ϕ),
(B1)

p2ω
Y = E2

0β sin ϕ cos2(α − ϕ),

with E0 being the amplitude of incoming fundamental field.
Using trigonometric formulas, these expressions can be

written as

p2ω
X = A0 + Ac cos(2α) + As sin(2α),

(B2)
p2ω

Y = B0 + Bc cos(2α) + Bs sin(2α),

where

A0 = u cos ϕ, B0 = u sin ϕ,

2Ac = u[cos ϕ + cos(3ϕ)],
(B3)

2As = u[sin ϕ + sin(3ϕ)],

2Bc = u[− sin ϕ + sin(3ϕ)],

2Bs = u[cos ϕ − cos(3ϕ)],

with u = E2
0β/2.

In the case of a distribution made of an ensemble of
molecules, we introduce the expansion of the molecular
distribution on the basis of circular functions:

P (ϕ) = p0 + p1 cos(ϕ − ϕ0) +
∑
n�2

pn cos(nϕ − nϕ0)

+
∑
n�2

qn sin(nϕ − nϕ0). (B4)

The coherent SHG intensity from this molecular distribution
is deduced from its macroscopic nonlinear induced dipole,
defined as the orientational average of the molecular nonlinear
induced dipole:

I = ∣∣N 〈
p2ω

X

〉∣∣2 + ∣∣N 〈
p2ω

Y

〉∣∣2
, (B5)

with N being the molecular density and 〈· · ·〉 being the
orientational averaging operation, defined as

〈A(ϕ)〉 =
∫ 2π

0
A(ϕ)P (ϕ)dϕ. (B6)

This orientation averaging involves moments of the molec-
ular distribution,

〈cos(mϕ)〉 =
∫ 2π

0
cos(mϕ)P (ϕ)dϕ, (B7)

which can further be written as

〈cos(mϕ)〉 = pmπ cos(mϕ0) − qmπ sin(mϕ0). (B8)
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The same calculation is made for the sine moment:

〈sin(mϕ)〉 = pmπ sin(mϕ0) + qmπ cos(mϕ0). (B9)

The different moments necessary for the calculation of the
macroscopic nonlinear dipole are simply

〈cos(ϕ)〉 = p1π cos(ϕ0), 〈sin(ϕ)〉 = p1π sin(ϕ0),

〈cos(3ϕ)〉 = p3π cos(3ϕ0) − q3π sin(3ϕ0), (B10)

〈sin(3ϕ)〉 = p3π sin(3ϕ0) + q3π cos(3ϕ0).

Therefore,

〈A0〉 = up1π cos ϕ0, 〈B0〉 = up1π sin ϕ0,

2

π
〈Ac〉 = u[p1 cos ϕ0 + p3 cos(3ϕ0) − q3 sin(3ϕ0)],

2

π
〈As〉 = u[p1 sin ϕ0 + p3 sin(3ϕ0) + q3 cos(3ϕ0)], (B11)

2

π
〈Bc〉 = u[−p1 sin ϕ0 + p3 sin(3ϕ0) + q3 cos(3ϕ0)],

2

π
〈Bs〉 = u[p1 cos ϕ0 − p3 cos(3ϕ0) + q3 sin(3ϕ0)].

The SHG intensity can finally be written as

I (α) = a0 + a1 cos[2(α − ϕ0)] + a2 cos[4(α − ϕ0)]

+ b1 sin[2(α − ϕ0)] + b2 sin[4(α − ϕ0)], (B12)

with

a0 = A

16

(
5p2

1 + p2
3 + q2

3

)
, a1 = A

4

(
p2

1 + p1p3
)
,

(B13)

a2 = A

8
p1p3, b1 = A

4
p1q3, b2 = A

8
p1q3,

where A = N2E4
0π

2β2.
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