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3Institut Non Linéaire de Nice, Université de Nice Sophia Antipolis, Valbonne, France
4CNRS, UMR 7335, 1361 Route des Lucioles, F-06560 Valbonne, France

(Received 20 February 2012; published 16 April 2012)

We examine the response to the sudden switch of the pump parameter in a multimode semiconductor laser with
intensity coupling on a model whose validity has been successfully compared to experimental results. We find
the existence of a very slow modal evolution governed by a master mode, which reaches its steady state on a time
scale that is a couple of orders of magnitude longer than that of the total intensity. The practical consequences
for applications are examined, such as the temporal evolution of the spectral width of the laser emission and the
time at which its steady state is attained. Issues related to modeling choices, such as the number of modes and
their placement with respect to line center, are discussed.
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I. INTRODUCTION

When turning on a laser, the typical variable which
is experimentally, and most easily, monitored is the total
output intensity. While on the practical side this choice is a
sensible one, earlier results have shown, both theoretically and
experimentally, that multi-longitudinal-mode regimes exist
where an underlying, long-term, residual intermodal dynamics
may exist [1–6]. In such a case, the information gathered
through the total intensity is incomplete and may hide not only
important aspects of the physics of the problem but also some
technologically important side effects. Semiconductor lasers
may also hide their modal dynamics under a constant or nearly
constant laser intensity, the so-called antiphase dynamics
regime, where the individual modes oscillate in such a way
as to share the available gain in a cooperative fashion [7–9],
while slow, dynamical modal features may remain hidden in
the modeling of strongly multimode systems [10–12].

In order to investigate the switch-on transient in a semi-
conductor laser, we have studied a multi-longitudinal mode,
with intensity coupling, whose predictions in the transient
regime have been compared to experimental results [13].
In this investigation we consider the crossing of the laser
threshold in response to a sudden switch in the pump. The
focus of our attention is the evolution of the transient from
the moment when the control parameter (the pump in our
case) is suddenly increased to the time when the system
has attained its final steady state. The problem is well
posed for semiconductor lasers because there exist regimes
of stable multimode operation above threshold, contrary to
what happens for classic homogeneously broadened systems
[14]. The interest in such a question is mainly fundamental:
understanding the intermode dynamics which underlies the
global temporal laser behavior usually monitored through the
total laser output. We remark that these results may apply to
other class B lasers [15] since the findings do not depend on the
specifics of the model, but rather on the generic structure of the
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coupling. Finally, our results may also benefit applications in
situations where the temporal evolution of the spectral content
of the laser output is crucial (e.g., in the spectral content of
short temporal pulses).

Section II briefly presents the model under study with
some discussion about the physics of the system and the
choices we have made for its numerical integration; the
definitions for the various parameters and their values can
be found in the Appendix. The numerical results obtained by
the straightforward integration of the model when switching
the pump parameter from below to above threshold are
discussed in Sec. III. An analytical approach is developed
in Sec. IV, where we interpret, on the basis of the model’s
structure, the numerical findings. The slow energy redis-
tribution among modes is discussed in Sec. IV A, while a
simplified, toy model is used in Sec. IV B to explain the global
behavior of the modal variables in the slow evolution phase.
Section IV C highlights the role of the master mode in the
dynamics. Issues related to the choice of mode positioning
relative to the gain peak are examined in Sec, V. A summary
of the paper and some conclusions are offered in Sec. VI.

II. MODEL

We study a model for a multi-longitudinal-mode semicon-
ductor laser whose parameter values have been determined
to match experimental results [13]. As in all rate equations
models, the dynamics here are described in terms of time-
dependent ordinary differential equations (ODEs) for each
modal intensity. All interference phenomena are neglected
since the intermode spacing (typically �ν ≈ 1.5 × 1011Hz) is
small enough compared to the laser’s internal rates (relaxation
oscillation frequency <1010 Hz) to average out the fast
oscillations [16]. A thorough discussion of the conditions
under which the phase dynamics (intermode beating) can be
neglected can be found in [17].

Coupling between the different laser modes occurs through
the population inversion, which acts as a global energy
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FIG. 1. Time evolution of the total laser intensity [panel (1)] following a sudden switch-on of the injected current (pump rate) in the form
of a Heaviside function. Phase-space representation [panel (2)] of the switch picturing the total intensity It as a function of the carrier number
N . Initial current value Ji = 15.5 mA; final current value Jf = 37.5 mA. The threshold current for this laser is Jth = 17.5 mA. The number of
modes used for the integration is 113. All other parameters are as in Table III. All parameter values are kept constant throughout this paper,
unless otherwise explicitly noted. The delay at turn-on is approximately td ≈ 0.1 ns, while the steady state is attained at t � 0.7 ns. Here and
in all subsequent figures (unless otherwise noted) the total intensity It is divided by 105, and the number of carriers N is divided by 108.

reservoir for them all. The model equations are [13]

dIj (t)

dt
=

[
�Gj (N ) − 1

τp

]
Ij + βjBN (N + P0), (1a)

dN(t)

dt
= J

q
− R(N ) −

∑
j

�Gj (N )Ij , (1b)

where Ij (t) is the intensity of each longitudinal mode of
the electromagnetic (e.m.) field (1 � j � M), N (t) is the
number of carriers as a function of time, � is the optical
confinement factor, Gj (N ) is the optical gain for the j th
lasing mode (function of carrier number and wavelength),
τp is the photon lifetime in the cavity, βj is the fraction of
spontaneous emission coupled in the j th lasing mode, B is the
band-to-band recombination constant, P0 is the intrinsic hole
number in the absence of injected current, J is the current
injected into the active region, q is the electron charge, and
R(N ) is the incoherent recombination term (including radiative
and nonradiative recombination), which represents the global
loss terms for the carrier number (i.e., the population inversion
in the usual laser language). All definitions for the functions
and all values for the physical parameters are given in the
Appendix.

The term in brackets in Eq. (1a) represents the global gain
for each laser mode, with the first part accounting for the
actual source terms and the second for the out-coupling losses.
The last term in the equation takes into account the average
contribution of the spontaneous emission to each lasing mode.
In the equation for the number of carriers in the conduction
band, the first term represents the pump. The second term
in Eq. (1b) describes the losses for the carrier density due
to different processes, while the last term accounts for the
(global) reduction in population due to the energy transferred
to the different intensity modes. This last term is the source of
coupling among all modes.

In the numerical simulations, we have included 113 modes
to cover approximately 1.5 times the FWHM of the gain curve
(cf. Appendix for additional details). Only a subset of these
modes actually lases at steady state, but their large number

ensures that the slow dynamics is initiated with reliable,
simulation-independent initial conditions for the lasing modes.

III. THRESHOLD CROSSING

We analyze the laser’s behavior when it crosses the
threshold in the total intensity [the variable that is normally
measured; Fig. 1, panel(1)] and in the modal intensities.
The total intensity shows the characteristic turn-on with
intensity overshoot and damped oscillations which disappear
at t � 0.7 ns. Figure 1, panel (2), shows the corresponding
phase-space portrait, with the typical spiralling relaxation
toward the stable focus [19] (lasing solution).

Figure 2 shows a detail of Fig. 1, panel (2), where
crossing trajectories become apparent. They are due to the
two-dimensional (2-D) projection onto the (N,It ) plane of
the 114-D space and imply the existence of an underlying
dynamics hidden under the apparent steady state of Fig. 1.
Accompanying tiny variations in It are present, even though
they are not clearly visible in Fig. 2.

Figure 3 shows the long-time evolution of selected modes:
central [j = 57, curve (d)], first side mode [j = 56, curve (c)],
and two additional side modes close to line center [j = 54,
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FIG. 2. Detail of the phase space of Fig. 1, panel (2), suggesting
the presence of a residual evolution arising from the interplay among
the different lasing modes.
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FIG. 3. Total intensity [curve (e)] and carrier number [curve (f)]
as a function of time. The other curves show the individual mode
intensities for the central mode [j = 57, curve (d)] and side modes
close to line center (blue side): j = 56 [curve (c)], j = 54 [curve (b)],
and j = 52 [curve (a)]. The symmetric modes, relative to the central
one, are not shown but are identical. Notice that in the first phases of
the transient (peak) curves (c) and (d) are superposed: they separate
only at the second oscillation. For graphical purposes the curves are
scaled as follows: here It is divided by 2.5 × 105, and the individual
mode intensities are divided by 105 (here and in all subsequent figures,
unless otherwise noted). The inset shows the long-time evolution of
the central mode (d) and of the first side mode (c): steady state is
attained by the central mode at t ≈ 35 ns.

curve (b), and j = 52, curve (a)]; for comparison the (rescaled)
carrier number N [curve (f)] and total intensity It [curve (g)]
are displayed. The inset shows the long-time evolution (over
35 ns) of the central mode and of the first side mode. While
the total intensity and the population inversion reach steady
state at time t , the individual modes continue their evolution
on a much longer time scale. The central mode, curve (d),
continues to grow and arrives at its final value only for tc,ss ≈
35ns ≈ 50t (inset). The next side mode (and its symmetric
around line center) reaches its steady state somewhat faster
(inset) by first overshooting the final value and then relaxing
toward it. Moving away from line center, the modal relaxation
time decreases, together with the steady-state output power.

Finally, Fig. 4 shows the phase-space portrait for the central
mode [Fig. 4, panel (2)] and for the side modes [Fig. 4, panel
(1)]: the usual dynamics of single-mode lasers (a spiral around
the fixed point; cf., e.g., Fig. 1 in [20]) is complemented
by a sizable evolution in the modal intensities (occupying
two-thirds of the amplitude interval for the central mode) at
constant (or nearly constant) N . Only the central mode attains
a steady-state intensity that monotonically grows: All side
modes possess a transient peak intensity larger (or even much
larger) than their corresponding steady states. The first side
mode (j = 56 and its symmetric, j = 58) reaches its highest
intensity on the slow evolution [sharp peak in Fig. 4, curve (c),
to be matched to the peak in the inset of Fig. 3, curve (c)].

In order to avoid lengthy numerical integrations, approxi-
mate, but rather accurate, analytical modal expressions were
obtained for similar semiconductor laser models [21]. Here,
instead, we are interested in understanding the physical origin
of the slow dynamics and its practical implications in modeling
and numerical accuracy. Thus, we will employ different tools,
including some analytical considerations, to attain our goal.

1.35 1.4 1.45
N (normalized units)

0

0.1

0.2

0.3

0.4

0.5

M
od

e 
In

te
ns

it
y 

(n
or

m
al

iz
ed

 u
ni

ts
)

(a)

(b)

(c)

(1)

1.35 1.4 1.45
N (normalized units)

0

0.2

0.4

0.6

0.8

1

1.2

M
od

e 
In

te
ns

it
y 

(n
or

m
al

iz
ed

 u
ni

ts
)

(2)

FIG. 4. Phase-space portrait of the transient displayed in Fig. 3.
Panel (1) shows the evolution of the side modes: j = 56 [curve
(c)], j = 54 [curve (b)], and j = 52 [curve (a)]. Panel (2) gives the
evolution of the central mode. Notice the different vertical scales. See
the caption of Fig. 3 for details.

IV. ANALYSIS

The analysis of these numerical observations proceeds as
follows. In Sec. IV A we remark on the possible existence
of a partial steady state for the total laser intensity and
for the carrier density and on the constraints which its
existence imposes on the ensuing modal dynamics. Section
IV B highlights, with the help of a strongly simplified analysis,
the crucial role of the modal gain vs losses and shows the
existence of a master mode. The influence of the latter on the
slow laser dynamics are discussed in Sec. IV C.

A. Slow dynamics

The numerical results convincingly suggest that one should
analyze the dynamics by introducing one global variable in
Eqs. (1): the total intensity It . The laser description is therefore
based on It and N as global variables and M − 1 individual
modal intensities:

dIt

dt
=

M∑
j

�Gj (N )Ij − 1

τp

It + βtBN (N + P0), (2a)

dN(t)

dt
= J

q
− R(N ) −

M∑
j

�Gj (N )Ij , (2b)

dIj (t)

dt
=

[
�Gj (N ) − 1

τp

]
Ij + βjBN (N + P0),

1 � j � M − 1, (2c)
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where we have defined the contribution of the spontaneous
emission to all modes βt = ∑M

j βj .
Inspection of Eqs. (2a) and (2b) for the global variables

(N,It ) shows a high degree of symmetry and a strong
resemblance to an equivalent model for a single-longitudinal-
mode laser [22]. The coupling between these two variables is
entirely symmetric [

∑M
j �Gj (N )Ij ], as for the single-mode

laser, hence the (N,It ) dynamics of Fig. 1, reminiscent of a
single-mode laser, where the competition between the (slow)
energy reservoir (population inversion) and the fast relaxing
electromagnetic field (intensity) produce an oscillatory ap-
proach toward the lasing state.

A more formal analysis is based on the steady states,
denoted by the overline and obtained from Eqs. (2a)
and (2b):

M∑
j

�Gj (N )Ij = 1

τp

I t − βtBN (N + P0), (3a)

M∑
j

�Gj (N )Ij = J

q
− R(N ) . (3b)

These two conditions define I t and N . Combining Eqs. (3a)
and (3b), we find

I t =
[
J

q
− R(N ) + βtBN (N + P0)

]
τp, (4)

independently of the individual mode intensity values. The
expression for N is given in implicit form by Eq. (3b). In
spite of the fact that its explicit expression involves the sum
over all individual intensity modes, each multiplied by its gain
function Gj (N) calculated at N = N , it is certain that the
expression is satisfied at steady state and that a unique value
exists. Indeed, although the individual mode intensities come
into play, Gj (N ) represents a set of constants once N = N . In
other words, starting from time t = t [at which It (t) = I t and
N (t) = N ], N remains constant [since dN

dt t=t
= 0 ⇒ N (t >

t) = N ] [23].The residual modal dynamics must therefore
comply with the constraint that the left-hand side (lhs) of
Eq. (3b) remain constant [since the right-hand side (rhs) will
not change in time].

More formally, the following constraints hold:∑
j

Ij = I t = K1, (5a)

∑
j

�Gj (N )Ij = J

q
− R(N ) = K2, (5b)

where K1 and K2 are two constants which characterize the
laser operation for each set of parameter values.

The fact that the sum on the lhs of Eq. (5b) is a constant, K2,
does not exclude a residual time evolution among the modes,
which are numerous enough to arrange for that. This becomes
apparent by rewriting the evolution equation for the individual
modes after the equilibrium condition for the total intensity
and the population variable have been attained (hence, with
N = N everywhere):

dIj

dt
=

[
�Gj (N) − 1

τp

]
Ij + βjBN (N + P0). (6)

TABLE I. Numerical values for the two terms which compose the
rhs of the evolution equation for the modal intensity, Eq. (6), listed
for selected modes after steady state has been attained by the global
variables. A and B represent �Gj (N ) − (1/τp) and βjBN (N + P0),
respectively. The values are estimated at t = 35 ns to eliminate any
the residual dynamics on N .

Mode j λj (μm) A (s−1) B (s−1)

57 1.3 −8.44 × 107 1.0623 × 1013

56 1.2994 −2.58 × 108 1.0621 × 1013

54 1.29819 −1.65 × 109 1.0601 × 1013

52 1.29698 −4.43 × 109 1.0563 × 1013

50 1.29578 −8.59 × 109 1.0506 × 1013

40 1.28974 −5.03 × 1010 9.9673 × 1012

30 1.2837 −1.27 × 1011 9.1109 × 1012

20 1.27767 −2.38 × 1011 8.0987 × 1012

10 1.27163 −3.84 × 1011 7.0681 × 1012

Three remarks are necessary here.
(1) The term in square bracket on the rhs of Eq. (6)

(coefficient of Ij ) plays the role of an effective relaxation
constant for each field intensity, given by the difference
between the individual gain term for the individual mode and
the cavity losses (equal for all modes). The second term in the
equation is a constant in time (different for each mode via βj )
now that the N = N state has been attained.

(2) The different values of Gj (N) imply that the effective
relaxation constant is different for each mode; hence, those
modes that have larger coefficients in front of Ij will
evolve more rapidly, while the long-term dynamics will be
governed by the slower modes (cf. Table I for numerical
values).

(3) Since the steady-state values N = N and It = I t have
been attained, the evolution equations for the individual
modes, Eq. (6), are now almost decoupled: they only need
to obey to the constraints, Eqs. (5), for all t > t (t being
the time at which the global variables attain their equilibrium
condition).

Notice that there is no contradiction between the global
constraint

∑M
j Ij = I t = K1 and the fact that the time scales

for the evolution may be different. Indeed, the evolution for
each mode is the result of the difference between I t and all
other modes, thus allowing for the appearance of different time
scales in the mode combination.

Table I clearly shows that the spontaneous emission
contribution B varies very little between the central and the
side modes (B57 ≈ 1.5 × B10). Instead, the effective relaxation
constant A (Table I) changes by more than four orders of
magnitude and dominates the dynamics. The ratio A(j =
57) ≈ 2 × 10−2A(j = 52) suggests that mode j = 52 should
attain its steady state in a time approximately 50 times shorter
than the central mode. Inspection of Fig. 3 qualitatively
confirms this result, thus validating our simple interpretation
of the dynamics in terms of (nearly) decoupled groups of
variables: (N,It ) on the one hand and Ij (j = 1 . . . M − 1) on
the other.

From the data in Table I we can also draw additional
information about the long-term dynamics of the individual
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modes. The evolution of each mode is determined by Eq. (6),
whose rhs reads Aj IJ + Bj . Reading the intensity values for
modes with j = 57, j = 56, and j = 54 off Fig. 3 at the end of
the transient for the total intensity It (and the population N ),
we estimate the rhs to give dI57

dt
|t≈0.7ns ≈ 7 × 1012 [I57(t ≈

0.7ns) ≈ 4 × 104], dI56
dt

|t≈0.7ns ≈ 3 × 1011 [I56(t ≈ 0.7ns) ≈
4 × 104], and dI54

dt
|t≈0.7ns ≈ −2 × 1013 [I54(t ≈ 0.7ns) ≈ 2 ×

104]. We see immediately that modes j = 57 and j = 56 must
grow, while all other modes should decay from the value that
they have reached at the end of the transient for the global
variables. This prediction is confirmed by the results displayed
in Fig. 3. Note that the values for the constants given in Table
I apply since starting from the end of the transient for the
global variables coefficients A and B no longer depend on
time. We can further remark that the reversal in the growth
of mode j = 56 can also be interpreted on the basis of the
effective relaxation constant since during the slow evolution,
due to the interplay with all other modes, this mode acquires
an intensity value which inverts the sign of its rhs in Eq. (6):
dI56
dt

|t≈3ns ≈ −4 × 1012 [I56(t ≈ 3 ns) ≈ 5.5 × 104].
In the following section we show that the time scale over

which the steady state for all modes is attained (the true steady
state for the system) is determined by the mode with the highest
gain. We will see that the initial conditions play only a minor
role (determining the quantitative aspects of the dynamics) and
that the contribution of the spontaneous emission [the last term
in Eq. (6)] can be neglected.

B. Role of the physical constants

Since we analyze the dynamics after the global variables
have attained their steady-state condition (t > t � 0.7 ns)
and the constraint over the sum of all the modes holds,
all expressions involving these variables can be taken to be
constants. Thus the following simplified analysis holds and
pertinently highlights the influence of the various elements
on the slow modal evolution. For the purpose of illustration
(Fig. 5), we use a number of modes much smaller than in the
full simulations. Our arguments are, however, independent of
this choice.

Rewriting Eq. (6) as

dIj

dt ′
= −aj Ij + bj , aj ,bj > 0, (7)

[t ′ being a time variable different from that of Eqs. (1)] and
integrating it formally [24], we obtain

Ij (t ′) = Cj e
−aj t

′ + bj

aj

. (8)

The constraint on the total laser intensity still holds, even
though it does not appear explicitly. The sign of Cj , a constant
which functionally depends on the initial condition Ij (t),
determines whether the further evolution of the mode consists
of a decrease (Cj > 0) or an increase (Cj < 0) of each Ij . The
explicit form of the Cj ’s can easily be written as a function of
the initial condition for each mode Ij0:

Cj =
(

Ij0 − bj

aj

)
, (9)

where we have taken t ′ = t − t , so that our initial condition is
specified at t ′ = 0. Thus the explicit form of Eq. (8) becomes

Ij (t ′) = bj

aj

[
1 + aj

bj

(
Ij0 − bj

aj

)
e−aj t

′
]

, (10)

where Ij0 is the intensity of each mode when the global
variables attain steady state (at t ′ = 0). It is easy to see that
neither the value of Ij0 nor that of bj plays a substantial role in
the subsequent dynamics. Indeed, if we consider two constants
I0 and b equal for all modes and write therefore the solution,
Eq. (10), as

Ij (t ′) = b
aj

[
1 + aj

b

(
I0 − b

aj

)
e−aj t

′
]

, (11)

we are still able to reproduce the overall slow dynamics of the
various laser modes by appropriately choosing the aj ’s.

The numerical integration of the two sets of equations,
Eqs. (10) and (11), shows that the difference in the evolution is
only quantitative [cf. Figs. 5, panels (1) and (2), respectively].
Hence, we conclude that the slow dynamics result from the
equivalent relaxation constants aj for each mode and depend
only in a minor fashion on the values actually taken by
each mode at t = t (the end of the transient for the global
variables) or on the fraction of spontaneous emission injected
in each mode (represented by bj ). Instead, through the factor
Cj (Ij0 = I0), the aj ’s determine the exponential growth and
decay (small and large aj , thus Cj ≶ 0) to a finite and zero
value for the corresponding mode, respectively. Inspection of
Eq. (11) shows that the smaller aj is, the larger the asymptotic
value of Ij (t ′ → ∞) = b

aj
is.

In our semiconductor laser model, aj corresponds to the
square bracket in Eq. (1a) and thus to the loss-gain balance.
As is the case in all dynamical systems [25], the slowest growth
will be that of the mode with the (negative) value of aj closest
to zero: the mode with the largest gain. Only after this mode
has reached its steady state will the dynamics be completed.

C. Master mode

The previous simplified analysis clearly shows how the
mode with the highest gain possesses the slowest relaxation
constant and is therefore the last to attain equilibrium. This
mode can be considered to be the master mode which enslaves
[26] the other modes, as is best seen by the following
considerations. The constraints, Eqs. (5a) and (5b), imply
that at time t > t the individual modes must maintain the
total output power constant. The slow growth of the master
mode forces the other lateral modes to compensate for its
sluggishness. During the transient (t � t), the modes farthest
away from line center acquire values which are well beyond
their steady states and then fade away. However, even during
the slow dynamics the lateral modes are not the actors of
the dynamics, but only the followers. Indeed, the first two
side modes (j = 56 and, symmetrically, j = 58) are initially
forced to grow beyond their steady-state value [Fig. 4, panel
(1), curve (c)] toward which they eventually decay away. This
nonmonotonic behavior, which characterizes all the enslaved
modes, is the proof that only one master mode exists and that
it alone determines all the dynamics.
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FIG. 5. Illustration of the evolution of a mode described by the simplified approach of Eq. (10) [panel (1)] with different initial values for
the modal intensity Ij0 at t ′ = 0 and for the bj ’s. Panel (2) shows the equivalent calculation based on Eq. (11), obtained with only one value for
I0 and b. Aside from a small quantitative difference, the evolution shown in panels (1) and (2) is qualitatively the same. Panel (1) curves are
(a) I0a = 4, aa

ba
= 1.33; (b) I0b = 5, ab

bb
= 0.667; (c) I0c = 6, ac

bc
= 6.67 × 10−2; (d) I0d = 7, ad

bd
= 3.33 × 10−2. Panel (2) curves are I0 = 5,

b = 0.3, and (a) aa = 0.4; (b) ab = 0.2; (c) ac = 0.02; (d) ad = 0.01. The values for the coefficients are chosen in such a way as to obtain a
good qualitative illustration of the actual evolution of the different laser modes.

V. EVEN VERSUS ODD NUMBER OF MODES

The simulations discussed so far are performed with an odd
number of modes, with the central one placed exactly at the
peak of the gain line. It is crucial to know whether, and how, a
different choice may influence the numerical results. Indeed,
the results should be invariant with respect to this choice;
otherwise, the reliability of the whole approach is called into
question. More interestingly, in experimental situations there
is no guarantee that a centered mode exists on the gain line:
first, because the position of each mode depends on the cavity
length, which varies as a function of numerous parameters
(construction, temperature, saturation, etc.), second because
it is well known that in semiconductor lasers the gain line
is subject to a nonnegligible frequency shift (not included in
the present model), and third because the real line shape of
a semiconductor laser is asymmetric [27–29] and therefore a
line center is only ill defined.

The maximum deviation from the computation with an odd
number of modes, exactly centered at the gain peak, is obtained
by choosing an even number of modes, placed symmetrically
with respect to line center. All other configurations are
intermediate between these two and will be covered by the
two extreme choices that we examine.

Simulation of the same equations with M = 112 modes
provides predictions for the global variables, which are indis-
tinguishable from those obtained with M = 113 modes, thus
confirming the validity of the approach. Problems, however,
are detected by looking at the individual mode evolution.

Figure 6 compares the long-term evolution of the central
mode for M = 113 (j = 57) [curve (a)] and for M = 112
(j = 56) [curve (c)]. Aside from the difference in height in the
two curves (i.e., their relative intensity), a trivial fact directly
related to the difference in energy distribution, we notice that
the time to reach the asymptotic value differs. The explanation
for the faster convergence lies in the fact that the central
mode, off line center, has a more negative (larger in absolute
value) effective relaxation rate (Table II). Comparing the
numerical derivatives for the central mode Ic (corresponding
to j = 57 for M = 113 modes and to j = 56 for M = 112

modes) directly on the integration, we find that dIc

dt
|M=112(t =

14 ns) ≈ dIc

dt
|M=113(t = 27 ns): convergence appears to be

approximately twice as fast when using an even number of
modes symmetrically placed with respect to line center.

Figure 6 also compares two side modes. For both modal
placements the first side modes display an initial overshoot,
with exponential relaxation toward their respective steady
states. The difference in amplitude [curves (b) and (d)] is, not
surprisingly, due to their different position underneath the gain
line and to the energy distribution among modes for even vs
odd number of modes, but the relaxation time is, again and for
the same reasons, shorter for an even number of modes. Thus,
we conclude there is again “one” master mode (doubled, due
to the symmetric choice in modal placement) which dominates
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FIG. 6. Comparison of the long-time evolution for odd and even
numbers of modes in the simulation. Curve (a) is the center mode
(j = 57) and curve (b) is the first side mode (j = 56) for M = 113
modes. Curve (c) is the center mode (j = 56) and curve (d) is first
side mode (j = 55) for M = 112 modes. The difference in height
between the modes at line center is explained by the fact that for even
M , the intensity is distributed between the two symmetric modes,
while for odd M more of it is concentrated in the central mode.
Overall, the intensity distribution is somewhat different. Conditions
for integration are the same as for an odd number of modes (save for
the value of M). For graphical purposes, the modal intensities are still
divided by 105.
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TABLE II. M = 112 modes. Numerical values for the two terms
which compose the rhs of the evolution equation for the modal
intensity, Eq. (6), listed for selected modes after steady state has been
attained by the global variables.A andB represent �Gj (N ) − (1/τp)
and βjBN (N + P0), respectively. The values are taken at t = 35 ns
to ensure convergence. Notice the sizable change in the values of the
coefficients of Ij in Eq. (1a) between Table I and the present one
due to the change in wavelength and thus in the position relative to
line center (peak wavelength λp = 1.3 μm). The relative change for
the central mode is approximately 40%. The spontaneous emission
contribution remains, instead, practically unchanged.

Mode j λi (μm) A (s−1) B (s−1)

56 1.2997 −1.16 × 108 6.610 × 108

54 1.29849 −1.16 × 109 6.604 × 108

52 1.29728 −3.59 × 109 6.586 × 108

50 1.29608 −7.41 × 109 6.556 × 108

40 1.29004 −4.73 × 1010 6.246 × 108

30 1.28401 −1.22 × 1011 5.728 × 108

20 1.27797 −2.31 × 1011 5.104 × 108

10 1.27193 −3.76 × 1011 4.461 × 108

the dynamics, but its numerical convergence is now twice as
fast, speeding up also the convergence toward the complete
steady state.

When looking at the evolution of the emitted spectrum
(i.e., intensity distribution over the different modes) the
placement of the modes under the gain line acquires additional
importance. On the one hand, the later convergence of the
central mode, when perfectly centered, delays the spectrum
from attaining its asymptotic form. On the other hand, we
see that the predicted spectral width strongly depends on this
choice. Indeed, by defining the full spectral width W FS

20 as
the frequency interval (interpolated between the two closest
modes) in which the intensity passes the −20 dB mark
relative to the total intensity, one sees from Fig. 7 that
W FS

20 (113 modes)−W FS
20 (112 modes)

W FS
20 (112 modes)

≈ 1.6.
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FIG. 7. Spectral footprint of the laser evolution during transient.
Curves (a) and (b) show the full spectral width, in nanometers, at
−20 dB (W FS

20 ) calculated for 113 modes (solid line) and for
112 modes (dashed line). The level is calculated relative to the
instantaneous total intensity. The late start of the W FS

20 curves indicates
that the intensity is spread on a large number of modes in the fast part
of the transient, a fact that also is reflected in the wider spectral width
at times 1 < t < 5 ns. Notice that the final value of the spectral width
differs considerably (by approximately 1.6 times) depending on the
modeling choice.

We can therefore conclude that depending on the choice
of modal arrangement (symmetry with respect to the peak
of the gain line and distance between modal wavelength and
peak wavelength), (a) the global variables are not affected, (b)
the intensity distribution among modes changes rather sub-
stantially, (c) the frequency spectrum is substantially different
when looking at the W FS

20 , and (d) the time necessary to attain
the asymptotic spectral distribution of intensity changes very
substantially. The latter remark can be particularly problematic
when one tries to obtain information about the time-resolved
spectral content. Indeed, on the one hand, it is known that
for long semiconductor lasers the time necessary to attain the
asymptotic spectrum is long compared to the total intensity
transient [21]. On the other hand, the great variations (a factor
of 2) in the time necessary to reach spectral equilibrium
depending on the simulation choices should make one wonder
about the meaningfulness of the predictions. Further work,
with close comparison to experimental results, is necessary to
answer this question.

In practice, semiconductor lasers are intrinsically very
sensitive to temperature and thus to power level. Carrier
density can also influence the width of the gain line and/or
the location of its maximum. Finally, as in any resonator,
temperature variations are of concern. Depending on the
cavity’s free spectral range (and this point is more crucial for
longer devices), the actual position of the modes close to the
gain peak may change during the transient evolution (or even
during operation). The predictions of this model indicate that
the laser may pass from one situation which can be correctly
modeled with an even number of modes to one where an odd
number of modes may be more appropriate (passing from all
intermediate configurations). Thus, we may have to expect
properties which correspond to some kind of average over the
two extreme configurations we have chosen to examine.

VI. SUMMARY AND CONCLUSIONS

We have numerically investigated the dynamics of a
multimode semiconductor laser in response to a sudden turn-on
by a switch of a parameter (pump). The model consists of
(M + 1) ordinary differential equations that represent the
M modal intensities, with coupling occurring through the
population inversion (i.e., the carrier density).

We have first numerically shown, using a large number of
modes (M = 113), that the two global variables (total intensity
and population inversion) reach their respective steady state
values in a time much shorter than the one necessary to attain
a global steady state, while the individual modal intensities
continue to evolve over a much longer time scale, internally
redistributing their energy to satisfy the constraint of constant
output. The numerics show that the mode with the highest
gain is the slowest to reach steady state, over times which
are approximately two orders of magnitude longer than those
necessary to reach constant output intensity.

With the help of a simplified analysis, we have shown
the existence of one master mode, the closest one to line
center, which governs all the dynamical evolution of the
modal content, and thus of the optical emission spectrum,
toward its final state. The hidden time evolution (i.e., the
energy redistribution among lasing modes) presents potential
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difficulties in obtaining meaningful predictions, particularly
for the spectral content.

Since it has already been proven that the shape of
the gain line has only a minor influence on the quantitative
aspects of the predictions [30], we can confidently assume
that our considerations hold beyond the specific aspects of
the semiconductor laser model considered. Indeed, the exis-
tence of a master mode, and the consequent slow evolution
of the optical spectrum, holds true for all those lasers
whose multi-longitudinal-mode operation can be described by
intensity-coupled ODEs since it is the structure of the coupling
which determines the dynamics, rather than the details of the
model. It is therefore reasonable to expect that our results will
apply, at least in part, to all class B lasers.
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APPENDIX

The model used in this paper [13] has been chosen because
of its favorable comparison with experimental results and
because of the fact that the model’s parameters have been
determined through this comparison. The model equations
are [13]

dIj (t)

dt
=

[
�Gj (N ) − 1

τp

]
Ij + βjBN (N + P0), (A1a)

dN(t)

dt
= J

q
− R(N ) −

∑
j

�Gj (N )Ij , (A1b)

where N (t) is the number of carriers as a function of time, Ij (t)
is the number of photons in the j th longitudinal mode of the
e.m. field, J is the current injected into the active region, q is
the electron charge, R(N ) is the incoherent recombination term
(including radiative and nonradiative recombination) which
represents the global loss terms for the carrier number (i.e.,
the population inversion in the usual laser language), � is the
optical confinement factor, and τp is the photon lifetime in the
cavity, defined by

τp = ng

c
(
α0 + 1

2L
ln 1

R1R2

) , (A2)

with ng being the group refractive index, c being the speed of
light in vacuum, α0 being the intrinsic attenuation coefficient,
L being the geometric length of the laser cavity, and R1 and R2

being the (intensity) reflectivity coefficients for the two laser
end faces.

The coefficient βj is the fraction of spontaneous emission
coupled into the j th lasing mode as defined in [13]. For
convenience, we here use the index k with the following

correspondence {k = kmin,(kmin + 1), . . . ↔ j = 1,2, . . .}:

βk = β0

1 + fk(�λD,�λs)
, (A3)

fk(�λD,�λs)

=

⎧⎪⎨
⎪⎩

[
k 2�λD

�λs

]2 −M−1
2 � k � M−1

2 , M odd[(
k + 1

2

) 2�λD

�λs

]2 −M
2 � k � M

2 − 1, M even

(A4)

where �λD represents the mode spacing:

�λD = λ2
p

2ngL
, (A5)

with λp being the wavelength at the peak of the gain curve,
�λs being the wavelength interval denoting the FWHM of the
spontaneous emission, and β0 being the maximum value of the
spontaneous emission coefficient, defined by

β0 = λ4
p

8π2ngn2
r�λsVact

, (A6)

with nr being the index of refraction and Vact being the active
laser volume. B is the band-to-band recombination coefficient,
P0 is the intrinsic hole number in the absence of injected
current, and Gj (N ) is the optical gain for the j th lasing mode
and is also a function of carrier number and wavelength.

R(N ) and G(N ), defined in [13], are explicitly given by

R(N ) = AN + BN (N + P0) + CN (N + P0)2, (A7)

Gj (N ) = gp(N − N0)(1 − εIt )

×
[

1 − 2

(
λj − λp

�λG

)2
]

, (A8)

where A describes recombination processes via traps and
surface states, B is the band-to-band recombination coefficient,
and C is the Auger recombination constant. For the gain
function G(N ), gp is the gain peak value, N0 is the carrier
number at transparency, λj is the wavelength of the j th
laser mode, λp is the wavelength of the gain peak, �λG

TABLE III. Values of all parameters used for the simulation of
the model equations of Ref. [13].

Parameter Value Parameter Value

P0 1.5 × 107 A 108 s−1

� 0.3 B 2.788 s−1

ε 9.6 × 10−8 C 7.3 × 10−9 s−1

N0 7.8 × 107 gp 2.628 × 104 s−1

ng 4.0 λp 1.3 μm
nr 3.54 L 350 μm
R1, R2 0.3 α0 30 cm−1

q 1.6 × 10−19 C Vact 5.2 × 10−11 cm3

�λs 80 nm �λG 45 nm
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is the FWHM wavelength of the gain curve, It is the total
number of photons present in all the modes, and ε is the
gain compression factor (taking into account gain saturation

effects). All parameter values are given in Table III. In this
paper we only consider the deterministic laser response and
therefore do not add noise to the model.

[1] P. A. Khandokhin, P. Mandel, I. V. Koryukin, B. A. Nguyen,
and Y. a. I. Khanin, Phys. Lett. A 235, 248 (1997).

[2] G. Kozyreff and P. Mandel, Phys. Rev. A 58, 4946
(1998).

[3] I. V. Koryukin and P. Mandel, Phys. Rev. A 70, 053819
(2004).

[4] K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux,
Phys. Rev. A 46, 1692 (1992).

[5] B. Peters, J. Hünkemeier, V. M. Baev, and Ya. I. Khanin, Phys.
Rev. A 64, 023816 (2001).

[6] P. Mandel, E. A. Viktorov, C. Masoller, and M. S. Torre, Physica
A 327, 129 (2003).

[7] A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici,
J. R. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and
P. Mandel, Phys. Rev. A 69, 053816 (2004).

[8] Y. Tanguy, J. Houlihan, G. Huyet, E. A. Viktorov, and P. Mandel,
Phys. Rev. Lett. 96, 053902 (2006).

[9] S. Osborne, A. Amann, K. Buckley, G. Ryan, S. P. Hegarty,
G. Huyet, and S. OBrien, Phys. Rev. A 79, 023834
(2009).

[10] M. Peil, I. Fischer, and W. Elsäßer, Phys. Rev. A 73, 023805
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