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We describe the generic effects of loss or gain on pulse propagation in photonic-crystal and plasmonic
waveguides that support “frozen” or “in-band” slow light at dispersion inflection points in the absence of loss (or
gain). Using an analytical perturbation theory, we find that propagating and evanescent modes hybridize when
loss exceeds a certain threshold, resulting in a reduced attenuation rate and switching from slow to superluminal
velocity. Numerical simulations for photonic-crystal waveguides reveal the dynamic nature of this transition with
forward-backward pulse velocity oscillations for loss above the threshold. Importantly, we show that the light
intensity is enhanced close to the input end of the waveguide even under strong material losses, indicating the
potential for slow-light enhancement of optical effects, even in such lossy waveguides.
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I. INTRODUCTION

Enhancement of light-matter interactions in slow-light
(SL) waveguides offers new opportunities for tunable delays,
switching, and monitoring of optical pulses in compact pho-
tonic structures [1]. SL occurs naturally for optical frequencies
at the edges of photonic transmission bands, however, in this
regime the dispersion relation is typically quadratic, leading
to strong group-velocity dispersion and undesirable pulse
broadening [2]. Moreover, there are significant challenges
to coupling light efficiently into band-edge SL modes. For
these reasons, there is much interest in dispersion-engineered
waveguides which support SL inside an optical transmission
band, as has been proposed [3] and experimentally demon-
strated [4–7] for photonic-crystal waveguides and suggested
for plasmonic guiding structures [8,9]. Waveguides featuring
a dispersion inflection point can support SL modes with zero
group-velocity dispersion (GVD), while at the same time
providing very efficient coupling of input and output light
without the need for complicated transitions [10], even in the
“frozen light” regime at zero group velocity [11,12].

A fundamentally interesting and practically important
problem is the effect of material loss or gain on optical pulse
propagation in the regime of SL. Intrinsic losses may arise from
material properties such as absorption in metallic plasmonic
waveguides or gases in hollow fibers. Alternatively, loss or
gain can be introduced through pumping in active media or
through nonlinear wave mixing based on Raman processes [1].
On the one hand, SL can enhance the effects of loss or
gain [13,14]. On the other hand, the presence of loss or gain
can dramatically change the waveguide dispersion [15–17], in
particular leading to the appearance of superluminal dispersion
points with infinite group velocity close to the SL frequency
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region. For SL associated with photonic band edges, the
presence of loss limits the maximum achievable slowdown
factor [18–20]. It was suggested that the SL regime can be
restored by the introduction of active amplifying layers in
metal-dielectric waveguides [21–23], and tunable slow-light
manipulation was demonstrated in amplifying semiconductor
ring resonators [24].

Here, we reveal through analytical analysis and numerical
simulations, the generic effects of material loss or gain on
wave propagation in dispersion-engineered SL waveguides,
and identify unique features distinct from band-edge SL con-
sidered previously [18–20]. We predict a dynamic transition
from slow- to superluminal propagation at a threshold loss
magnitude, manifesting as pulse oscillations forward and
backward in time due to hybridization and the interference
of propagating and evanescent waves. Most importantly, the
mode interference results in pulse intensity enhancement
close to the waveguide boundary even under strong losses,
indicating a potential for the practical realization of the
predicted effects. These results have direct implications for
engineered slow light in plasmonic waveguides [8,9] while also
highlighting important considerations for fundamental studies
of frozen light phenomena in periodic media [11]. We note
that scattering losses can also affect light propagation [13],
yet there have been strong advances in structure engineering
for their minimization [25] and we neglect them from our
consideration.

The paper is organized as follows. In Sec. II we formulate
a perturbation theory for dispersion-engineered slow-light
waveguides. We apply this theory in Sec. III to describe
analytically the generic effects of loss (or gain) on waveguide
dispersion and predict its critical transition at a threshold loss
magnitude. In Sec. IV, we confirm the analytical results with
direct numerical simulations for lossy photonic-crystal waveg-
uides, and additionally demonstrate intensity enhancement
even under strong losses. Then, in Sec. V we analyze pulse
dynamics in these waveguides and reveal temporal oscillations
between forward and backward propagation associated with

043819-11050-2947/2012/85(4)/043819(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.043819


THOMAS P. WHITE AND ANDREY A. SUKHORUKOV PHYSICAL REVIEW A 85, 043819 (2012)

the slow- to fast-velocity transition. We summarize our
findings and provide an outlook in Sec. VI.

II. PERTURBATION THEORY FOR
DISPERSION-ENGINEERED SLOW-LIGHT

WAVEGUIDES

As a starting point, we consider an SL waveguide in which
the dispersion ω(k) is engineered to suppress GVD [i.e., α =
∂2ω/∂k2 = 0 at a frequency ω0 = ω(k0), where k is the wave
number]. Then, a Taylor expansion of the dispersion curve to
third order can be written as

ω(k) � ω0 + vg,0(k − k0) + β(k − k0)3, (1)

where vg,0 = ∂ω/∂k|k0 is the group velocity and β =
(1/6)(∂3ω/∂k3)|k0 . The absence of the second-order term is
due to GVD suppression, associated with an inflection point
in the dispersion dependence.

While the analysis presented here is generic to any
inflection-point slow-light waveguide, for the numerical ex-
amples throughout this paper we consider a specially designed
photonic-crystal (PhC) waveguide shown in Fig. 1(a). The
slow-light section, (ii), consists of a two-dimensional PhC slab
with refractive index n = 2.83, period a, and holes of radius
r = 0.3a. A missing line of holes forms the waveguide core,
and the first two rows of holes on either side are shifted parallel
to the waveguide axis by 0.3a and 0.425a, respectively.

The fundamental TE-polarized (electric field in the plane
of the PhC) mode dispersion has an inflection point [see
solid curve in Fig. 1(b)] where the group index (slowdown
factor) is ng ≈ 280 in a narrow wavelength range [see
Fig. 1(d)]. The dispersion is well approximated by Eq. (1) with
k0a/(2π ) = 0.6131, ω0a/(2πc) = 0.264585, vg,0 = c/280,
and β = 16c(2π/a)2.

To study the influence of material loss (or gain) on the
waveguide dispersion, we consider the effect of a small
imaginary part of the refractive index n = nr + ini . The
corresponding complex permittivity is given by ε � εr + iεi ,
where εr is that of the lossless waveguide and εi = 2nrni .
From first-order perturbation theory [19], the small change in
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FIG. 1. (Color online) (a) PhC waveguide geometry. (b) Re(k)
dispersion curves for the propagating mode (solid line) and
first evanescent mode (dashed line) in the slow-light waveguide.
(c) Corresponding Im(k) curve for the evanescent mode. (d) Group
index of the propagating mode, where the slow-light region is
associated with the dispersion inflection point.

ε produces a small frequency shift

�ω = −i
1

2
ωf

εi

εr

. (2)

Here f = 〈E|εi |E〉V /〈E|εr |E〉 describes the proportion of
the total mode energy in the volume V comprising the lossy
dielectric, where E is the electric field mode profile.

Then we replace ω0 in Eq. (1) with ω0 + �ω0, where �ω0

is given by Eq. (2) evaluated at ω0, and invert the resulting
equation to solve for k(ω) at real ω. The function ω(k) is
cubic and hence there are three solutions at each frequency.
When there is no loss (ni = 0), we obtain one real k1 and
a pair of complex solutions, k2 = k∗

3 , which correspond to
evanescent modes. The dispersion of the evanescent mode
which decays in the propagation direction [Im(k) � 0] is
plotted as dashed curves in Figs. 1(b) and 1(c). We note
that the simultaneous presence of propagating and evanescent
modes is a characteristic feature of a dispersion inflection
point, and this was recently demonstrated experimentally for
dispersion-engineered photonic-crystal waveguides [26,27].

III. EFFECT OF LOSS ON WAVEGUIDE DISPERSION

We now analyze the effect of loss on the waveguide
dispersion. All three solutions k(ω) are complex for ni > 0,
but only two have Im(k) > 0 corresponding to a physically
relevant situation of wave decay in the propagation direction.
We show dispersion curves for the two modes for a set of
increasing ni in Fig. 2. When ni = 2 × 10−4, the dispersion
of Re(k) in Fig. 2(a) closely resembles the lossless case in
Fig. 1(b), apart from a slight distortion close to the inflection
point. Accordingly, the zero GVD condition is also preserved.
On the other hand, what was previously the propagating mode
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FIG. 2. (Color online) (a–c) Real and (d–f) imaginary wave-
vector components of the waveguide modes for different values of
loss. The solid and dashed curves are calculated using the perturbation
model and dots are numerical FDTD results. The line type follows
the mode classification in the absence of losses as either propagating
(solid line) or evanescent (dashed line).
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FIG. 3. (Color online) (a) Real and (b) imaginary wave-vector
components of the waveguide modes at the inflection point frequency
plotted as a function of ni . The solid and dashed curves are calculated
using the perturbation model and dots are numerical FDTD results.
Straight dotted green line in (b) shows the asymptotic dependence for
low loss according to Eq. (4).

with purely real k now has a small Im(k) component that peaks
at the inflection point frequency due to slow-light enhancement
of the loss, see Fig. 2(d).

As ni increases, the propagating and evanescent modes
form hybrid states close to the inflection point as shown in
Figs. 2(b) and 2(e) and Figs. 2(c) and 2(f). This coupling
manifests as an avoided crossing of the Re(k) dispersion curves
and a corresponding crossing of the Im(k) curves such that the
decay rate of both modes is equal at ω0. Note also that the
inflection feature of the original dispersion curve in Fig. 1(b)
has disappeared, dramatically changing the dispersion: Instead
of slow light, the group velocity becomes superluminal as
the dispersion dependence acquires a vertical slope in the
vicinity of ω0. Such dispersion features are not unique to the
system considered here, and superluminal group velocity has
been associated with evanescent modes in a number of other
contexts [28,29]. These states do not violate causality because
purely evanescent modes are nonpropagating.

From the analytic form of the cubic solutions of k(ω) we
find that the loss threshold for the mode hybridization is

εth
i =

(
3

β

)1/2 4εrv
3/2
g,0

9ω0
, (3)

which corresponds to εth
i = 1.2 × 10−3 or nth

i = 2.2 × 10−4

for the SL PhC waveguide shown in Fig. 1(a).
The mode hybridization is evident in the dependencies of

mode dispersion at the inflection point frequency (ω0) shown
in Fig. 3. When the loss is below the threshold value, both
modes have equal Re(k), as for the lossless case, while the
values of Im(k) approach each other as εi → εth

i . Once the
loss passes the threshold value, the Re(k) curves split, while
Im(k) is equal for the two modes.

For small losses below the threshold, εi < εth
i , perturbation

theory predicts the enhancement of the propagating mode
decay rate proportional to the slowdown factor

Im(k) � 1

2vg,0
ω0f

εi

εr

, (4)

and we show this dependence by the dotted (green) line in
Fig. 3(b).

Above the threshold, εi > εth
i , the decay rate increases much

more gradually with increasing material loss, remaining below

FIG. 4. (Color online) (a) Normalized group velocity (vg/vg,0)
for the first mode vs. normalized loss (εi/ε

th
i ) at the frequency ω0.

Solid line: numerical calculation using the perturbation model; dashed
lines: asymptotic approximations close to the threshold loss value
according to Eqs. (6) and (7). (b) Density plot of inverse group
velocity (v−1

g vg,0) for the mode with larger Re(k) vs. normalized

loss (εi/ε
th
i ) and frequency detuning [(ω − ω0)β1/2v

−3/2
g,0 ] calculated

using the perturbation model. Solid black line: zero contour line
corresponding to infinite group velocity; dashed white line: analytical
approximation of the contour line according to Eq. (8).

the level of

Im(k) �
(

vg,0

3β

)1/2

+ 1

12vg,0
ω0f

εi − εth
i

εr

. (5)

Note that here the multiplier in front of εi is decreased by a
factor of 6 compared to the case of small losses of Eq. (4).

The group velocity also exhibits nontrivial behavior due
to mode hybridization. In particular, the group velocity at
the central frequency (ω0) depends nonmonotonically on the
loss coefficient, see Fig. 4(a). The plots show results for the
first mode; the other mode has identical group velocity, but
with the opposite sign. By analyzing the dispersion relation,
we determine that below, but close to the hybridization
threshold (for εi → εth

i while εi < εth
i ), the group velocity at

the inflection point frequency ω0 is

vg(ω0)
∣∣
εi<εth

i

� ±vg,0
2√
3

√
1 − (

εi/ε
th
i

)2
, (6)

where the sign “ + ” corresponds to the first mode (with smaller
loss) and “ − ” to the second mode (which has a larger decay
rate). Interestingly, as the threshold is approached from below,
the group velocity at the inflection point approaches zero,
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corresponding to the “frozen light” regime. As the modes
hybridize, the group-velocity value changes abruptly and just
above the threshold we have

vg(ω0)
∣∣
εi>εth

i

� ±6vg,0
[
1 + (8/27)

(
εi/ε

th
i − 1

)]
. (7)

We note that the group velocity above the threshold is increased
six times compared to the low-loss regime, and it corresponds
to a six-fold decrease in decay rate versus material loss as
discussed above for Eq. (5). The analytical dependencies of
Eqs. (6) and (7) are shown in Fig. 4(a) with dashed lines,
which are very close to the exact numerical values plotted
with a solid line.

Another important feature of group velocity is the appear-
ance of superluminal and even infinite group-velocity points
corresponding to vertical slopes of the dispersion dependencies
as seen in Fig. 2(b) and 2(c). The interesting effect here is that
the appearance of such dispersion regions can be tuned to
different frequencies purely by varying the material loss. We
plot the dependence of the inverse velocity for the mode with
larger Re(k) on the loss coefficient and frequency detuning in
Fig. 4(b). The black line follows the v−1

g = 0 contour where the
group velocity becomes infinite. For the other mode the plot
appears the same but flipped to opposite frequency detunings.
The frequencies at which the group velocity becomes infinite
can be found approximately as

ω∞ � ω0 ± 2v
3/2
g,0

27β1/2

[(
εi/ε

th
i

)2 − 1
]3/2

1 + (8/27)
[(

εi/ε
th
i

)2 − 1
] . (8)

We show this dependence with a dashed white line in Fig. 4(b),
which is in good agreement with the numerically calculated
black zero-level contour line.

Finally, we note that since our analytical results do not
depend on the sign of εi , we can similarly predict the effects
of material gain.

IV. NUMERICAL SIMULATIONS FOR LOSSY
PHOTONIC-CRYSTAL WAVEGUIDES

To verify the accuracy of the simple perturbation model,
we perform two-dimensional finite-difference time-domain
(FDTD) simulations of optical pulse propagation in PhC
waveguides with weak material absorption. The geometry for
these simulations is shown in Fig. 1(a). Light is launched
from a narrow ridge waveguide into a PhC waveguide
(i) before entering the slow-light waveguide (ii). Section (i)
supports a relatively fast mode with ng ≈ 5 at ω0, and provides
efficient coupling to the ridge waveguide and to section
(ii) [10,30]. While this is not essential to the analysis,
it simplifies the numerical simulations by reducing back
reflections and ensuring high transmission into the slow-light
waveguide (ii) at all wavelengths. Here, waveguide (i) is
formed by increasing the lattice constant of waveguide (ii) by
7% in the direction parallel to the waveguide axis. Light is
coupled out in an identical way after propagation through 96
periods of waveguide (ii).

To evaluate the dispersion properties of waveguide (ii) we
first calculate the steady-state fields in the waveguide for a
range of frequencies near the inflection point and then apply a
Bloch-mode extraction technique to determine simultaneously
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FIG. 5. Left: Field enhancement in the slow-light PhC waveguide
as a function of ni . (i)–(iv): |Hy |2 field on the waveguide axis at points
(i)–(iv) marked on the left plot.

both the complex wave-vector components and field profiles
of all the waveguide modes [31]. The results of the FDTD
dispersion extraction are plotted as dots in Figs. 2 and 3, where
the lines correspond to perturbation model results.

Recall that the perturbation model takes as input only the
unperturbed dispersion of the propagating mode and the modal
overlap with the lossy material (f ), Eq. (2). We determine
that f = 0.77 using the mode profile at the inflection point
frequency. The agreement with the numerical simulation is
remarkable; the simple model reproduces all key features of
the mode hybridization, both qualitatively and quantitatively.
The only minor deviation is seen in Fig. 3(b) where the
imaginary wave-vector components extracted from the FDTD
simulations are not exactly equal in the region εi > εth

i whereas
they are equal in the analytical model. This difference may be
due to a slight frequency shift of the dispersion curves with
increasing loss, which is not accounted for when plotting the
dispersion at fixed frequency ω0.

In the absence of losses, the light intensity can increase
in the waveguide inversely proportional to the group velocity
[10]. The numerical simulations here also allow us to inves-
tigate whether lossy slow-light waveguides of this type could
still provide the increased intensities required for enhanced
nonlinear effects. This is a nontrivial question since, not only
does the loss directly reduce the field intensity inside the
waveguide, but the reshaping of the dispersion curves changes
the group velocity. Figure 5 shows the maximum intensity
enhancement at the inflection point as a function of ni . The
enhancement is defined as the ratio of the maximum value of
|Hy |2 in the slow-light region to that in the input waveguide,
where Hy is the magnetic field component perpendicular to
the plane of the PhC. The figures on the right show the field
profiles along the waveguide for several values of ni . The
results show that it is possible to achieve an order of magnitude
enhancement in the waveguide even in the presence of loss on
the scale of ni = 10−3. While such high loss would clearly
not allow long propagation distances, it may still be possible
to observe enhanced nonlinear effects such as third-harmonic
generation, which has been measured in the first few microns
of silicon slow-light PhC waveguides [32].

V. SLOW AND BACKWARD PULSE DYNAMICS

We now study the propagation dynamics of light pulses
in dispersion engineered waveguides in the presence of loss
and identify a regime of pulse propagation dominated by
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FIG. 6. (Color online) Numerical FDTD simulations of pulse
propagation through a dispersion engineered slow-light waveguide
for (a) ni = 0, (b) ni = 2 × 10−4, (c) ni = 1 × 10−3, and (d)
ni = 1.5 × 10−3. Background coloring and gray curves show the
normalized pulse profile as a function of time at different positions
along the waveguide. Dashed black curve shows the trajectory of the
pulse center of mass.

interference between the two hybrid states formed from the
propagating and evanescent modes.

We consider the same PhC waveguide geometry
as in Sec. IV, and launch spectrally narrow pulses
with a full-width half-maximum of 0.02% of the
central frequency, corresponding to a half width of
0.26456 � ωa/2πc � 0.26461 at ω0a/2πc = 0.264585. To
record the pulse dynamics in the slow-light section, field
monitors were positioned every four lattice periods along the
length of waveguide (ii) shown in Fig. 1(a).

We consider pulses launched at the inflection point fre-
quency ω0. Figure 6 illustrates the trajectory of pulses through
the waveguide for three different values of loss. The horizontal
axis corresponds to the normalized time, cT (units of a) and the
vertical axis shows the position along the waveguide. At each
position along the waveguide, the maximum pulse amplitude
has been normalized to unity to allow an easy comparison
of the pulse shape, even in the presence of strong loss. The
dotted line passes through the pulse center of mass at each
position. The local slope of this line, dx/dt , is approximately
proportional to the local group velocity of the pulse.

Figure 6(a) shows the pulse dynamics for the lossless
waveguide: The pulses maintain their shape as they propagate
through the waveguide, with only a slight broadening due to
dispersion. The change in slope at each end of the waveguide
indicates the effect of the weakly decaying evanescent mode
on the local group velocity of the pulse. Similar behavior is
seen in Fig. 6(b) for ni = 2 × 10−4, when the loss is still below
the hybridization threshold shown in Fig. 3.

Figures 6(c) and 6(d), however, show strikingly different
pulse behavior when the loss is increased above the threshold.
The pulses change shape as they propagate, resulting in a
periodic oscillation of the pulse trajectory, and a correspond-
ing variation in the apparent group velocity from forward
(positive) to backward (negative). This surprising behavior
can be understood by considering the dispersion properties of
the hybrid modes shown in Fig. 3. For ni > nth

i , there exist
two modes at ω0 with different Re(k), but almost identical
Im(k). The incident pulse excites a superposition of the two
modes which propagate along the waveguide, decaying at
almost the same rate, but moving in and out of phase with
each other due to the difference in Re(k). The oscillation seen
in Figs. 6(c) and 6(d) is a result of beating between these two
modes, causing the pulse envelope to change shape such that
at certain positions the peak intensity moves backward along
the waveguide. The period of this oscillation can be predicted
from the mode splitting in Fig. 3. For ni = 1 × 10−3 (ni =
1.5 × 10−3), �Re(k)a/2π = 0.0218(0.0276), corresponding
to a beat length of 46a (36a). These values closely match the
observed periods in Figs. 6(c) and 6(d). Note that the beating
is not observed for ni < nth

i , since in this case the modes have
equal Re(k), so they remain in phase, while one of them decays
much more rapidly with distance than the other.

VI. CONCLUSION

In conclusion, we have analyzed the influence of loss or
gain on slow light associated with an inflection point of
mode dispersion. We have developed a simple perturbation
model that predicts the hybridization of propagating and
evanescent waves and the associated reduction of effective
loss or gain enhancement due to slow light. This effect
is confirmed in numerical simulations, which also predict
significant field enhancement even in the presence of strong
losses. Remarkably, loss-induced mode hybridization strongly
modifies pulse propagation dynamics, resulting in an oscillat-
ing pulse velocity between forward and backward directions in
time. These results are generic to all waveguides that support
inflection-point slow light and we anticipate their application
in the study and design of slow-light waveguides based on
photonic-crystal slabs, fibers, and plasmonic structures.
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