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Controllable nonlinear effects in an optomechanical resonator containing a quantum well
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We study nonlinear effects in an optomechanical system containing a quantum well. The nonlinearity due to
the optomechanical coupling leads to a bistable behavior in the mean intracavity photon number and substantial
squeezing in the transmitted field. We show that the optical bistability and the degree of squeezing can be
controlled by tuning the power and frequency of the pump laser. The transmitted field intensity spectrum consists
of six distinct peaks corresponding to optomechanical, polariton, and hybrid resonances. Interestingly, even
though the quantum well and the mechanical modes are not directly coupled, their interaction with the common
quantized cavity mode results in appearance of hybrid resonances.

DOI: 10.1103/PhysRevA.85.043824 PACS number(s): 42.65.Pc, 42.50.Wk, 42.50.Ct, 42.50.Lc

I. INTRODUCTION

When one of the mirrors of an optical cavity is set to
move, the radiation pressure exerted by the field induces
a coupling between its position and the intensity of the
cavity field. This modifies the optical path in an intensity-
dependent way and leads to nonlinearity in the system. The
nonlinearity, which is analogous to Kerr nonlinearity, gives
rise to nonclassical features such as quantum noise reduction
below the shot-noise level [1] and optical bistability [2–5]. In
a pioneering work, Braginsky [6] predicted a classical effect
in which the radiation pressure of light field confined in a
resonator gives rise to the effect of dynamic back action that
is caused by the finite cavity decay time. In recent years, there
has been a continuously growing interest in optomechanical
systems in connection with the possibility of generating robust
continuous-variable entanglement between the mechanical
and optical modes [7–10], demonstration of optomechanically
induced transparency [11–14], and four wave mixing [5]
among others.

From an application viewpoint, optomechanical systems
have the potential for ground-state cooling [15–17], optical
wavelength conversion of quantum states [18], gravitational
wave detection, for example, in the laser interferometer
gravitational wave observatory (LIGO) [19,20], and precision
force sensing [21]. It is also possible to slow and stop light
by using an optomechanical array [22] which will allow the
light storage and the realization of compact optical memory.
Implementation of these applications requires sufficiently
strong optomechanical coupling and high optical and me-
chanical quality factor. One possible way to enhance the
optomechanical coupling is to pump the cavity with a strong
laser. Using this method, the strong coupling regime has
been observed experimentally [23]. Pumping the cavity with
a strong laser also induces nonlinearity in the system which is
the source for interesting nonclassical effects.

In this work, we explore the nonlinear and quantum
statistical properties of an optomechanical resonator con-
taining a quantum well. In particular, we investigate optical
bistability, intensity, and squeezing spectra of the transmitted
field. It turns out that the mean intracavity photon number
exhibits bistable behavior which can be controlled by the

input pump laser power and frequency. The intensity spectrum
of the transmitted field has six distinct peaks corresponding
to optomechanical, polariton, and hybrid resonances. The
appearance of hybrid peaks—a superposition of polariton and
optomechanical resonances—is due to the indirect coupling of
the excitons and the mechanical modes via the the common
cavity mode. We show that such a hybrid resonance can
be amplified and/or controlled by tuning the pump power
externally for certain parameter regimes. Furthermore, we
demonstrate that the transmitted field exhibits a substantial
degree of squeezing for optimum pump power at the hybrid
resonance frequencies. The generated squeezing can also be
controlled by tuning the pump-laser power.

II. MODEL AND HAMILTONIAN

We consider a generic optomechanical system containing
a single quantum well. The schematic of our system is shown
in Fig. 1. The mechanical resonator with frequency ωm is
subjected to a force proportional to the mean intracavity photon
number. The cavity mode of frequency ωc is driven by an
intense pump laser of frequency ωp and power P through
the port mirror. In addition, the cavity photons interact with
excitons in the quantum well. We assume that the density
of excitons is small so that exciton-exciton scattering can
be ignored which allows us to treat the exciton-cavity mode
interaction linearly. The interaction Hamiltonian of the system
is given by

H = h̄δbb
†b + h̄�a†a + 1

2h̄ωm(p2 + q2) + h̄g(a†b + b†a)

−h̄gma†aq + ih̄εp(a† − a). (1)

The first term, with δb = ωb − ωp being the pump laser-
exciton detuning, represents the free energy of the excitons
in the quantum well and the second term proportional to
the cavity-laser detuning � = ωc − ωp, represents the energy
of the cavity mode. The third term is the energy of the
mechanical resonator described by the dimensionless position
q and momentum, p operators which satisfy the commutation
relation [q,p] = ih̄. The fourth and fifth terms describe the
coupling of the cavity mode with the exciton and mechanical
resonator, respectively. The last term describes the interaction
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FIG. 1. (Color online) Schematic of optomechanical system
coupled to a high-quality cavity containing a quantum well.

of the cavity mode with the pump laser of amplitude εp =√
2κP/h̄ωp with 2κ being the cavity decay rate. a and b

are annihilation operators of the cavity mode and the exciton
mode, respectively, and satisfy the commutation relations
[a,a†] = 1 and [b,b†] = 1. gm = β

√
h̄/2ωmm is the coupling

strength between the mechanical resonator and the cavity with
β = ∂ωc/∂x and m resonator effective mass; g is the coupling
constant between the cavity mode and excitons in the quantum
well. In order to fully describe the dynamics of the system
it is essential to include the fluctuation dissipation processes
affecting the optical, mechanical, and exciton modes. Using
the Hamiltonian (1) and taking into account dissipation
processes, one readily obtains the following quantum Langevin
equations:

da

dt
= −(κ + i�)a + igmqa − igb + εp +

√
2κain, (2)

db

dt
= −(γ + iδb)b − iga +

√
2γ bin, (3)

dp

dt
= −γmp − ωmq + gma†a + ξ (t), (4)

dq

dt
= ωmp, (5)

where 2γ is the spontaneous decay rate of excitons and ain

and bin are input vacuum noise whose nonzero correlation
functions in the frequency domain are given by

〈ain(ω)a†
in(ω′)〉 = 2πδ(ω − ω′), (6)

〈bin(ω)b†in(ω))〉 = 2πδ(ω − ω′). (7)

The mechanical mode is affected by a viscous force of damping
rate γm and by a Brownian stochastic force with zero-mean ξ .
This Brownian force is, in general, a non-Markovian Gaussian
noise [10], however, in the limit of a large mechanical quality
factor Qm = ωm/γm � 1 the correlation function in the
frequency domain can be written to a good approximation as

〈ξ (ω)ξ (ω′)〉 � γm(2nth + 1)δ(ω + ω′), (8)

where nth = [exp(h̄ωm/kBT ) − 1]−1 is the mean number of
thermal photons with kB being the Boltzmann constant.

III. OPTICAL BISTABILITY INDUCED BY
OPTOMECHANICAL COUPLING

Optical bistability in semiconductor microcavities has been
observed experimentally [24]. There are several mechanisms

that would lead to bistable behavior in these systems. One
possible mechanism is creating nonlinearity in the system
which can be achieved by increasing the density of exciton
which results in exciton-exciton scattering. An alternative
way to create the bistable behavior is via bleaching of the
Rabi splitting [2]. Earlier, Gibbs et al. [25] demonstrated
room temperature optical bistability of the intracavity photon
number in semiconductor microcavities. Here we propose an
alternative scheme for realization of optical bistability using
the mechanical modes of a vibrating mirror of the cavity
in a regime where the earlier proposals fail. In essence it
is the nonlinearity due to optomechanical coupling that is
responsible for bistability behavior in this scheme.

Solving the expectation values of Eqs. (2)–(5) in the steady
state we obtain

〈a〉 = εp

κ0 + i
(
�0 − 2g2

mIa

ωm

) , (9)

where Ia = |〈a〉|2 is the mean intracavity photon number in
the steady state, κ0 = κ + λ2γ and �0 = � − λ2δb with λ2 =
g2/(γ 2 + δ2

b). It then follows from (9) that

Ia

[
κ2

0 +
(

�0 − 2g2
mIa

ωm

)2
]

= |εp|2. (10)

Since this equation is cubic in Ia the system may exhibit
bistability for a certain parameter range. As can be seen
from Eq. (10), the bistability in the intracavity photon
number disappears when we set gm = 0. To clearly see the
regime where the system exhibits bistability behavior we next
derive the bistability condition for our scheme. Imposing the
condition that ∂|εp|2/∂Ia = 0, we obtain

κ2
0 + �2

0 − 8g2
m�0Ia

ωm
+ 12g4

mI 2
a

ω2
m

= 0. (11)

Therefore, the system can exhibit bistability when the discrim-
inant of the above quadratic equation is positive, which gives
the bistability condition as

g4
m

ω2
m

(
�2

0 − 3κ2
0

)
> 0. (12)

We immediately see from this equation that the bistability
condition fails if gm = 0 or ωm � gm. Thus the presence of
the mechanical modes is imperative for the system to exhibit
bistability behavior. Assuming the coupling constant gm is
nonzero and the frequency ωm is finite, the bistability condition
can be written as �2

0 − 3κ2
0 > 0 or explicitly,

�2 − 3κ2 − 2λ2(�δb + 3κ) + λ4
(
δ2
b − 3γ 2

)
> 0. (13)

We first consider a special case in which we remove the
quantum well from the cavity, that is, no photon-exciton
coupling (g = 0). The bistability condition, setting λ = 0 in
Eq. (13), reduces to

�2 − 3κ2 > 0. (14)

This is simply the optical bistability condition for the
optomechanical cavity without the quantum well. In Fig. 2(a),
the intracavity mean photon number versus the cavity-pump
laser detuning � for pump intensity P = 10 nW is illustrated.
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When the pump laser intensity is P = 10 nW the curve is
nearly Lorentzian. However, for sufficiently strong input pump
laser power, the cubic equation for the mean intracavity photon
number Eq. (10) yields three real roots, which is a signature
of bistable behavior. The smallest and largest roots are stable
while the middle one is unstable. Graphically, as the pump
laser power increases the spectra of the mean photon number
become asymmetric and gives rise to three possible values [see
Fig. 2(a)]. We also see from this figure that for the bistable
behavior to occur, large cavity-pump detuning is necessary
with the corresponding large-pump laser power. The bistable
behavior can also be seen from the mean intracavity photon
number versus the pump power curve [see Fig. 2(b)]. Here
we have taken the cavity-pump laser detuning to be � = ωm,
an appropriate regime for cooling the mechanical resonator
close to the quantum ground state [26]. As can be seen from
Fig. 2(b), the system exhibits optical bistability for large-pump
laser power. The bistability can be obtained by scanning the
input pump power in two directions. For example, by gradually
increasing the pump power from zero to a sufficiently strong
pump power, in our case, for parameters given in Fig. 2(b),
about ∼1.85 μW, one finds the lower bistable point. The
hysteresis then follows the arrow and jumps to the upper
branch. To obtain the other unstable point, one needs to scan the
input pump power to lower values, which appears at ∼100 nW.
Note that the position of the bistable points strongly relies on
cavity-pump laser detuning and other system parameters.

We next proceed to study the effect of the presence of the
quantum well in the cavity on the optomechanical bistability.

No exciton g 0

P 130 nW

P 100 nW

P 50 nW

P 10 nW

40 20 0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

MHz

10
10

I a

No exciton g 0

0.0 0.5 1.0 1.5 2.0
0

5

10

15

P W

10
9

I a

(a)

(b)

FIG. 2. (Color online) Plots of the mean intracavity photon
number versus (a) cavity-pump laser detuning �(MHz) for various
values of the pump-laser power (b) input pump power for cavity-pump
detuning � = ωm. Other parameters are κ = 2π × 105 Hz,gm =
250 Hz, ωm = 2π × 6.3 MHz, γm = 40 Hz, and δb = 0.

Here we choose experimentally realizable parameters for
optomechanical systems [27] with the high quality factor
Qm = ωm/γm = 106. We also assume that the frequency of
the mechanical mode ωm is greater than the cavity decay rate
2κ so that the system would be in the good cavity limit, a
prerequisite for resolved sideband cooling of micromechanical
resonators [28].

The effect of the presence of a quantum well is presented
in Fig. 3. In Fig. 3(a), we plot the mean intracavity photon
number as a function of cavity-pump detuning � for input
pump power P = 300 nW. This figure clearly shows that
the system exhibits optical bistability for sufficiently large
exciton-pump detuning. The bistable behavior disappears near
the exciton-cavity resonance (δb ∼ 0). It is also interesting to
see that the regime for which the bistability occurs strongly
relies on the value of the exciton-pump detuning. The larger the
detuning, the wider the power range for which the bistability
appears. This can be understood by looking at the bistability
condition given by Eq. (13). If the term λ4(δ2

b − 3γ 2
b ) is

less than zero, then the presence of the exciton appears to
destroy or diminish the bistable behavior depending on the
cavity-exciton coupling strength g or λ. In order to make
this term positive, exciton-pump detuning should satisfy the
inequality δ2

b > 3γ 2, which is the bistability condition for
semiconductor microcavity containing a quantum well [24].
Thus the bistability condition for our scheme can be satisfied
if the contribution of the term λ4(δ2

b − 3γ 2
b ) is sufficiently large
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FIG. 3. (Color online) Plots of mean intracavity photon number
versus (a) the cavity-pump laser detuning for input power P =
300 nW (b) input pump power for cavity-pump laser detuning
� = ωm. Other parameters are γ = 3.6 MHz, g = 10γ , κ = 2π ×
105 Hz,gm = 250 Hz, ωm = 2π × 6.3 MHz, γm = 40 Hz, and for
various values of cavity-exciton detuning δb. The bistable behavior
disappears near the exciton-pump resonance.
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positive. Furthermore, the dependence of the mean intracavity
photon number on the input pump power is illustrated in
Fig. 3(b). This figure reveals that for cavity-pump detuning
fixed at � = ωm the intracavity mean photon number exhibits
bistability for nonzero exciton-pump detuning δb. As the
detuning δb increases, the minimum pump power for which
the bistability occurs increases. This also confirms our earlier
assertion that the exciton-pump detuning has to be large
enough to observe the bistable behavior indicating, in addition
to the pump power, the pump frequency can be used to control
the bistable behavior.

IV. INTENSITY AND FLUCTUATION SPECTRA

Here we study the intensity and squeezing spectra of the
transmitted field. We first linearize the quantum Langevin
equation by writing the operators as the sum of their mean
values and the corresponding fluctuation operators, that is, a =
〈a〉 + δa, b = 〈b〉 + δb, p = 〈p〉 + δp, and q = 〈q〉 + δq.
In view of this the linearized Langevin equations for the
fluctuation operators read

δȧ=−[κ+i(�−gm〈q〉]δa+iGδq − igδb+
√

2κain, (15)

δḃ = −(γ + iδ)δb − igδa +
√

2γ bin, (16)

δṗ = −γmδp − ωmδq + G∗δa + Gδa† + ξ, (17)

δq̇ = ωmδp, (18)

where 〈q〉 = gmIa/ωm and G = gm〈a〉. Since we are interested
in spectra of the transmission field, it is more convenient to
work in the frequency domain. To this end, we write Eqs. (15)–
(18) in the Fourier space, which can be written in matrix form
as

M(ω)X(ω) = N(ω), (19)

where X(ω) = (δa,δa†,δb,δb†,δp,δq)T , N(ω) = (
√

2κain,√
2κa

†
in,

√
2γ bin,

√
2γ b

†
in,ξ,0)T , and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

η+ 0 ig 0 0 −iG

0 η− 0 ig 0 iG∗

ig 0 υ+ 0 0 0

0 −ig 0 υ− 0 0

−G∗ −G 0 0 iω + γm ωm

0 0 0 0 −ωm iω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where

η± = κ + i(ω ± �eff), (21)

υ± = γ + i(ω ± δb), (22)

and the effective detuning is given by

�eff = � − g2
mIa/ωm. (23)

Solving the matrix equation straightforwardly we obtain
the solution for the cavity field fluctuation operator δa to be

δa(ω) = ζ1ain + ζ2a
†
in + ζ3bin + ζ4b

†
in + ζ5ξ, (24)

where the coefficients are given by

ζ1 =
√

2κυ+
d

{
(g2 + υ−η−)

[
ω2

m + ω(iγm − ω)
]

+ i|G|2ωmυ−
}
, (25)

ζ2 = i

√
2κ

d
G2υ+υ−ωm, (26)

ζ3 = −i

√
2γ g

d

{
(g2 + υ−η−)

[
ω2

m + ω(iγm + ω)
]

+ i|G|2ωmυ−
}
, (27)

ζ4 = −
√

2γ g

d
G2υ+ωm, (28)

ζ5 = iGυ+ωm

d
[g2 + η−υ−], (29)

d = (g2 + υ+η+)(g2 + υ−η−)
[
ω(iγm − ω) + ω2

m

]
− i|G|2ωm[g2(υ+ − υ−) − υ+υ−(η+ − η−)]. (30)

The solution (24) together with its Hermitian conjugate δa†(ω)
suffice to study the intensity and squeezing spectra of the
transmitted field.

A. Intensity spectrum of transmitted field

The intensity spectrum of the transmitted field is given by
the Fourier transform of the two time correlation functions,
〈δa†

out(t + τ )δaout(t)〉:

S(ω) =
∫ ∞

−∞
〈δa†

out(t + τ )δaout(t)〉e−i(ω−ω0)τ dτ. (31)

Using the standard input-output relation âout = √
2κâ − âin

[30], the power spectrum can be written as

S(ω) = 2κ

∫ ∞

−∞
〈δa†(t + τ )δa(t)〉e−i(ω−ω0)τ dτ

= 2κCa†a(ω), (32)

where 2πCa†a(ω)δ(ω + ω′) = 〈δa†(ω)δa(ω′)〉. Note that the
expression for δa†(ω) can be obtained from the expression
for δa, by invoking the property of the Fourier transform∫ ∞
−∞ ζ ∗

i (τ )e−iωτ dτ = ζ ∗
i (−ω):

δa†(ω) = ζ ∗
1 (−ω)a†

in + ζ ∗
2 (−ω)ain + ζ ∗

3 (−ω)b†in
+ ζ ∗

4 (−ω)bin + ζ ∗
5 (−ω)ξ. (33)

Making use of the correlation properties for noise forces and
Eqs. (24) and (33), the intensity spectrum can be put in the
form,

S(ω) = 2κ[|ζ2(−ω)|2 + |ζ4(−ω)|2
+ γm(2nth + 1)|ζ5(−ω)|2]. (34)

Here we are interested in the spectrum of the transmitted field
in the regime where the system is stable or the bistability
condition (13) fails. In other words, when the cubic equation
for the mean intracavity photon number has one real and two
complex roots. For example, as shown in Fig. 3, when the
exciton-laser detuning is zero (δb = 0), the system is stable
(i.e., Ia has one real root). In addition, we assume that the
exciton-cavity mode coupling is large enough that the system
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is in the strong coupling regime, g � γ,κ . It is well known
that, in the strong coupling regime, due to strong exchange of
photons between the cavity mode and the excitons, the exciton-
cavity coupled system (polariton) emission spectrum consists

of two symmetric peaks separated by 2
√

g2 + δ2
b/4 [29]. In

our system, in addition to these polariton resonances, there are
resonances due to the exchange of energy between the cavity
and the mechanical modes or optomechanical resonances.

In order to understand the physics behind the transmitted
field spectrum and account for all peaks that would appear in
the spectrum, we assume that the photon fluctuation does not
affect that of the mechanical fluctuation appreciably. In effect,
the evolution of the momentum fluctuation in Eq. (17) can
approximately be written as

δṗ � −γmδp − ωmδq + ξ. (35)

Other equations (15), (16), and (18) remain unchanged. In this
approximation, the evolution matrix (20) takes the form,

Mapx �

⎛
⎜⎜⎜⎜⎜⎝

η+ 0 ig 0 0 −iG

0 η− 0 ig 0 iG∗
ig 0 υ+ 0 0 0
0 −ig 0 υ− 0 0
0 0 0 0 iω + γm ωm

0 0 0 0 −ωm iω

⎞
⎟⎟⎟⎟⎟⎠. (36)

This shows that the mechanical fluctuation is decoupled from
the influence of the optical fluctuations while the mechanical
fluctuations are still influencing the optical fluctuations.

It is noteworthy to mention here that the width and position
of the peaks are determined by imaginary and real parts of the

eigenvalues of the matrix Mapx. For δb = 0 the eigenvalues of
Mapx turn out to be

λ1,2 = i

2
(κ + γ ) + 1

2
(�eff ±

√
4g2 + [i(γ − κ) + �eff]2),

(37)

λ3,4 = i

2
(κ + γ ) − 1

2
(�eff ±

√
4g2 + [i(κ − γ ) + �eff]2),

(38)

λ5,6 = iγm

2
± 1

2

√
4ω2

m − γ 2
m. (39)

It is obvious to see from equations that the transmitted field
spectral would consist of six peaks corresponding to the six
different eigenvalues. It is important to mention here that if
we consider two independent systems (optomechanical cavity
without quantum well and a cavity containing a quantum well
without mirror motion), each system is known to show two
resonance peaks in their respective strong coupling regimes.
However, the coupling of these two subsystems gives rise to
six distinct peaks in the transmitted field spectrum. While
such a description gives useful insight into the physics behind
the number peaks and the type of resonances that would
appear in the system, one has to relax the earlier assumption
that the optical fluctuation does not appreciably affect that
of the mechanical mode fluctuation, in order to obtain the
correct spectral properties. To this end, it is important to
emphasize that all spectra plotted in this work are without
the aforementioned approximation.

We begin by considering the effect of the exciton-
photon coupling on the transmitted spectrum. Figure 4(a)
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FIG. 4. (Color online) Plots of normalized transmitted field intensity for input pump power P = 10 mW, γ = 3.6 MHz, κ = 2π ×
105 Hz,gm = 300 Hz, γm = 40 Hz, � = ωm = 2π × 2.7 MHz, nth = 175, δb = 0, and for various values of photon-exciton coupling strength
g: (a) g = 14.5γ , (b) g = 13γ , (c) g = 12.5γ , (d) g = 12γ , (e) g = 11γ , (f) g = 10γ .
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illustrates the transmitted field spectrum for g = 14.5γ ,
� = ωm = 2π × 2.7 MHz, γ = 3.6 MHz, γm = 40 Hz, and
gm = 300 Hz. The two dominant peaks, centered at ω − ω0 ∼
±ωm ∼ ±17 MHz, represent the optomechanical resonance,
while the other two peaks, centered at ω − ω0 ∼ ±(�eff +√

4g2 + �2
eff)/2 ∼ ±52 MHz corresponds to the polariton

resonances. Since the effective detuning �eff is small for large
g, the four peaks corresponding to Eqs. (37) and (38) converge
to two peaks for relatively large g. Thus the optomechanical
and the polariton resonances are clearly distinguishable. This
can be explained by noting that under strong exciton-photon
coupling, there is high photon density that induces strong
photon pressure on the resonator which enhances the amplitude
of the mechanical mode leading to optomechanical resonance.
If one decreases the exciton-photon coupling to g = 13γ ,
�eff becomes larger and two small side peaks start to split
leading to the formation of four hybrid peaks involving cavity,
exciton, and mechanical modes as shown in Fig. 4(b). For a
slight decrease in the coupling constant g, the hybrid peaks
become very distinct and two of the four peaks centered

at ω − ω0 ∼ ±(�eff −
√

4g2 + �2
eff)/2 ∼ ±40 MHz emerge

stronger [see Fig. 4(c)].
It is interesting to note that as the coupling g decreases

further the photon density in the cavity decreases and hence
the radiation pressure leading to a decrease in the amplitude
of the optomechanical resonance at the expense of enhanced
amplitude for the dominant hybrid resonance, as shown in
Fig. 4(d). Figure 4(e) shows that for g = 11γ not only the
optomechanical resonance but also the amplitude of the two
hybrid peaks becomes smaller. This signifies the first stage
for disappearance of the pure optomechanical and polariton
resonances and emergence of hybrid resonance. Finally, as
shown in Fig. 4(f), when the exciton-photon coupling reaches
to g = 10γ , the pure optomechanical as well as polariton
resonance completely disappear and a strong hybrid resonance
emerges. This is one of the main results of this work.

In order to see the effect of pump-laser power on the
transmitted field spectrum, we plot in Fig. 5 the transmitted
field spectrum for various pump power strength. Figures 5(a)–
5(c) represent the transmitted spectrum for pump power P =
10 mW,15 mW, and 20 mW, respectively. We note from these
figures that when the pump power increases, the amplitude of
the normalized optomechanical resonance peaks as well as the

small side hybrid peaks start to decrease while the amplitude of
the dominant hybrid peaks remain unaffected. In addition, an
increase in the pump power gives rise to a shift in the hybrid
resonance frequencies—the frequencies of the small hybrid
peaks become larger while that of the dominant peaks gets
smaller. This can be understood by noting that the splitting
between the blue- and red-detuned peaks is proportional to the
optomechanical (gm) as well as exciton-photon (g) coupling.
These couplings are strongly dependent on the pump power or
the number of photons in the cavity. The higher the number of
photons in the cavity, the stronger these couplings become
and hence the larger the separation between the blue-and
red-detuned hybrid peaks.

B. Quadrature squeezing of transmitted field

The analysis of Sec. III has been used effectively to
illustrate the bistable behavior in the mean intracavity photon
number which is attributed to the nonlinearity due to the
optomechanical coupling. In this section, we further continue
to explore the consequence of this nonlinearity by considering
another nonclassical property. In particular, we analyze the
squeezing properties of the transmitted field, which is acces-
sible to experiment and useful for practical applications. The
squeezing spectrum of the transmitted field is given by

Sθ (ω) =
∫ ∞

−∞

〈
δXout

θ (t + τ )δXout
θ (t)

〉
sse

−iωτ dτ

= 〈
δXout

θ (ω)δXout
θ (ω)

〉
, (40)

where δXout
θ (ω) = e−iθ δaout(ω) + eiθ δa

†
out(ω) is an experi-

mentally measurable quadrature of the field with θ being its
externally controllable phase angle.

It is more convenient to work in the frequency domain
in part because the coupled differential equations given
by Eqs. (15)–(18) would become simple linear equations.
Besides, experimentally, fluctuations of the electric field are
more convenient to measure in the frequency domain than in
the time domain. The squeezing spectrum can then be rewritten
as

Sθ (ω) = 1 + 2Cout
a†a + e−2iθCout

aa + e2iθCout
a†a† , (41)

where 〈δâout(ω)δâout(ω′)〉 = 2πδ(ω + ω′)Cout
aa (ω) and other

terms are defined in a similar way. In experiment the squeezing
can be measured by beating the field output from the cavity
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FIG. 5. (Color online) Plots of transmitted field intensity for g = 12.4γ and for various input pump power: (a) P = 10 mW, (b) P = 15 mW,
(c) P = 20 mW. Other parameters are the same as in Fig. 4.
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FIG. 6. (Color online) Plots of squeezing spectrum of the transmitted field for g = 12.4γ , � = ωm = 2π × 6.3 MHz, and for various
input pump powers: (a) P = 5 mW, (b) P = 10 mW, (c) P = 12.5 mW, (d) P = 15 mW, (d) P = 17.5 mW, and (e) P = 19.5 mW. Other
parameters are the same as in Fig. 4.

with a local oscillator field of reference frequency ωc and
reference phase angle θ . In effect, ωc is the cavity resonance
frequency and θ is an external parameter which can be used
to control the degree of squeezing. Now we optimize the
squeezing spectrum with respect to the phase angle θ . To this
end, we solve for θ from dSθ (ω)/dθ = 0. This yields

e2iθopt = ± Cout
aa (ω)∣∣Cout
aa (ω)

∣∣ . (42)

Since we are looking for a solution which minimizes the
spectrum function, we choose the minus solution. Thus, the
optimized spectrum becomes

Sopt(ω) = 1 + 2Cout
a†a(ω) − 2

∣∣Cout
aa (ω)

∣∣. (43)

Using the solutions (24) and (33), the optimum squeezing
spectrum takes the form,

Sopt(ω) = 1 + 4κ

[
|ζ2(−ω)|2 + |ζ4(−ω)|2

+ γm(2nth + 1)|ζ5(−ω)|2

−
∣∣∣∣ζ1(ω)ζ2(−ω) + ζ3(ω)ζ4(−ω) − ζ2(−ω)√

2κ

+ γm(2nth + 1)ζ5(ω)ζ5(−ω)

∣∣∣∣
]
. (44)

The quadrature operators are defined in such a way that perfect
squeezing corresponds to Sopt(ω) = 0. It is noteworthy to
mention here that the squeezing that is manifested in our
system is exclusively due to the nonlinearity induced by
optomechanical coupling. If we turn off the optomechanical
coupling (gm = 0), no squeezing will appear.

We next consider the dependence of the degree of squeezing
on the pump laser power. For this purpose, we plot the
expression for the squeezing spectrum Eq. (44) for various
values of the pump power and for realistic parameters:
� = ωm = 2π × 6.3 MHz, g = 12.4γ , γ = 3.6 MHz, k =
2π × 105 Hz,gm = 300 Hz,γm = 40 Hz. As can be seen from
the series of plots in Fig. 6, the degree of squeezing in
general increases with the pump power. For the pump power
P = 5 mW and 10 mW the transmitted field exhibits moderate
squeezing for all resonance frequencies, with stronger squeez-
ing at the red-detuned frequency [see Figs. 6(a) and 6(b)].
As the pump power is increased further to P = 12.5 mW, the
squeezing at the blue-detuned frequency decreases while that
at the red-detuned frequency increases as shown in Fig. 6(c).
When the pump power reaches P = 15 mW [Fig. 6(d)],
the transmitted field shows even stronger squeezing at the
red-detuned frequency. However, the squeezing disappears at
the blue-detuned frequency. It is important to mention here that
for the given parameters, the optimum squeezing is obtained
at the hybrid resonance frequencies despite the fact that
optomechanical coupling is responsible for the nonlinearity
in the system.

Furthermore, an increase in the degree of squeezing is
observed at the red-detuned frequency at the expense of
enhanced fluctuations in the blue-detuned frequency for pump
power P = 17.5 mW as shown in Fig. 6(e). The amount of
squeezing obtained in this case is about 75% below the vacuum
level. However, if the pump power is increased further from
this point on, the squeezing in the red-detuned frequency
starts to decrease and gradually disappears as it is depicted
in Fig. 6(f). Therefore, we observe from these series of spectra
that for a given set of parameters, there is an optimum laser
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pump power that would yield a strong squeezing of the
transmitted light. This, in particular, it is advantageous in the
context of controlling the degree of squeezing by external
parameters, in this case the power of the pump laser.

V. CONCLUSION

In conclusion, we have investigated the bistable behavior
of the intracavity mean photon number and the intensity and
squeezing spectra of the transmitted field for an optomechani-
cal resonator containing a single quantum well. It turns out that
due to the nonlinearity induced by the optomechanical cou-
pling, the system exhibits optical bistability. This nonclassical
property can be controlled by tuning the power or frequency
of the pump laser. We have derived the general condition for
bistability in the presence of the quantum well. Furthermore,
we have shown that the spectrum of the transmitted field con-
sists of six distinct peaks that correspond to optomechanical,
polariton, and hybrid resonances. Although, the excitons in the

quantum well are not directly coupled to the optomechanical
mode, the widths and the positions of the polariton resonances
are modified by the optomechanical fluctuations leading to
hybrid resonances. This is due to the fact that both the
mechanical and excitonic modes are coupled to a common
cavity mode. As a result of the nonlinearity induced by the
optomechanical coupling, the transmitted field exhibits strong
squeezing at certain hybrid resonance frequencies and system
parameters. Beyond the fundamental interest, the present
scheme can, in principle, be used as an optical switch with the
external pump power or frequency as possible external control
parameters.
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