
PHYSICAL REVIEW A 85, 043822 (2012)

Polarization switching and nonreciprocity in symmetric and asymmetric magnetophotonic
multilayers with nonlinear defect

Vladimir R. Tuz* and Sergey L. Prosvirnin†

Institute of Radioastronomy of National Academy of Sciences of Ukraine, 4, Krasnoznamennaya st., Kharkiv 61002, Ukraine and
School of Radio Physics, Karazin Kharkiv National University, 4, Svobody Square, Kharkiv 61077, Ukraine

Sergei V. Zhukovsky‡

Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
(Received 7 November 2011; revised manuscript received 31 January 2012; published 16 April 2012)

A one-dimensional magnetophotonic crystal with a nonlinear defect placed either symmetrically or
asymmetrically inside the structure is considered. Simultaneous effects of time-reversal nonreciprocity and
nonlinear spatial asymmetry in the structure are studied. Bistable response is demonstrated in a such system,
accompanied by abrupt polarization switching between two circular or elliptical polarizations for transmitted and
reflected waves. The effect is explained in terms of field localization at defect-mode spectral resonances and can
be used in the design of thin-film optical isolators and polarization transformation devices.
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I. INTRODUCTION

Magnetophotonic crystals (MPCs) are periodic structures
that contain magnetic materials and have a period comparable
to the wavelength of electromagnetic radiation [1–6]. The
simplest example of such a periodic structure is a multilayer
having one-dimensional (1D) periodicity. The main advantage
of MPCs in contrast to conventional nonmagnetic photonic
crystals (PCs) is their possibility to tune the band edge position
in the spectrum of the electromagnetic radiation by means of
an external static magnetic field.

Another promising feature of MPCs is a strong en-
hancement of magneto-optical effects in comparison to bulk
magnetic materials. Among these effects, the Faraday effect
is of great interest. It manifests itself as rotation of the
polarization ellipse of light as it propagates collinearly with
an externally applied static magnetic field. It can be seen as
a lifting of degeneracy for the left-circular-polarization (LCP)
and right-circular-polarization (RCP) states, causing the LCP
and RCP components to propagate in the magnetic medium
with different phase velocities. The enhancement of Faraday
rotation in MPCs originates from localization of light provided
by the multiple interference [3,5]. The enhancement becomes
even greater in MPCs with microcavity structure where a
magnetic defect is introduced into the periodic system [1].
In any geometry, the amount of rotation is linear with respect
to the static magnetic field strength and is sensitive to the
direction of the applied magnetic field. Since the definitions
of LCP vs RCP are tied to the direction of wave propagation,
a forward-travelling LCP wave has the same properties as
the backward-travelling RCP wave, and vice versa. Hence
lifting the degeneracy between LCP and RCP results in optical
nonreciprocity; that is, a difference in the properties of a
medium for electromagnetic waves propagating in opposite
directions. It is well known that this nonreciprocity is related
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to time-reversal symmetry breaking, which is inherent to
magnetic media and can be explained from the symmetry
viewpoint [7].

In multilayer structures, material nonlinearity can also
result in optical nonreciprocity. One example is a layered
medium where frequency changing or self-focusing is spatially
asymmetric in the presence of nonuniform dichroism [8].
The order in which the nonlinear and dichroic layers are
encountered by the incident light significantly influences the
balance between nonlinear effects and absorption, making the
optical properties of the structure dependent on the direction
of incidence. A similar effect is achieved if a PC contains
an asymmetrically placed defect (i.e., microcavity) with a
nonlinear (e.g., Kerr-type) material. In such a system, strong
field localization inside the defect can makes the internal
field intensity sufficient to change its optical characteristics
through the Kerr effect. Since the spatial field distribution
is different for the waves incident on a spatially asymmetric
structure from opposite sides, nonreciprocal response appears
[9,10]. These nonlinearity-induced directional sensitivity can
be called reversible nonreciprocity, to mark that no time-
reversal symmetry breaking takes place here.

It is important that such nonlinear reversible nonreciprocity
is often accompanied by optical bistability. The dynamical
shift of resonant frequencies of the structure (photonic band
edges or microcavity modes) due to strong field localization
gives rise to two stable transmission and reflection states for
the same input intensity. The input-output characteristic of
such a system typically contains a hysteresis loop [11,12]. In
asymmetric structures, this loop has directional sensitivity,
so the intensity level of input light sufficient to achieve
bistable switching is different for the waves impinging on the
multilayer from opposite sides. This effect can produce such
different transmittances for forward- vs backward-propagating
waves in the structure that it can be used in the design of a
nonlinear electromagnetic diode [11–14]. In analogy with an
electronic diode that transmits electric current in only one di-
rection due to its nonlinear current-voltage characteristics, the
nonlinear optical diode features unidirectional transmission of
the incoming light.
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If a nonlinear multilayer has any kind of optical anisotropy,
its bistable response necessarily becomes polarization depen-
dent. This was shown in birefringent nonlinear systems where
linear polarization of the field can abruptly change to right-
or left-handed elliptical polarization when the light intensity
or structure parameters reach a certain threshold level [15,16].
This nonlinear polarization switching, which can appear in any
kind of anisotropic nonlinear systems (including birefringent,
form anisotropic, chiral media, etc.), is associated with the
effects of polarization instability, bistability, multistability, and
polarization chaos [17,18].

Of all kinds of anisotropic systems, nonlinear MPCs are
distinguished by the possibility to realize switching between
two distinct orthogonal polarization states and to make this
switching tunable by means of an external static magnetic
field. Furthermore, by introducing nonlinearity into the MPC,
unidirectional transmission can be achieved for one circular
polarization while remaining transparent for the polarization
of opposite handedness. An abrupt switching between two
opposite circular polarization states can then be realized.
Hence it is of special interest to study simultaneous effects of
time-reversal nonreciprocity and nonlinear spatial asymmetry
on the optical properties of PCs.

In this paper, we consider a MPC with a nonlinear defect
placed either symmetrically or asymmetrically inside the peri-
odic structure. An important feature of the studied system is the
fact that the asymmetric bistable transmission is accompanied
by the polarization conversion [19–21]. The main objective
of our study is focused on achieving the bistability-induced
abrupt switching between two distinct polarization states. This
can be important for thin-film polarization optics devices and
polarization-sensitive integrated optics.

The rest of the paper is organized as follows: In Sec. II, we
formulate the problem under study and introduce its solution
based on the transfer matrix method of multilayer optics.
Sections III and IV follow with the results for a nonlinear
defect placed symmetrically and asymmetrically into a MPC,
respectively. Finally, Sec. V summarizes the paper.

II. PROBLEM FORMULATION AND SOLUTION

We consider a planar multilayer stack of infinite transverse
extent (Fig. 1). Each unit cell is composed of a bilayer which
consists of magnetic (with constitutive parameters ε1, μ̂1) and
nonmagnetic (with parameters ε2, μ2) layers. The magnetic
layers are magnetized up to saturation by an external static
magnetic field �M directed along the z axis (Faraday geometry).
A defect is created by introducing into the structure a layer with
constitutive parameters εd and μd. We assume that this layer is
a Kerr nonlinear dielectric, with a permittivity εd that depends
linearly on the intensity |E|2 of the electric field. The defect can
be settled either symmetrically or asymmetrically in the middle
of the structure. The parameters m and n describe the number
of bilayers placed before and after the defect layer. In any
case the bilayers are arranged symmetrically with respect to
the defect layer, (i.e., the structure begins and ends with layers
of the same type). We suppose that all layers have the same
thickness D. The outer half spaces z � 0 and z � [2(m + n) +
1]D are homogeneous, isotropic, and have parameters ε0, μ0.
Assume that the normally incident field is a linearly polarized

FIG. 1. (Color online) Magnetophotonic structure with nonlinear
defect.

plane monochromatic wave of frequency ω and amplitude A.
For the sake of definiteness, we also suppose that the vector �E
of the incident wave is directed along the x axis.

As an convenient material for magnetic layers, the family
of impurity-doped yttrium-iron garnet (YIG) Y3Fe5O12 films
can be proposed. These magnetic oxides are well stud-
ied and widely used in integrated magneto-optics because
they are transparent in the near infrared region [3,5]. As
an example, a few types of multilayered films composed
of magnetic Bi-substituted YIG (Bi:YIG) and dielectric
SiO2 or glass FR-5 layers were investigated. [2,7] MPCs
based on the other materials are also known. Thus, a new
class of semiconductor-magnetic hybrid nanostructures con-
sists of GaAs with MnAs nanoclasters (GaAs:MnAs), which
are paired with GaAs/AlAs superlattices and have been
recently investigated experimentally in the range 900–1100 nm
[22]. Also in the nonlinear regime the structure based on
the semimagnetic semiconductors such as Cd1−xMnxTe with
the defect being a quantum well with prescribed spectral
characteristics was reported [23,24]. From these papers it
may be deduced that the magnetic materials manifest their
nonlinear properties at the light intensity about 1 GW/cm2. In
our present paper we consider the nonlinear defect, which is
made of nonmagnetic material due to its greater availability. As
an example, AsGa or InSb can be selected for this purpose. We
prefer such a structure configuration because these materials
require much lower intensities of the incident light to enable
the nonlinear effects. From the literature [25] it can be deduced
that the nonlinear response in the semiconductor materials can
be achieved at the light intensity about 1 kW/cm2. Although a
defect is made of nonmagnetic material, the studied structure
that consists of magnetic layers and such nonlinear defect
exhibits a number of very interesting and unique properties
that we consider.

Note that, in nonlinear materials, there is always a pos-
sibility of three- or four-wave-mixing processes, resulting
in second- and third-harmonic generation. In multilayered
structures, field enhancement associated with transmission
resonances is also known to enhance harmonic generation
processes. However, for these processes to be efficient,
the fundamental and higher-harmonic waves need to be
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quasi-phase-matched. This generally requires that both the
fundamental and the higher-harmonic frequency correspond
to a resonant mode with good spatial overlap between
them [26–28]. Usually, such conditions have to be specially
engineered (in particular, to counter material dispersion), and
it is easier to meet them using band-edge states [28] than
defect states as in this work. Outside the phase matching,
it can be shown [29] that second-harmonic transmission
and reflection in one-dimensional nonlinear multilayer are
about three orders of magnitude weaker that the fundamental
transmission and reflection. Hence we will neglect the higher-
harmonic generation by the nonlinear layer as is conventional
in the theory of bistable Fabry-Perot resonators [30], assuming
that any inadvertent phase matching condition can be very
easily countered by slightly changing the structure design.

Our solution is based on the transfer matrix formalism [31]
which is used to calculate the field distribution inside the
structure and the reflection and transmission coefficients of
the MPC. In the Faraday geometry, when an external static
magnetic field is biased parallel to the direction of wave
propagation (�k ‖ �M), the magnetic permeability μ̂1 is a tensor
quantity with nonzero off-diagonal components:

μ̂1 =

⎛
⎜⎝

μT
1 iα 0

−iα μT
1 0

0 0 μL
1

⎞
⎟⎠. (1)

For the description of electromagnetic waves in this case it
is necessary to use a 4 × 4 transfer matrix formulation [32].
Thus, at the first stage, in the linear case, the equation which
defines the coupling of the tangential field components at the
input and output of the structure is written in the form [33,34]

��(0) = M ��(�) = {(M1M2)mMd(M2M1)n} ��(�), (2)

where �� = {Ex,Ey,Hx,Hy}T is the vector containing the
tangential field components at the structure input and output,
the upper index T is the matrix transpose operator, � is the
total length of the structure, � = [2(m + n) + 1]D, m and n

are the numbers of periods placed before and after the defect
element, and M1, M2, and Md are the transfer matrices of the
rank four of the first, second, and defect layers, respectively.
The elements of the transfer matrices in (2) are determined
from the solution of the Cauchy problem and are given in [32].

As the solution of the linear problem (2) is obtained,
the intensity of the reflected and transmitted fields and
the distribution of the field �Ein(z) inside the MPC can be
calculated. Generally, when the defect layer consists of a Kerr
nonlinear dielectric, the permittivity εd is inhomogeneous and
depends on the intensity of the electric field at each point of
this layer as follows:

εd(z) = εl
d + εnl

d |Ein(z)|2 [2mD � z � (2m + 1)D]. (3)

Knowing the field intensity in the defect layer, both the actual
value of permittivity εd and, consequently, the actual value of
the transfer matrix M can be calculated. Thus we deal with an
equation on the unknown function of field intensity distribution
inside the defect layer. A magnitude of the incident field A is an
independent parameter for this equation. Since the parameter
εnl

d is small and the nonlinear contribution to εd varies with
the longitudinal distance on the scale of one-half wavelength,

we provide an approach which regards εd as independent of
z and treats the dependence of εd on the average intensity of
the electric field |Ein|2 inside the defect layer. Quantitative
reasoning for this approach is presented in [34]. On the basis
of this approximation, we suppose that the permittivity of the
medium depends on the average intensity of the electric field
as εd = εl

d + εnl
d |Ein|2.

As a result, at the second stage, the nonlinear equation
related to the average field intensity distribution in the defect
is obtained. The numerical solution of this equation yields
us the final field distribution in the MPC and the values of
the reflection R and transmission T coefficients, for which
expressions can be found in [32].

III. SYMMETRIC MULTILAYERS: POLARIZATION
BISTABILITY

Our objective here is to study the main features of
optical response for a MPC with a nonlinear defect placed
symmetrically inside it. For this reason we consider a MPC
consisting of two sections with the same number of bilayers in
them (m = n). The sections are located symmetrically on each
side of the defect layer. The main idea of such an arrangement is
to obtain a significant field localization inside the defect layer,
which is achieved by an appropriate choice of the number of
periods m and the material parameters of layers.

The basic optical properties of the studied MPC are inher-
ited from the characteristics of perfectly periodic structures
with nonmagnetic layers. Recall that all periodic structures
with layer thicknesses comparable to the wavelength possess
forbidden frequency gaps (stopbands or band gaps) as a direct
consequence of the Floquet-Bloch theorem [35]. These gaps
are determined by the modulation period and the average
refractive index. Propagation of waves with frequencies in
the stopbands of an idealized infinite structure is completely
inhibited, and the band gaps are in this sense perfect. For
finite structures these gaps appear as frequency regions with
low transmittance and high reflectance, located between high-
transmittance passbands. If any distortion (a “defect”) is
introduced inside a periodic structure, transmission resonances
can appear in the stopbands, with the field strongly localized
at the defect. The existence of such “localization resonances”
is explained by the fact that the defect forms a resonant
Fabry-Perot cavity enclosed between two Bragg mirrors.

The main distinctive feature of a MPC in contrast to the
nonmagnetic PC is the appearance of circular polarization
eigenstates. Such circular polarization eigenstates are also
inherent in PCs with chiral isotropic layers [33,34,36] but in
the case of MPCs they are controlled with an external static
magnetic field. Thus the MPC reacts differently to circularly
polarized waves with opposite handedness, with distinct
optical spectra for each of them [see Figs. 2(a) and 3(a)].
This way, in the Faraday configuration, both the edges of the
forbidden bands and the frequencies of the localized defect
modes become different for LCP vs RCP incident waves.
As a result, the defect resonances split into doublets [see
Figs. 2(a)–3] known as the longitudinal Zeeman-like doublets
[20]. These doublets originate from lifting of the degeneracy
between resonant conditions for the LCP and RCP waves in
the underlying MPC by the external magnetic field. It can be
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(a)

(b)

FIG. 2. (Color online) Frequency dependencies (æ = D/λ) of the
transmission coefficient (T ) of the LCP (−) and RCP (+) waves in the
(a) linear (b) nonlinear case for m = n = 5, ε1 = 10, μT

1 = μL
1 = 1,

α = 0.05, ε2 = μ2 = μd = 1, εl
d = 4. For the nonlinear case, ε̃nl

d =
εnl

d I0 = 1.5 × 10−4, which corresponds to the incident light intensity
I0 = 15 kW/cm2 for εnl

d � 1.0 × 10−5 cm2/kW.

seen that there are two closely spaced resonant modes in the
stopband, one of which is a RCP eigenmode and the other is a
LCP eigenmode.

In the insets of Figs. 2 and 3 the frequency band where
the doublet exists is given on a larger scale. Throughout the
paper we suppose that the working frequency is far from
the frequency of the ferromagnetic resonance of magnetic
layers and their losses are negligibly small. Under this
assumption, at the resonant frequencies, the magnitude of
the transmission coefficient of the corresponding circularly
polarized mode reaches unity, and the structure becomes
completely transparent for the LCP wave when æ− ≈ 0.098
and for the RCP wave when æ+ ≈ 0.0995. Obviously, the
magnitude of splitting (the frequency difference between the
peaks �æ = æ+ − æ−) can be easily tuned by changing
the strength of the external static magnetic field.

Now we consider the case when the MPC contains a
Kerr-type nonlinear defect. It is known that the introduction
of such a defect into an otherwise linear structure can induce
bistable behavior in the system. The nature of this bistability
is studied in the theory of nonlinear Fabry-Perot resonators
quite well [30]. The resonant frequencies æ± are sensitive to

(a)

(b)

FIG. 3. (Color online) Same as Fig. 2 but for the reflection
coefficient (R).

the refractive index of the material within the cavity. Thus,
when the frequency of the incident wave is tuned near a
resonant frequency, the field localization induces growth of the
light intensity inside the cavity, which, by means of the Kerr
effect, eventually alters the refractive index enough to shift
the resonant frequency. When this shift brings the resonant
condition closer to match the frequency of the incident field,
even more energy gets localized in the cavity. This further
enhances the shift of the resonance, creating positive feedback
that leads to formation of a hysteresis loop in the spectra
with respect to the incident field intensity. As a result, for a
fixed input field intensity, the frequency dependencies for any
resonant mode have a typical shape of “bent resonances.” In
the spectra of a nonlinear MPC this bending can be seen for
both resonant modes in the split doublets [Figs. 2(b)–3(b)].

Now consider a linearly polarized wave incident on a
MPC with defect. One can represent it as a superposition of
LCP and RCP waves. As a result, the corresponding optical
spectra will contain both resonances. This is demonstrated
in Fig. 4 for individual polarization components of reflected
and transmitted light, as measured in typical experiments.
Since the whole system possesses axial symmetry in the
considered case of normal incidence and Faraday geometry,
we can only distinguish between copolarized (e.g., ss or
pp, denoted co) and cross-polarized (sp or ps, denoted cr)
components. Since LCP and RCP components are present in
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(a)

(b)

FIG. 4. (Color online) Frequency dependencies (æ = D/λ) of
the magnitudes of the copolarized (co) and cross-polarized (cr)
components of the transmission (a) and reflection (b) coefficients
of linearly polarized waves. The input intensity I0 in the nonlinear
regime is taken to be 5, 10, and 15 kW/cm2. Other parameters are as
in Fig. 2.

a linearly polarized wave in equal proportion, the magnitudes
of the copolarized and cross-polarized components are equal
to each other at the resonant frequencies, |T co| = |T cr| =
|Rco| = |Rcr| = 0.5. These conditions are satisfied both in the
linear and in the nonlinear regimes. In the nonlinear case,
both localization resonances are bent. The “angle” of bending
clearly depends on the intensity of the incident field and is
almost the same for both resonances in the doublet.

Due to the above-mentioned polarization sensitivity of
a magnetophotonic system, a linearly polarized wave will
very likely undergo a change in its polarization state during
reflection or transmission. This is confirmed in Fig. 5, which
shows the corresponding frequency dependencies of the
ellipticity angle (η) and the polarization azimuth (θ ) for the
transmitted (solid, dash-dotted lines) and reflected (dashed,
dash-dot-dot lines) fields. According to the definition of the
Stokes parameters, we introduce the ellipticity η so that
the field is linearly polarized when η = 0, and η = −π/4
for LCP and +π/4 for RCP (note that, in the latter cases,
the preferential azimuthal angle of the polarization ellipse
θ becomes undefined). In all other cases (0 < |η| < π/4),
the field is elliptically polarized. In the considered frequency

(a)

(b)

FIG. 5. (Color online) Frequency dependencies (æ = D/λ) of
(a) the elipticity angle η and (b) the polarization azimuth θ of
the transmitted and reflected fields. The incident light is linearly
polarized, and structure parameters are as in Fig. 2. The vertical line
marks the bistable polarization switching at æ0.

band and in the linear regime, the transmitted field experi-
ences the rotation of its polarization ellipse and sequentially
changes between LCP and RCP through elliptical and linear
polarization states (Fig. 4, solid lines). On the contrary, the
reflected field is linearly polarized almost in the whole selected
band except the frequencies æ− and æ+ where it becomes
circularly polarized (Fig. 5, dashed lines). Note that, at these
resonant frequencies, the polarization azimuth θref = θref(æ) is
a discontinuous function.

Such a drastic difference in the polarization states of the
transmitted vs reflected fields can be understood from the
fact that the operating frequencies lie in the stopband of
the MPC where an impinging wave is almost completely
reflected from the structure. As the incident field is lin-
early polarized, so, too, is the reflected field. Due to the
finite size of the structure a small fraction of the wave’s
energy still gets transmitted through the MPC, undergoing
a 90◦ rotation of its polarization ellipse [Fig. 5(b)] for
æ− < æ < æ+. At the resonant frequencies, it is evident
that the matching circularly polarized eigenmode passes
through the system while for the orthogonally polarized
eigenmode the transmission is still forbidden. Therefore, both
transmitted and reflected fields become circularly polarized
within the localized modes frequencies. Note that the reflected
field has the same polarization state as the transmitted field
because the reflected wave propagates in the opposite direction
(see Ref. [7] for clarity).

043822-5



TUZ, PROSVIRNIN, AND ZHUKOVSKY PHYSICAL REVIEW A 85, 043822 (2012)

In the nonlinear regime the ellipticity angle and the polar-
ization azimuth become multivalued functions. Therefore, it
is possible to use multistability to switch not only between
different transmittances and reflectances but also between two
(or, generally, more than two) distinct polarization states in the
transmitted and/or reflected light.

The most intriguing scenario for such switching is expected
when a bent resonance at æ+ spectrally overlaps with the
original location of the other resonance at æ−. This overlap is
possible as the resonances are spectrally close to each other.
For example, let us fix the operating frequency æ0 at æ−.
At this frequency the reflected and transmitted fields ought
to be LCP. As the intensity of input field rises, the other
resonance corresponding to æ+ and associated with RCP
undergoes a redshift and eventually reaches æ0. It becomes
possible to couple the incident wave with frequency æ0 with
either of the eigenmodes. Since these have opposite circular
polarizations (they are associated with converting a linearly
polarized incident light into LCP and RCP), it can be expected
that switching between these two polarization states can be
achieved.

Indeed, Fig. 5 shows that, at a frequency æ0 ≈ æ−, the
bistable switching occurs between RCP and near LCP for the
transmitted light and between linear polarization and RCP for
the reflected light. This agrees with the above explanation
and is seen in the behavior of resonance bending in the
Stokes parameter space (Fig. 5). The shape of the nonlinear
resonance bending for ellipticity ηref is similar to that of the
reflectance |R| [Fig. 4(b)]. For the transmitted light the bent
resonances occur in the immediate vicinity of η = ±π/4,
because only circularly polarized waves can fully couple to
the MPC eigenmodes to become transmitted through it.

Finally, note that Fig. 4(b) illustrates another peculiarity of
the reflection spectra of the structure under study, namely,
the formation of closed loops, which appear in the cross-
polarized component of the reflected field. In particular, the
closed loop appears in the lower-frequency resonance at æ−.
The physical mechanism of loop formation is the difference
between the values of Tco and Rco to either side of the
resonance. In the linear regime, |Tco(æ− − δ)| < |Tco(æ− + δ)|
since transmittance between the resonances should be higher
that to the either side of both defects because it is influenced
by the Lorentzian tails of both resonances. Consequently,

|Rco(æ− − δ)| > |Rco(æ− + δ)|. (4)

This inequality can also be influenced by nonsymmetric
placement of the resonances in the band gap due to the violation
of the quarter-wave condition in the structures under study. In
the nonlinear regime, the relation in Eq. (4) holds, and the
resonance bending in the direction of lower frequencies will
cause a loop to form.

IV. ASYMMETRIC CONFIGURATION: POLARIZATION
CONVERSION

Nonlinear multilayer structures with spatial asymmetry
are commonly considered to obtain directional sensitivity
or reversible nonreciprocity in nonmagnetic PCs. As a few
examples, random or deterministically aperiodic media, as
well as periodic structures with asymmetrically positioned

defects, were recently reported to have direction-dependent or
unidirectional transmission. [11,12,14,34,37,38] The general
result is that interaction between nonlinearity and asymmetry
manifests itself in the simultaneous occurrence of bistability
(or multistability) and nonreciprocity.

From a mathematical point of view, this all-optical re-
versible nonreciprocity is a result of noncommutativity of
matrix multiplication in Eq. (2) when the transfer matrix
of the structure is calculated. In particular, optical properties
of a 1D periodic structure with a defect strongly depend on the
position of that defect layer inside the sample. Nevertheless, in
the linear regime, specific properties of the transfer matrix that
stem from time-reversal reciprocity of the Maxwell equations
ensure that the transmission through the system remains the
same regardless of whether the field is incident from the left
or right side of the structure.

The situation changes drastically if an optically sensitive
(e.g., Kerr-type nonlinear) material is used for the defect layer.
In this case, due to different field localization patterns within
the defect layer for the waves impinging from the left and
right sides of the structure, the nonlinear response becomes
different. This difference manifests itself in the different
bending angles of the localization resonances. [12]

Our goal here is to study the simultaneous effect of the
spatial asymmetry and the time-reversal nonreciprocity on the
behavior of the localization resonances in the MPC. We modify
the structure from Sec. III to make the number of bilayers in
two subsections before and after the defect element different
(m �= n). We additionally assume that the static magnetic
field direction always coincides with the wave propagation
direction. This can be assumed without loss of generality
because changing the direction of wave propagation without
changing the direction of the static magnetic field reverses the
handedness of the circularly polarized states (RCP ⇀↽ LCP).
Hence by considering the response of the original structure

FIG. 6. (Color online) Frequency dependencies (æ = D/λ) of
the transmission (T ) and reflection (R) coefficients of the LCP
(−) and RCP (+) waves of the MPC with asymmetrically placed
(m �= n) nonlinear defect. Here, ε̃nl

d = εnl
d I0 = 1.0 × 10−4 (i.e., I0 =

10 kW/cm2 for εnl
d � 1.0 × 10−5 cm2/kW). Other parameters are as

in Fig. 2. Solid and dashed lines correspond to configurations (m = 5,
n = 6) and (m = 6, n = 5), respectively.
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(a)

(b)

FIG. 7. (Color online) Frequency dependencies (æ = D/λ) of the
elipticity angle (a) and the polarization azimuth (b) of the transmitted
and reflected fields of the MPC with asymmetrically placed (m �= n)
nonlinear defect. Parameters are as in Fig. 6. The vertical line marks
the bistable polarization switching at æ0.

characterized by (m,n) and its mirror-symmetric counterpart
(n,m) to LCP and RCP incident wave solves the problem
completely.

Comparison of the results presented in Figs. 2(b)–3(b) and
in Fig. 6 shows that adding one bilayer at either side of the
MPC drastically changes the spectra of the structure. These
changes are associated with the already-mentioned different
field distribution inside the structure. The stark difference in
the angles of the localization resonance bending results from
the all-optical reversible nonreciprocity.

The accompanying change of the magnitude for the re-
flection and transmission coefficients at the bent resonances
(so that |T ±

max| < 1 and |R±
min| > 0) results from a certain

conflict in the design principles for resonant multilayers.
Namely, to increase the structure’s sensitivity to the direction
of incidence, one needs to increase its the spatial asymmetry;
yet to increase the maximum transmission at a resonant peak,
the structure should remain close to symmetric [12,37]. As a
consequence, at the frequencies of the localization resonances
the transmission are always below unity and the reflected field
is always elliptically rather than circularly polarized. Indeed,
as seen in Fig. 7, the ellipticity angle |ηref| < π/4 in the whole
selected frequency band. The transmitted field is still circularly
polarized at the localization resonances. The polarization
azimuth θref = θref(æ) is now a continuous function. Hence,
while the symmetric structure features polarization switching
between two circularly polarized states, the asymmetric one

(a)

(b)

FIG. 8. (Color online) Frequency dependencies (æ = D/λ) of
the magnitudes of the copolarized (co) and cross-polarized (cr)
components of the transmission (a) and reflection (b) coefficients of
the linearly polarized waves of the MPC with asymmetrically placed
(m �= n) nonlinear defect. Parameters are as in Fig. 6.

only enables switching between two elliptically polarized
states.

However, it can be seen that changing the position of the
defect layer within the structure significantly alters the ratio
between the reflected and transmitted field, and in particular the
relations between copolarized and cross-polarized components
in them (Fig. 8). While the magnitudes of the copolarized
and cross-polarized transmission components remain equal
to each other (|T co| = |T cr| � 0.5), the relation between the
reflection components (|Rco| and |Rcr|) varies in a much wider
range. In one structure configuration (m = 5, n = 6), the peak
magnitudes of the copolarized and cross-polarized reflection
components are |Rco| ≈ 0.8 and |Rcr| ≈ 0.2. In the other
configuration (m = 6, n = 5) they are opposite: |Rco| ≈ 0.2
and |Rcr| ≈ 0.8. In the latter case there is an obvious significant
polarization transformation in the reflected field so that a 90◦
polarization rotation of the incident light can be achieved with
good conversion efficiency. This can find useful application
as thin-film tunable polarization-rotating mirrors. Also, an
appropriate choice of the asymmetric structure configuration,
material parameters, layer thicknesses, and magnetic field
strength would achieve switching between two orthogonal
linear polarization states in the reflected field. This can be
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important in the design of tunable thin-film polarization
splitters and switchers.

V. CONCLUSIONS

In the present paper, we have studied the effects of
bistability, nonreciprocity, and polarization transformation in
a magnetophotonic crystal with a nonlinear defect placed
either symmetrically or asymmetrically inside the structure.
The problem is considered in the Faraday geometry (i.e, the
external static magnetic field is applied in the direction of the
structure periodicity and is collinear with the wave vector of
the incident wave).

The reflection and transmission coefficients of the struc-
tures, along with the field distribution inside them, are
calculated using the transfer matrix approach. The nonlinear
problem is solved under the assumption that the nonlinear

permittivity of the medium inside the defect layer depends on
the average intensity of the electric field inside the defect.

In the case of symmetric structure configuration, it is
shown that a bistable response of a nonlinear magnetophotonic
system features switching between two circular polarization
states within the localization resonances (defect modes) for
reflected and transmitted fields. In the case of asymmetric
structure configuration, this switching appears between el-
liptically polarized states in the reflected field and between
nearly circularly polarized states in the transmitted field. The
asymmetric structure also features strong 90◦ polarization
rotation in the reflected field, with a potential for bistable
switching between linear polarizations.

From the specific parameters used in our numerical calcu-
lations, it is reasonable to conclude that bistable response and
stepwise polarization switching can already be achieved at the
incident power densities of 10–100 kW/cm2 with available
materials in the considered structure configuration.
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