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Single-photon frequency conversion by exploiting quantum interference
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We present a scheme to achieve efficient single-photon frequency conversion by exploiting quantum
interference between different transition pathways for single-photon states. As an example, we discuss the
single-photon frequency-conversion process in the configuration wherein a �-type (Lambda-type) three-level
quantum emitter is coupled to a Sagnac interferometer. It is shown that the efficiency of the frequency conversion
approaches unity in the ideal case. A real-space theoretical approach and a pseudospectral numerical method are
developed, which facilitate the computation for the full spatiotemporal dynamics of the scattering process.
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I. INTRODUCTION

The capability to dynamically shift the frequency of light
at the single-photon level is critical for many applications in
quantum information processing. For example, by modulating
the frequency of single photons through discrete frequency
changes, the quantum analog of frequency-shift keying in
optical communication [1] could be realized. Efficient optical
frequency conversion of light has been explored in the large-
photon-flux limit [2,3]. In this paper, we explore the possibility
of achieving frequency conversion of light in the quantum
regime of single photons and seek an architecture that is
readily amenable to solid-state implementations. The requi-
site optical nonlinearities to achieve frequency conversion,
although generally very weak at ultralow light levels [4],
could still be exploited and tailored through proper design.
Several schemes for producing single-photon nonlinearities
have been proposed, such as a single-photon transistor, where
the presence of a single gate photon is sufficient to control
the propagation of subsequent signal photons [5]. Another
example is a deterministic photonic entangler, wherein two
photons can exchange energy and exhibit resonance fluores-
cence, analogous to a χ (3) process [6]. These few-photon
nonlinear devices rely on the existence of strong photon-
photon interactions, imposing stringent operating conditions
for photons and the emitter, such as impedance matching
and pulse split [5], as well as constraints on relative photon
arrival times set by the spontaneous emission lifetime of the
quantum emitter. Consequently, it would be advantageous if
some of the nonlinear optical processes could be accomplished
using only one photon; these single-photon devices are
anticipated to be more robust than those requiring few photons
for the same nonlinear processes (e.g., the quantum state
transfer of single photons). In this paper we exploit quantum
interference between single-photon transition pathways to
achieve efficient single-photon frequency conversion. We
show that the efficiency approaches unity in the ideal case.
Moreover, we numerically demonstrate this capability by
simulating the single-photon frequency-conversion process
using the D0-DX0 transition in a GaAs quantum dot with
experimentally measured physical parameters. It is shown
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that the conversion efficiency can be larger than 80% even
in the presence of dissipation, allowing practical applications.
Before we describe in detail the theoretical formulation, we
begin with a physical picture of the frequency-conversion
process [7]. The basis of the system is a �-type three-level
quantum emitter with energy levels shown in Fig. 1(a) coupled
to a one-dimensional waveguide. When the emitter initially
in the |1〉 state is excited by an incoming photon, it can
spontaneously decay to either of the low-lying states |1〉 or
|2〉 and emit a photon. If the emitter decays to state |2〉, the
outgoing photon will be frequency downshifted [Fig. 1(a),
top]. Note that frequency up conversion can also be achieved
if the emitter is initialized to state |2〉 and decays to state |1〉
[Fig. 1(a), bottom].

Consider the following typical scattering process: if an
incoming photon encounters the emitter directly [Fig. 1(b)],
the outgoing photon will be in a spectral superposition of
frequency-shifted and -unshifted waves (as well as a spatial
superposition of reflected and transmitted waves), with a
maximum frequency-shift probability of one half (considering
both the reflected and transmitted waves). The conversion
efficiency can be significantly enhanced by exploiting quantum
interference: if the input photon is in a spatial superposition
of incoming from the left and incoming from the right, emis-
sion from the |1〉 ↔ |3〉 transition (in the down-conversion
case) or the |2〉 ↔ |3〉 (in the up-conversion case) can be
completely suppressed through quantum interference. That is,
the emitter undergoes a complete population state transfer,
induced by the input photon. One realization of the desired
quantum interference is achieved by coupling the emitter to
a Sagnac interferometer [8,9] [Fig. 1(c)]. When a photon
incoming to port a encounters the 50 : 50 coupler, it is split
into counterpropagating clockwise (cw) and counterclockwise
(ccw) modes which interfere constructively at the emitter
and suppress emission from the |1〉 ↔ |3〉 transition. The
frequency-shift probability reaches its maximum when the
coupling strengths �1 and �2 are equal. Moreover, the Sagnac
interferometer geometry provides the ability to dynamically
control the frequency-shift process by using a tunable phase
shifter as shown in Fig. 1(c) to introduce a relative phase θ

between the cw and ccw modes. For a relative phase θ = π

between the cw and ccw modes, the photon will not interact
with the emitter at all, and the frequency of the photon will
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FIG. 1. (Color online) Emitter energy levels and system
schematic. (a) Schematic �-type three-level quantum emitter with
transition frequencies ω13 and ω23. �1 and �2 are the coupling
strengths of each transition to the waveguide. The top diagram
corresponds to frequency down conversion and the bottom diagram
corresponds to up conversion. (b) Emitter (gray) coupled to a
one-dimensional waveguide. The top part shows a photonic pulse
incoming from the left. The bottom part shows the state after scatter-
ing, with the outgoing photon in a spectral superposition of frequency
shifted and unshifted and a spatial superposition of reflected and
transmitted. (c) Emitter coupled to a Sagnac interferometer.

be unshifted. The quantum interference effects have been
previously explored in the context of single-photon switching
[10].

The paper is organized as follows: In Sec. II, we present
the theory of a single-photon scattering process in which
frequency conversion occurs through interaction with a �-type
three-level quantum emitter. Using a real-space Hamiltonian,
the governing equations of motion are derived to obtain the full
spatiotemporal dynamics of the scattering process. We also
investigate the steady-state frequency-conversion process to
derive transport properties which give deeper insight into the
single-photon frequency-conversion process. We then detail
a scattering matrix description, which is the most compact
description of the scattering process. In Sec. III, we apply the
theoretical framework to determine the output when the input
is a photonic pulse with finite bandwidth. We then discuss
the conversion efficiency for finite-bandwidth scattering and
present results for several practically important pulse types. We
further discuss effects due to emitter dissipation and relative
pulse delay. Finally, in Sec. IV, we compare and contrast our
proposal with other schemes and discuss the experimental
feasibility of our scheme, as well as the current state of
the art in single-photon frequency-conversion experiments.
In the appendix, we describe an efficient numerical scheme
combining pseudospectral methods with nonuniform gridding
to computationally evaluate the system dynamics.

II. HAMILTONIAN, EQUATIONS OF MOTION,
AND SCATTERING MATRIX

Here we detail a complete theoretical framework for
the frequency-conversion process. We begin by presenting

the Hamiltonian of the system and deriving the governing
equations of motion. The system consists of a �-type three-
level quantum emitter coupled to a Sagnac interferometer, and
is described by a Dicke-type Hamiltonian in real space [11].
The Hamiltonian H is given by

H = Hp + Hq + Hi, (1)

where Hp is the free photonic Hamiltonian, Hq is the free
quantum emitter Hamiltonian, and Hi describes the interaction
between the photon and emitter. Hp is given by

Hp =
∫

dxh̄{c†R(x)(−ivg∂x)cR(x) + c
†
L(x)(ivg∂x)cL(x)},

(2)

where c
†
R(x) and cR(x) are creation and annihilation operators,

respectively, for a right-moving photon at position x, and
c
†
L(x) and cL(x) are creation and annihilation operators,

respectively, for a left-moving photon at position x. Note
that, inside the Sagnac interferometer loop, right-moving
corresponds to clockwise (cw) and left-moving corresponds
to counterclockwise (ccw); vg is the group velocity of the
photon. The Hamiltonian of the quantum emitter Hq is

Hq = h̄(ω1a
†
1a1 + ω2a

†
2a2 + ω3a

†
3a3), (3)

where a
†
i and ai are creation and annihilation operators,

respectively, and a
†
i ai = n̂i is the number operator for the

emitter |i〉 state. The interaction term describes the scattering
between photons and the emitter and is given by

Hi =
∫

dxh̄δ(x)(V1{[c†R(x) + c
†
L]σ13 + [cR(x) + cL]σ31}

+V2{[c†R(x) + c
†
L(x)]σ23 + [cR(x) + cL(x)]σ32}), (4)

where σij = a
†
i aj is the transition operator from emitter state

|j 〉 to emitter state |i〉; V1 and V2 describe the interaction
between each transition dipole moment and the photonic field;
the emitter is located at x = 0 [for an emitter at x = xq, δ(x)
must be replaced by δ(x − xq)]. Hi describes all absorption
and emission processes of photons by the quantum emitter.
For example, the term proportional to σ13 describes a quantum
emitter transition from the excited |3〉 state to the |1〉 ground
state and the spontaneous emission of either a left- or right-
moving photon. The state |ψ(t)〉 describing the system is
determined by the Schrödinger equation ih̄∂t |ψ〉 = H |ψ〉 for
any given initial state |ψ(t0)〉 at time t0. We note that the
dipole-field coupling strengths V1 and V2 depend on the vector
nature of the dipole moment of each transition. A detailed a
priori estimate is rather involved. For a given configuration,
V1 and V2 can be estimated from the radiative spontaneous
emission rates as described in Sec. II C.

A. Time-dependent description

Here we describe the time-dependent description of the
scattering problem, which allows the computation of the full
spatiotemporal dynamics. When the input consists of only one
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photon, the general state is

|ψ〉 =
∫

dx
{
φ1R(x,t)c†R(x)e−iω1t a

†
1 + φ1L(x,t)c†L(x)e−iω1t a

†
1 + φ2R(x,t)c†R(x)e−iω2t a

†
2 + φ2L(x,t)c†L(x)e−iω2t a

†
2

}|0〉

+ e3(t)e−iω3t a
†
3|0〉, (5)

where φ1R(x,t), φ1L(x,t), φ2R(x,t), and φ2L(x,t) are the amplitudes for right- or left-moving photons when the emitter is in state
|1〉 or |2〉 and e3 is the excitation amplitude of the quantum emitter in the |3〉 state. In Eq. (5), the time dependence of each emitter
state is explicitly separated for convenience, such that the time dependence for the photonic part remains apparent throughout
the computation. Solving the Schrödinger equation ih̄∂t |ψ〉 = H |ψ〉 yields the governing equations of motion

i∂tφ1R(x,t)e−iω1t = − ivg∂xφ1R(x,t)e−iω1t + ω1φ1R(x,t)e−iω1t + V1δ(x)e3(t)e−iω3t ,

i∂tφ1L(x,t)e−iω1t = + ivg∂xφ1L(x,t)e−iω1t + ω1φ1L(x,t)e−iω1t + V1δ(x)e3(t)e−iω3t ,

i∂tφ2R(x,t)e−iω2t = − ivg∂xφ2R(x,t)e−iω2t + ω2φ2R(x,t)e−iω2t + V2δ(x)e3(t)e−iω3t , (6)

i∂tφ2L(x,t)e−iω2t = + ivg∂xφ2L(x,t)e−iω2t + ω2φ2L(x,t)e−iω2t + V2δ(x)e3(t)e−iω3t ,

i∂t e3(t)e−iω3t = ω3e3(t)e−iω3t + V1e
−iω1t {φ1R(0,t) + φ1L(0,t)} + V2e

−iω2t {φ2R(0,t) + φ2L(0,t)}.

For any initial state, the full spatiotemporal dynamics of the
system can be obtained by numerically solving the set of
equations [Eqs. (6)]. The initial state is specified by φ1R(x,0),
φ1L(x,0), φ2R(x,0), φ2L(x,0), and e3(0).

B. Time-dependent description (one-mode chiral model)

Equations (6) fully describe the dynamics of the system
and are applicable in either direct incidence [Fig. 1(b)] or
in the Sagnac interferometer geometry [Fig. 1(c)]. However,
due to the inherent symmetry in a Sagnac interferometer, it is
convenient to cast the description in terms of even and odd
modes, defined by the following operators:

c†e(x) = 1√
2

[c†R(x) + c
†
L(−x)],

ce(x) = 1√
2

[cR(x) + cL(−x)],

(7)

c†o(x) = 1√
2

[c†R(x) − c
†
L(−x)],

co(x) = 1√
2

[cR(x) − cL(−x)],

where c
†
e(x) and ce(x) are the even creation and annihilation

operators, respectively, and c
†
o(x) and co(x) are the odd creation

and annihilation operators, respectively. Using the even and

odd operators, Hp becomes

Hp = h̄

∫
dx{c†e(x)(−ivg∂x)ce(x) + c†o(x)(−ivg∂x)co(x)}.

(8)

The interaction Hamiltonian becomes

Hi =
∫

dxh̄δ(x){
√

2V1[c†e(x)σ13 + ce(x)σ31]

+
√

2V2[c†e(x)σ23 + ce(x)σ32]}, (9)

which contains only even mode operators c
†
e(x) and ce(x),

reflecting the symmetry of the system. Thus, even modes
are scattered into even modes and odd modes experience
no scattering. The general state of the system [Eq. (5)] is
transformed accordingly:

|ψ〉 =
∑
i=1,2

∫
dx{φie(x,t)c†e(x) + φio(x,t)c†o(x)}

× e−iωi t a
†
i |0〉 + e3(t)e−iω3t a

†
3|0〉, (10)

where φie(x,t) ≡ 1√
2
[φiR(x,t) + φiL(−x,t)] and φio(x,t) ≡

1√
2
[φiR(x,t) − φiL(−x,t)] are the wave functions of the photon

in even and odd states, respectively. When expressed in terms
of even and odd fields, the equations of motion [Eqs. (6)]
become

i∂tφ1e(x,t)e−iω1t = − ivg∂xφ1e(x,t)e−iω1t + ω1φ1e(x,t)e−iω1t +
√

2V1δ(x)e3(t)e−iω3t ,

i∂tφ2e(x,t)e−iω2t = − ivg∂xφ2e(x,t)e−iω2t + ω2φ2e(x,t)e−iω2t +
√

2V2δ(x)e3(t)e−iω3t ,

i∂tφ1o(x,t)e−iω1t = − ivg∂xφ1o(x,t)e−iω1t + ω1φ1o(x,t)e−iω1t , (11)

i∂tφ2o(x,t)e−iω2t = − ivg∂xφ2o(x,t)e−iω2t + ω2φ2o(x,t)e−iω2t ,

i∂t e3(t)e−iω3t = ω3e3(t)e−iω3t +
√

2V1φ1e(0,t)e−iω1t +
√

2V2φ2e(0,t)e−iω2t .

When φ1o and φ2o are zero initially, they remain zero for any later time. The system is therefore described completely by the
even modes. In this paper, we call this the one-mode chiral model.
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C. Steady state solutions

The set of equations [Eqs. (6)] describes the full spatiotem-
poral dynamics of the system. Here we focus on the steady
state solutions (i.e., eigenstates of the system) to derive the
transmission amplitudes and gain deeper insights. In steady
state, the entire system oscillates at a single frequency ωt . For
an initial state in which the incoming photon is monochromatic
with frequency ω and the emitter is in the ground state
with energy h̄ω1, the total energy is h̄ωt = h̄(ω1 + ω). ωt is
conserved throughout the scattering process, which allows us
to determine the time dependence of each component. We first
develop the transmission properties for the direct incidence
case [Fig. 1(b)] and show that the total frequency-shift
probability is at most one half. Since, for an energy eigenstate,
every term in Eq. (5) must have the same time dependence, it
follows that

φ1R(x,t) = φ1R(x)e−iωt ,

φ1L(x,t) = φ1L(x)e−iωt ,

φ2R(x,t) = φ2R(x)e−i(ω−ω12)t , (12)

φ2L(x,t) = φ2L(x)e−i(ω−ω12)t ,

e3(t) = e3(ω)e−i(ω−ω13)t ,

where φ1R(x), φ1L(x), φ2R(x), and φ2L(x) give the spatial
dependence of the photonic amplitudes and e3(ω) is the
excitation amplitude in steady state. We then make the
following ansatz on the spatial dependence of the photonic
amplitudes (which is numerically confirmed as described in
the appendix):

φ1R(x) = eik1x[θ (−x) + t1θ (x)],

φ1L(x) = e−ik1xr1θ (−x),
(13)

φ2R(x) = eik2xt2θ (x),

φ2L(x) = e−ik2xr2θ (−x),

where k1 = ω/vg and k2 = (ω − ω12)/vg. |t1|2 and |t2|2 give
the probability that a photon of single frequency ω will be
transmitted and and leave the emitter in state |1〉 (thereby
experiencing no frequency shift) or in state |2〉 (thereby
experiencing a frequency shift), respectively. |r1|2 and |r2|2
give the probability that a photon of single frequency ω will
be reflected and and leave the emitter in state |1〉 (thereby
experiencing no frequency shift) or in state |2〉 (thereby
experiencing a frequency shift of ω12), respectively. After
substituting the amplitudes given by Eqs. (12) and (13) into
the equations of motion [Eqs. (6)], the equations of motion
reduce to

−ivg(t1 − 1) + e3V1 = 0,

−ivgr1 + e3V1 = 0,

−ivgt2 + e3V2 = 0, (14)

−ivgr2 + e3V2 = 0,

1
2V1(t1 + r1 + 1) + 1

2V2(t2 + r2) = (ω − ω13)e3.

From Eqs. (14), we obtain the transmission, reflection, and
excitation amplitudes:

t1(ω) = (ω − ω13) + i�2

(ω − ω13) + i(�1 + �2)
, (15)

r1(ω) = − i�1

(ω − ω13) + i(�1 + �2)
, (16)

t2(ω) = − i
√

�1�2

(ω − ω13) + i(�1 + �2)
, (17)

r2(ω) = − i
√

�1�2

(ω − ω13) + i(�1 + �2)
, (18)

e3(ω) = V1

(ω − ω13) + i(�1 + �2)
, (19)

where �1 = V 2
1 /vg and �2 = V 2

2 /vg are the radiative sponta-
neous decay rates for each transition and give the linewidth of
all spectra. In Sec. III B, we show that the presence of dissipa-
tion will modify the linewidth. |t1|2 has an inverted Lorentzian
line shape, while |r1|2, |t2|2, and |r2|2 have Lorentzian line
shapes. All spectra have full width at half maximum (FWHM)
2� ≡ 2(�1 + �2). From these expressions, the transport of
a photon on resonance with the |1〉 ↔ |3〉 transition is
solely determined by the dimensionless quantity α ≡ �1/�2.
In particular, |t1(ω13)|2 = 1/(1 + α)2, |r1(ω13)|2 = α2/(1 +
α)2, |t2(ω13)|2 = α/(1 + α)2, and |r2(ω13)|2 = α/(1 + α)2.
For large values of α (i.e., �1 � �2), |t2|2 and |r2|2 become
small, and the transmission and reflection behavior reduces
to the case of scattering by a two-level emitter [12]. The
total frequency-shift probability is maximal for α = 1, for
which |t2(ω13)|2 = 1/4 and |r2(ω13)|2 = 1/4, so the combined
on-resonance frequency-shift probability is 1/2. The trans-
mission, reflection, and excitation spectra are plotted in Fig. 2,
where the excitation spectrum is normalized for convenience.

D. Steady state solutions (one-mode chiral model)

Here we derive the steady state transmission amplitudes
in the Sagnac interferometer geometry. The eigenstate wave
functions in Eq. (10) have the form

φ1e(x,t) = φ1e(x)e−iωt ,

φ2e(x,t) = φ2e(x)e−i(ω−ω12)t ,

φ1o(x,t) = φ1o(x)e−iωt , (20)

φ2o(x,t) = φ2o(x)e−i(ω−ω12)t ,

e3(t) = e3(ω)e−i(ω−ω13)t ,

where φ1e(x), φ2e(x), φ1o(x), and φ2o(x) give the spatial
dependence of the photonic amplitudes and e3(ω) is the
excitation amplitude in steady state, ω13 = ω3 − ω1 is the
frequency of the |1〉 ↔ |3〉 transition, and ω12 = ω2 − ω1 is
the frequency separation of the quantum emitter |1〉 and |2〉
states. In a Sagnac interferometer, when the cw and ccw
modes are in phase (θ = 0), φ1o(x) = φ2o(x) = 0 and only
even modes will propagate in the Sagnac interferometer. We
then make the following ansatz on the spatial dependence of
the even photonic amplitudes (again, the validity of the ansatz
is confirmed numerically as described in the appendix):

φ1e(x) = eik1x[θ (−x) + t1θ (x)],
(21)

φ2e(x) = eik2xt2θ (x),

where again k1 = ω/vg, k2 = (ω − ω12)/vg, and t1 and t2 are
transmission amplitudes. After substituting the amplitudes
given by Eqs. (20) and (21) into the equations of motion
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FIG. 2. Transmission, reflection, and emitter excitation for the case corresponding to Fig. 1(b). (a) Elastic transmission |t1|2. (b) Elastic
reflection |r1|2. (c) Inelastic transmission |t2|2 and reflection |r2|2. (d) Normalized emitter excitation spectrum.

[Eqs. (11)], the equations of motion reduce to

−ivg(t1 − 1) + e3

√
2V1 = 0,

−ivgt2 + e3

√
2V2 = 0, (22)

1√
2
V1(t1 + 1) + 1√

2
V2t2 = (ω − ω13)e3.

From Eqs. (22) we obtain the transmission and excitation
amplitudes

t1(ω) = (ω − ω13) − i(�1 − �2)

(ω − ω13) + i(�1 + �2)
,

t2(ω) = − i2
√

�1�2

(ω − ω13) + i(�1 + �2)
, (23)

e3(ω) =
√

2V1

(ω − ω13) + i(�1 + �2)
,

where again �1 = V 2
1 /vg and �2 = V 2

2 /vg. |t1(ω)|2 and
|t2(ω)|2 give the probability that an input photon at a single
frequency ω will leave the emitter in state |1〉 (thereby experi-
encing no frequency shift) or state |2〉 (thereby experiencing a
frequency downshift of ω12), respectively, after scattering. The
on-resonance transmission is again determined completely
by the dimensionless parameter α. Specifically, |t1(ω13)|2 =
(1 − α)2/(1 + α)2 and |t2(ω13)|2 = 4α/(1 + α)2, so when the
incoming photon is on resonance (ω = ω13) and the transition
strengths are equal (�1 ∼ �2), the frequency-shift probability
approaches unity. The transmission spectra for the Sagnac
interferometer geometry are plotted in Fig. 3 for several values

of α. In Figs. 3(c) and 3(d), the transmission spectra for
α = 1 are also compared to results obtained numerically. The
excellent agreement confirms the validity of the ansatz given
in Eq. (21).

If a phase shifter is used to introduce a relative phase of
θ = π between the cw and ccw modes, only odd states will
propagate in the Sagnac interferometer. The photonic modes
will thus not interact with the emitter at all, corresponding to
|t1|2 = 1, |t2|2 = 0 for all frequencies.

E. Scattering matrix

In scattering problems, one is interested in the initial states
and the output states, of which the relation is completely
specified by a scattering matrix. Ultimately, the scattering
matrix encodes all transport properties. Here we describe the
scattering matrix for a �-type emitter coupled to a Sagnac
interferometer. For a photon of frequency ω input to port a of
the Sagnac interferometer, with the quantum emitter initially
in state |1〉 ≡ a

†
1|0〉, the initial state is a direct product of the

photonic and emitter states

|ψ〉in =
( |ω〉

0

) ⊗
|1〉. (24)

The 50 : 50 coupler, with scattering matrix

Sc = 1√
2

(
1 1

1 −1

)
, (25)
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FIG. 3. Transmission spectra in Sagnac interferometer geometry. (a) Elastic transmission |t1|2. (b) Inelastic transmission |t2|2. (c)
Comparison of |t1|2 with numerical results. (d) Comparison of |t2|2 with numerical results.

acts only on the photonic part of Eq. (24), yielding the state

|ψ〉 = 1√
2

( |ω〉
|ω〉

) ⊗
|1〉. (26)

The quantum emitter scattering matrix satisfies

Sq

[
1√
2

( |ω〉
|ω〉

) ⊗
|1〉

]

≡ 1√
2

(
t1(ω)|ω〉⊗ |1〉 + t2(ω)|ω − ω12〉

⊗ |2〉
t1(ω)|ω〉⊗ |1〉 + t2(ω)|ω − ω12〉

⊗ |2〉

)
.

(27)

Equations (26) and (27) correspond to even modes propagating
in the loop. After propagation in the loop, which acts with
scattering matrix

Sl =
(

0 1

1 0

)
, (28)

and subsequent recombination in the coupler (again with
scattering matrix Sc), the final output state is only in port

a and is given by

|ψ〉out = ScSlSqSc|ψ〉in,

=
(

t1(ω)|ω〉⊗ |1〉 + t2(ω)|ω − ω12〉
⊗ |2〉

0

)
. (29)

The total scattering matrix S is then given by summing over
the complete set of input and output states

S =
∑

ω

|ψ(ω)〉out in〈ψ(ω)|. (30)

III. BEYOND SINGLE FREQUENCY: FINITE-BANDWIDTH
SCATTERING

With the previous mathematical preparation, we now
describe the output state when the input is a photonic pulse
with finite bandwidth. Consider the situation in which a photon
with amplitude φin(x,t) is injected through port a and the
emitter is initially in the ground state |1〉. As previously
described, only even modes propagate inside the loop (both
before and after scattering). After traversing the 50 : 50
coupler but before scattering, the propagating mode is given by
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φ1e,in(x,t) = 1√
2
[φ1cw,in(x,t) + φ1ccw,in(−x,t)], where

φ1cw,in(x,t) = 1√
2
φin(x,t),

(31)

φ1ccw,in(x,t) = 1√
2
φin(−x,t),

so one has φ1e,in(x,t) = φin(x,t); that is, the even state inside
the loop before scattering φ1e,in(x,t) has the same functional
form as the input in port a. After scattering, the photonic
states in the loop are described by the amplitudes φ1e,out(x,t)
and φ2e,out(x,t), which are related to the input state by

φ̃1e,out(x,ω) = t1(ω)φ̃1e,in(x,ω),
(32)

φ̃2e,out(x,ω) = t2(ω)φ̃1e,in(x,ω),

where φ̃(x,ω) = ∫
dtφ(x,t)eiωt/

√
2π indicates the temporal

Fourier transform. The state in the loop after scattering is

|ψ〉lout = 1√
2π

∫
dωe−iωt φ̃1e,out(x,ω)e−iω1t c†e(x)a†

1|0〉

+ 1√
2π

∫
dωe−iω′t φ̃2e,out(x,ω)e−iω2t c†e(x)a†

2|0〉.
(33)

ω′ is uniquely determined by energy conservation, as described
in Sec. II C. So, the scattered state inside the loop is

|ψ〉lout = 1√
2π

∫
dωe−iωt φ̃1e,out(x,ω)e−iω1t c†e(x)a†

1|0〉

+ 1√
2π

∫
dωe−i(ω−ω12)t φ̃2e,out(x,ω)e−iω2t c†e(x)a†

2|0〉.
(34)

Using the relation in Eq. (32), the state in the loop after
scattering becomes

|ψ〉lout = 1√
2π

∫
dωe−iωt t1(ω)φ̃1e,in(x,ω)e−iω1t c†e(x)a†

1|0〉

+ 1√
2π

∫
dωe−i(ω−ω12)t t2(ω)φ̃1e,in(x,ω)

× e−iω2t c†e(x)a†
2|0〉. (35)

By a similar analysis as previously discussed, when the
scattered state in the loop traverses the coupler, it will exit
completely through port a. The final output state in port a is

|ψ〉out = 1√
2π

∫
dωe−iωt t1(ω)φ̃in(x,ω)e−iω1t c†e(x)a†

1|0〉

+ 1√
2π

∫
dωe−i(ω−ω12)t t2(ω)φ̃in(x,ω)

× e−iω2t c†e(x)a†
2|0〉. (36)

Since we are interested in the temporal behavior of the state,
we may disregard the x degree of freedom, and the state

becomes

|ψ〉out = 1√
2π

∫
dωe−iωt t1(ω)φ̃in(ω)e−iω1t |ω,1〉

+ 1√
2π

∫
dωe−i(ω−ω12)t t2(ω)φ̃in(ω)

× e−iω2t |ω − ω12,2〉. (37)

Equation (37) is the central result of this paper. We now use
this result to compute the conversion efficiency for an input
photonic pulse.

A. Conversion efficiency of finite-bandwidth scattering

In the following, we compute the conversion efficiency
for several practically important input pulse types: Gaussian,
chirped Gaussian, square, Laplace, and sech2 pulses, all with
center frequency ω13, and all with the same intensity FWHM τ ,
as shown in Fig. 4 with axes normalized to maintain unit-area
normalization (note that, in the inset, the pulses are normalized
to a peak value of unity for direct visual comparison of
the FWHM time duration). The inelastic frequency-shifted
component of the output is given by the second term of
Eq. (37):

1√
2π

∫
dωe−i(ω−ω12)t t2(ω)φ̃in(x,ω), (38)

and the efficiency of frequency conversion Pc is the area ratio
of the inelastic scattered component to the input pulse

Pc =
∫

dω|t2(ω)φ̃in(x,ω)|2∫
dω|φ̃in(x,ω)|2 . (39)

For monochromatic input, the Fourier component becomes a
delta function in ω, so the frequency conversion approaches
|t2(ω)|2 as expected.

FIG. 4. Input pulse shapes with unity-area normalization. Inset
shows pulses normalized to a peak value of unity, showing that all
pulses have the same FWHM.
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FIG. 5. Conversion efficiency for finite-bandwidth pulses in Sagnac interferometer geometry. (a) Gaussian pulse for several values of α.
(b) Comparison of Gaussian, sech2, Laplace, square, and chirped Gaussian with α = 1.

1. Gaussian

When the input is a Gaussian pulse with intensity FWHM τ ,

φin(x,t) = 1

{2π [τ/(2
√

2 ln 2)]2}1/4
exp

{
− (x − vgt)2

4v2
g[τ/(2

√
2 ln 2)]2

}
e−iω13(x−vgt)/vg . (40)

This and other considered pulse shapes are shown in Fig. 4. For the Gaussian input specified in Eq. (40), the Fourier component
φ̃in(ω) is

φ̃in(x,ω) =
(

2[τ/(2
√

2 ln 2)]2

π

)1/4

e−[τ/(2
√

2 ln 2)]2(ω−ω13)2
eiωx/vg . (41)

When the input is normalized as in Eq. (41), the denominator of Eq. (39) will be 1. The frequency-conversion efficiency has the
following analytical form:

Pc =
∫

dω

∣∣∣∣ − i2
√

�1�2

(ω − ω13) + i(�2 + �1)

(
2[τ/(2

√
2 ln 2)]2

π

)1/4

e−[τ/(2
√

2 ln 2)]2(ω−ω13)2
eiωx/vg

∣∣∣∣
2

=
√

2

π

∫
dω

4�1�2

ω2 + (�2 + �1)2
[τ/(2

√
2 ln 2)]e−2[τ/(2

√
2 ln 2)]2ω2

= 4α

(1 + α)2

{√
2π [�τ/(2

√
2 ln 2)]e[

√
2�τ/(2

√
2 ln 2)]2

erfc[
√

2�τ/(2
√

2 ln 2)]
}
, (42)

where erfc(z) = 2√
π

∫ ∞
z

dtet2
is the complementary error function. The conversion efficiency is completely determined by the

two dimensionless quantities α = �1/�2 and �τ , where � = �1 + �2. As expected, Pc → 4α/(1 + α)2 = 4�1�2/(�1 + �2)2

as �τ → ∞. The conversion efficiency for a Gaussian pulse is shown in Fig. 5(a) for several values of α.

2. Chirped Gaussian

If the input is instead a linearly chirped Gaussian with degree of chirping determined by the dimensionless parameter b, the
input is

φin(x,t) = 1

{2π [τ/(2
√

2 ln 2)]2}1/4
exp

{
− (1 − ib)(x − vgt)2

4v2
g[τ/(2

√
2 ln 2)]2

}
e−iω13(x−vgt)/vg , (43)

so the Fourier transform is

φ̃in(x,ω) =
(

2[τ/(2
√

2 ln 2)]2

π (1 − ib)

)1/4

e−[τ/(2
√

2 ln 2)]2(ω−ω13)2/(1−ib)eiωx/vg . (44)
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The conversion efficiency is then

Pc =
∫

dω

∣∣∣∣ − i2
√

�1�2

(ω − ω13) + i(�2 + �1)

(
2[τ/(2

√
2 ln 2)]2

π (1 − ib)

)1/4

e−[τ/(2
√

2 ln 2)]2(ω−ω13)2/(1−ib)eiωx/vg

∣∣∣∣
2

=
√

2

π

∫
dω

4�1�2

ω2 + (�2 + �1)2

(
τ/(2

√
2 ln 2)√

(1 + b)2

)
e−2[τ/(2

√
2 ln 2)]2ω2/(1+b2)

= 4α

(1 + α)2

{√
2π

[�τ/(2
√

2 ln 2)]√
1 + b2

exp

(√
2�τ/(2

√
2 ln 2)√

1 + b2

)2

erfc

(√
2�τ/(2

√
2 ln 2)√

1 + b2

)}
, (45)

so the conversion efficiency is still completely determined by α and �τ and still satisfies Pc → 4α/(1 + α)2 as �τ → ∞ but
approaches this limit more slowly than the conversion efficiency of the unchirped Gaussian.

3. Square

Now consider that the input is instead a square pulse with center frequency ω13 and the same intensity FWHM τ :

φin(x,t) = 1√
τ

rect

(
x − vgt

vgτ

)
e−iω13(x−vgt)/vg , (46)

where rect(z/Z) ≡ θ (z + Z/2) − θ (z − Z/2). The Fourier transform is

φ̃in(x,ω) = 1√
π

sin [(τ/2)(ω − ω13)]√
(τ/2)(ω − ω13)

eixω/vg , (47)

so

Pc =
∫

dω

∣∣∣∣ −i2
√

�1�2

(ω − ω13) + i(�2 + �1)

√
1

π

sin [(τ/2)(ω − ω13)]√
τ/2(ω − ω13)

e−ixω/vg

∣∣∣∣
2

=
∫

dω
4�1�2

ω2 + (�2 + �1)2

1

π

sin2 [(τ/2)ω]

(τ/2)ω2

= 4α

(1 + α)2

e−�τ + �τ − 1

�τ
, (48)

which is again completely determined by the dimensionless quantities α and �τ and still satisfies Pc → 4α/(1 + α)2 as �τ → ∞
but has higher conversion efficiency than a Gaussian with equal FWHM time duration.

4. Laplace

Now consider that the input is instead a Laplacian (double exponential) pulse with center frequency ω13 and the same intensity
FWHM τ :

φin(x,t) =
√

1

τ/ ln 2
exp[−|(x − vgt)/(vgτ/ ln 2)|]e−iω13(x−vgt)/vg . (49)

The Fourier component is a Lorentzian in ω:

φin(x,t) =
√

2

π

(τ/ ln 2)−3/2

(ω − ω13)2 + (τ/ ln 2)−2
eixω/vg . (50)

The conversion efficiency is then

Pc =
∫

dω

∣∣∣∣− i2
√

�1�2

(ω − ω13) + i(�2 +�1)

√
2

π

(τ/ ln 2)−3/2

(ω − ω13)2 + (τ/ ln 2)−2
eiωx/vg

∣∣∣∣
2

=
∫

dω
4�1�2

ω2 + (�2 + �1)2

(
2

π

)
(τ/ ln 2)−3

[ω2 + (τ/ ln 2)−2]2

= 4α

(1 + α)2

[
�τ

�τ + ln 4

(�τ + ln 2)2

]
, (51)

so the conversion efficiency is again completely determined by α and �τ and still satisfies Pc → 4α/(1 + α)2 as �τ → ∞ but
has higher conversion efficiency than a Gaussian with equal FWHM time duration.

5. Sech2

Consider finally that the input is instead a sech2 pulse with center frequency ω13 and the same intensity FWHM τ :

φin(x,t) =
(√

1

2

s

τ

)
sech

(
s(x − vgt)

vgτ

)
e−iω13(x−vgt)/vg , (52)

043814-9



MATTHEW BRADFORD AND JUNG-TSUNG SHEN PHYSICAL REVIEW A 85, 043814 (2012)

where s ≡ 2sech−1(1/
√

2). The Fourier transform is

φ̃in(x,ω) =
√

1

2

πτ

2s
sech

(
πτ

2s
(ω − ω13)

)
eixω/vg , (53)

so

Pc =
∫

dω

∣∣∣∣ − i2
√

�1�2

(ω − ω13) + i(�2 + �1)

√
1

2

πτ

2s
sech

(
πτ

2s
(ω − ω13)

)
eixω/vg

∣∣∣∣
2

=
∫

dω
4�1�2

ω2 + (�2 + �1)2

(
1

2

πτ

2s

)
sech2

(
πτ

2s
ω

)
.

(54)

This can be written in the form

Pc = 4α

(1 + α)2

1

2

∫
dζ

[
1

1 + [ζ/(a�τ )]2

]
sech2(ζ ), (55)

where ζ ≡ πτω/[4sech−1(1/
√

2)] and a ≡ π/

[4sech−1(1/
√

2)], so the conversion efficiency is again
a function only of the two dimensionless quantities α and �τ .
As �τ → ∞, the bracketed quantity in Eq. (55) approaches
one for all ζ . Furthermore, one has∫ ∞

−∞
dζ sech2(ζ ) = 2, (56)

so Pc → 4α/(1 + α)2 as �τ → ∞. A comparison of Pc for
all pulse types is presented in Fig. 5(b).

B. Effects of dissipation and dephasing

Intrinsic dissipation due to the emitter will degrade the con-
version efficiency [13,14]. When the emitter dissipation rate
γ ≡ γc + γp (including both radiative decay into nonguided
modes and dephasing) is included, the one-mode transmission
amplitudes for the Sagnac interferometer case with θ = 0
[Eqs. (23)] become

t1(ω) = (ω − ω13) − i(�1 − �2 − γ )

(ω − ω13) + i(�1 + �2 + γ )
,

(57)

t2(ω) = − i2
√

�1�2

(ω − ω13) + i(�1 + �2 + γ )
.

|t1|2 and |t2|2 are plotted in Figs. 6(a) and 6(b), respec-
tively. The on-resonance transmission with dissipation is
fully determined by the dimensionless parameters α and
γ̄ , where γ̄ ≡ γ /� is the dissipation rate measured in
units of the total transition coupling strength. In particu-
lar, |t1(ω13)|2 = [1 − α + γ̄ (1 + α)]2/[(1 + α)2(1 + γ̄ )2] and
|t2(ω13)|2 = 4α/[(1 + α)2(1 + γ̄ )2]. Note that |t1|2 + |t2|2 is
no longer unity due to dissipation. In fact, one has

|t1|2 + |t2|2 = (ω − ω13)2 + (�1 + �2 + γ )2 − 4�1γ

(ω − ω13)2 + (�1 + �2 + γ )2
. (58)

The probability of losing a photon to dissipation is given by
Ploss = 1 − (|t1|2 + |t2|2), which has a Lorentzian line shape
and is plotted in Fig. 6(c) for several values of γ̄ . For fixed
α and γ̄ , the peak of Ploss occurs for a photon on-resonance
with the |1〉 ↔ |3〉 transition, with the value Ploss(ω = ω13) =
4αγ̄ /[(1 + α)(1 + γ̄ )2]. Interestingly, the peak is maximal for

γ̄ = 1. When dissipation is further increased, the peak value
is reduced. For large γ̄ (i.e., a lossy emitter), Ploss approaches
zero and |t1|2 approaches unity, indicating that the input photon
does not interact with the emitter. Remarkably, the conversion
efficiency Pc has an analytical result for all considered pulses
except sech2, even with dissipation. As an example, consider
a Gaussian input as in Sec. III A 1. With dissipation, the
conversion efficiency Pc has the analytical solution

Pc = 4α

(1 + α)2(1 + γ̄ )2
{[

√
2π (1 + γ̄ )�τ/(2

√
2 ln 2)]

× exp [
√

2(1 + γ̄ )�τ/(2
√

2 ln 2)]2

× erfc[
√

2(1 + γ̄ )�τ/(2
√

2 ln 2)]}. (59)

With increasing γ̄ , the expression reaches its single-frequency
limit more quickly as �τ grows, but this limit is always smaller
than the nondissipative case. Pc for a Gaussian pulse with
dissipation is plotted in Fig. 6(d).

Using the methods described in the appendix, we have
also performed simulations which illustrate the effects of
dissipation on the dynamic scattering process. Figure 7 shows
input and output pulses in the frequency domain for the
cases γ̄ = 0, γ̄ = 0.1, and γ̄ = 1 (corresponding to β = 1,
β = 0.91, and β = 0.5, respectively, where the β factor gives
a measure of the probability of a photon being emitted into
a desired waveguide mode [16]). In all cases, the emitter
is a GaAs quantum dot initialized to the |1〉 state. The
frequency separation f12 = ω12/(2π ) is 6 GHz due to an
external magnetic field of 1 Tesla [17]. For the case γ̄ = 0
(i.e., the dissipation is negligible), the conversion efficiency
is Pc = 0.968. For γ̄ = 0.1 (i.e., γ = 2π × 2 × 108s−1, thus
γ � �), the conversion efficiency is Pc = 0.804. For γ̄ =
1 (i.e., γ = 2π × 2 × 109s−1, thus γ = �), the conversion
efficiency falls to Pc = 0.248.

C. Effects of pulse delay

In realistic experimental situations, it is challenging to meet
the criteria for full quantum interference (i.e., that the two
split pulses arrive at the emitter at the exact same time). We
now investigate the effects of relative pulse delay as shown in
Fig. 8(a). While the difference in arrival times will usually
be small compared to the time duration of the pulse, this
relative delay can however degrade conversion efficiency. For
any given input pulse φin(t), the conversion efficiency as a
function of relative delay �T is given by the self-convolution
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FIG. 6. Effects of dissipation. All plots correspond to Sagnac interferometer geometry with in-phase interference (θ = 0). α = 1 for all
cases. (a) Frequency-unshifted transmission. (b) Frequency-shifted transmission. (c) Photon loss probability Ploss. (d) Conversion efficiency
for a Gaussian pulse.

of the input pulse

Pc(�T ) = Pc(0)

(
1

2
+ 1

2

∫
dt |φin(t)φin(t − �T )|

)
, (60)

where Pc(0) is determined by α, γ̄ , and �τ as in Secs. III A
and III B. Note that this result assumes that the cw and ccw
modes are still in phase, which should always be achievable
with a tunable phase shifter. The conversion efficiency as a
function of �T is plotted for Gaussian and square pulses in
Fig. 8(b) which includes both numerical and analytical [i.e.,
from Eq. (60)] results.

D. Optimal input pulse waveform

We have discussed above the frequency-conversion effi-
ciency of various input pulse waveforms. In practice, the
operation of the frequency-conversion process is always
subject to some physical constraints. These constraints could
be associated with the practical limitation of waveform
generation, such as limited bandwidth, or due to practical
considerations, such as a specified finite time interval T within
which the quantum state transfer must occur with a prescribed
probability. This optimal control problem can be formulated
as a maximization problem over appropriate function spaces.
The optimal control problem pertaining to the topic under

discussion is to search for

max
∫

dω|t2(ω)φ̃in(ω)|2, (61)

where the spectral function φ̃in(ω), or its temporal representa-
tion, is subject to constraints. Such a quantum optimal control
problem in general has to be solved numerically. A detailed
discussion is beyond the scope of this paper (see, for example,
Ref. [18]).

IV. CONCLUSION AND OUTLOOK

In this paper we have presented a theory of single
photons scattering off a �-type three-level quantum emitter.
In particular, we have shown that efficient single-photon
frequency conversion can be achieved by exploiting quantum
interference. The possible frequency range for implementa-
tion depends on the physical parameters of experimentally
available quantum emitters. We also emphasize that the
analysis is fully causal, so that pulses with different temporal
forms respond differently [19]. The scheme could potentially
be made more robust by placing the emitter in an optical
cavity, wherein the emitter-cavity coupling strength could
greatly exceed the cavity-waveguide coupling strength so
as to enlarge the available bandwidth for frequency con-
version. In this paper we have assumed that the emitter

043814-11



MATTHEW BRADFORD AND JUNG-TSUNG SHEN PHYSICAL REVIEW A 85, 043814 (2012)

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
0

0.5

1

1.5

× 10
-10

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
0

0.5

1

1.5

× 10
-10

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
0

0.5

1

1.5

× 10
-10

frequency (GHz)

frequency (GHz)

frequency (GHz)

pu
ls

e 
am

pl
itu

de

FIG. 7. (Color online) Input and output pulses in Sagnac interferometer geometry (θ = 0) with dissipation. Solid blue curves are the
input pulse. Dash-dotted blue curves are the elastically scattered (i.e., frequency-unshifted) outputs. Dashed red curves are the inelastically
scattered (i.e., frequency-shifted) outputs. The input pulse in all cases is a Gaussian with τ = 0.5 ns and center wavelength λ = 819 nm, on
resonance with the |1〉 ↔ |3〉 transition. Quantum emitter parameters correspond to the D0-DX0 transition in a GaAs quantum dot: coupling
parameters [15] �1 = �2 = 2π × 109s−1, frequency separation f12 = 6 GHz.

couples directly to the waveguide in order to demonstrate the
physics of the single-photon frequency-conversion process.
Moreover, the scheme described here provides a potential
mechanism to efficiently couple quantum systems operating
at disparate energies, allowing hybrid quantum-information
schemes [20].

Finally, we comment on some practical issues related to
our scheme. First, for the single-photon frequency-conversion
process to be efficient, the ability to collect a large frac-
tion of the emitter’s radiation is essential. Such a require-
ment also applies to a number of applications in classical
and quantum information processing [21–23], as well as

FIG. 8. (Color online) Effects of relative time delay. (a) Relative delay in arrival time between cw and ccw modes. (b) Frequency-conversion
efficiency as a function of delay time.
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single-emitter spectroscopy [24]. It has been shown numer-
ically that, by embedding the emitter in a fiber-coupled
semiconductor channel waveguide, the coupling efficiency can
potentially be larger than 70% [25]. Moreover, the β factor
has been theoretically predicted to reach as high as 0.95 in
a photonic crystal waveguide [26,27]. A β factor of 0.89 has
also been experimentally demonstrated [16]. In this paper, we
take into account the nonideal emitter-waveguide coupling
efficiency and demonstrate that the frequency-conversion
efficiency is still large enough for practical applications.
Second, single-photon frequency conversion has recently
been reported in different geometries by using a terminated
waveguide [28,29]. We emphasize that the phase coherence
between each frequency component in the photonic pulse
is critical for efficient single-photon frequency conversion.
In this regard, our scheme is more robust in that the phase
coherence is maintained, while in a terminated waveguide,
the phase of the reflection amplitude is rather complicated
(e.g., frequency dependent), such that the phase coherence
in a terminated waveguide cannot be maintained in general.
Another recent solid state proposal to achieve single-photon
frequency conversion uses a periodically poled LiNbO3

(PPLN) waveguide [30]. While having the advantage of not
being fundamentally limited by the energy level spacing of
the emitter, the scheme in Ref. [30] requires an additional
strong optical field (the pump beam) and has a rather large
footprint (centimeter range) due to the quasiphase-matching
condition. The scheme proposed in this paper can achieve
single-photon frequency conversion without being limited
by these constraints, as no pump beam is required, and the
Sagnac interferometer geometry is amenable to small-scale
implementation, down to the μm regime [9,31,32].

APPENDIX: PSEUDOSPECTRAL METHODS AND
NUMERICAL VALIDATION

To solve the dynamics of the system in a manner inde-
pendent of any ansatz on the scattering states, we have also
developed methods to efficiently solve the system equations
of motion [Eqs. (6) and (11)] by combining highly efficient
pseudospectral methods with nonuniform gridding.

1. Pseudospectral numerical scheme

To determine the full spatiotemporal dynamics of the
system, we use pseudospectral [33] methods on a nonuniform
grid to iteratively solve the equations of motion [Eqs. (6)].
The pseudospectral method uses the fast Fourier transform
(FFT) and the fact that, in transformed space, differentiation
with respect to x becomes multiplication by ik. The states are
governed by equations of motion of the following form:

∂tφiR(x,t) = −vg∂xφiR − iViδ(x)e3(t), (A1)

so the evolution in time from time tn to tn+1 = tn + �t is given
by

φiR(x,tn+1) = e−vg�t∂x φiR(x,tn)

− iVi

∫ tn+1

tn

dτe−vg(tn+1−τ )∂x δ(x)e3(τ ). (A2)

The first term on the right-hand side is evaluated in k space
using the FFT, and the second term is approximated by

−iVi�te−vg(�t/2)∂x δ(x)e3(tn). (A3)

The quantity in Eq. (A3) then becomes

−iVi�te−vg�t∂x δ(x)e3(tn)

= −iVi�te3(tn)e−vg(�t/2)∂x
1

2π

∫
dkeikx

∫
dxe−ikxδ(x)

= −iVi�te3(tn)e−vg(�t/2)∂x
1

2π

∫
dkeikx

= −iVi�te3(tn)
1

2π

∫
dke−vg(�t/2)∂x eikx

= −iVi�te3(tn)
1

2π

∫
dke−ivg(�t/2)keikx

= −iVi�te3(tn)δ(x − vg�t/2). (A4)

For vg�t � �x, the spatial shift due to time discretization is
less than one spatial separation distance, so the delta function
is very nearly unaffected. Consequently, the state is evolved
iteratively according to

φiR(x,tn+1) = F−1
{
e−ivg�tkF{φiR(x,tn)}} − iV1�tδ(x)e3(tn),

(A5)

from a given initial state φiR(x,0). Here F{·} and F−1{·}
indicate the FFT and inverse FFT respectively.

To further improve computational efficiency, we employ
a nonuniform grid that has a high number of grid points
around the emitter and a much coarser grid elsewhere. This
allows us to take full advantage of the pseudospectral method,
which (away from the scattering center) requires a grid
spacing of only half the shortest wavelength of the input.
We implement nonuniform gridding without introducing the
need for a nonuniform discrete Fourier transform algorithm
by carrying out the iteration on an auxiliary space ξ , with the
transformation [34]

x(ξ ) = ξ − a

b
arctan{b(ξ -ξ0)}, (A6)

which clusters grid points around x0 = ξ0 (x0 is chosen
to correspond to the emitter location). The parameter a is
strictly less than 1, and gives a stronger clustering effect as
it approaches 1. The parameter b determines how spread out
the clustering is. After a and b are chosen to give the desired
degree of clustering, ξ is defined on a uniform grid. The x grid
is generated with Eq. (A6). The initial states φ(x,0) are defined
on x, and iteration for φ(x(ξ ),t) is carried out in ξ space. Now,
using ∂

∂x
→ ∂ξ

∂x
∂
∂ξ

, the transition function becomes

e−vg�t∂x → e−vg�t∂ξ /x
′(ξ ), (A7)

and the iteration therefore becomes

φiR(x,tn+1) = F−1
{
e−ivg�tk/x ′(ξ )F{φiR(x,tn)}}

− iV1�tδ(x)e3(tn). (A8)

Note that the grid of the transformed space variable k

correspond to the ξ grid rather than the x grid. We then expand
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the transition function in a series

e−ivg�tk/x ′(ξ ) ≈ 1 + −ivg�tk

x ′(ξ )
+ (−ivg�tk)2

2![x ′(ξ )]2
(A9)

and truncate higher-order terms, so the iteration takes the final
form

φiR(x,tn+1) = φiR(x,tn) +F−1
{−ivg�tkF{φiR(x,tn)}}/x ′(ξ )

+F−1
{

1
2 (−ivg�tk)2F{φiR(x,tn)}}/(x ′(ξ ))2

− iV1�tδ(x)e3(tn). (A10)

Iterating in this manner requires more operations per iteration
but can require a much smaller number of spatial grid points.
In the end, the combined method results in a very efficient
computational scheme.

2. Numerical confirmation of transmission spectra

Applying the computational scheme to the single-photon
frequency-conversion case, we verify the transmission spectra
developed in Sec. II C by specifying an input pulse φin and
measuring the scattered pulses. The input pulse φin(x,0)
is specified and evolved in time. The input and output
pulses as a function of time are recorded by selecting an
arbitrary spatial point to the left or right of the emitter
and recording the pulse at each iteration, so for example
φin(t) ≡ φ1R(x1,t). For the direct-incidence case, the input
pulse is incoming from the left with amplitude φ1R,in(t), and
the transmission, reflection, and excitation amplitudes are

given by

t1(ω) = φ̃1R,out(ω)

φ̃1R,in(ω)
, r1(ω) = φ̃1L,out(ω)

φ̃1R,in(ω)
,

t2(ω) = φ̃2R,out(ω − ω12)

φ̃1R,in(ω)
, (A11)

r2(ω) = φ̃2L,out(ω − ω12)

φ̃1R,in(ω)
, e3(ω) = ẽ3(ω)

φ̃1R,in(ω)
.

Here the quantities with tildes (˜) are the Fourier transforms of
the numerically recorded quantities, φ̃(ω) = 1√

2π

∫
dteiωtφ(t).

Likewise, to validate Sagnac interferometer transmission
spectra, we specify an incoming even state φ1e,in(t) and
calculate the transmission amplitudes as

t1(ω) = φ̃1e,out(ω)

φ̃1e,in(ω)
,

t2(ω) = φ̃2e,out(ω − ω12)

φ̃1e,in(ω)
, (A12)

e3(ω) = ẽ3(ω)

φ̃1e,in(ω)
.

The numerically generated transmission spectra for the Sagnac
interferometer case are compared to the transmission spectra
through analytical methods in Figs. 3(c) and 3(d). In all
cases, the resulting spectra are in excellent agreement with
the analytical results.
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