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We study inelastic collisions of counterpropagating self-induced transparency solitons in a homogeneously
broadened two-level medium. The energy of the pulse can be almost totally absorbed in the medium due to
asymmetric collision with a properly chosen control pulse. The medium state thus prepared demonstrates the
property of an all-optical diode which transmits pulses from one direction and blocks from another. The saturation
process of a controlled absorption effect, local-field correction influence, and the parameter ranges for the diode
action are studied as well.
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I. INTRODUCTION

The problem of creation of all-optical diodes has been
actively studied during recent years. Such systems, which
transmit electromagnetic radiation only in one direction and
block it in another, are usually based on asymmetrically
constructed waveguides [1] or nonlinear photonic structures
(see, for example, [2–5]). The use of left-handed materials [6]
and asymmetrically absorbing systems [7] have been studied,
among other possibilities. In other words, the all-optical diode
action is commonly a consequence of the proper ordering of
optical elements on microscopic scale (of the order of a light
wavelength).

In this paper we propose a fundamentally different scheme
of all-optical diode action. It is entirely based on nonlinear
dynamics of the self-induced transparency (SIT) solitons in a
homogeneously broadened, dense two-level medium. SIT is a
well-known effect [8,9], resulting in formation of stationary
pulses (solitons) which propagate without change in their form.
Our approach deals with collisions of counterpropagating
SIT solitons. The effects of such collisions were partially
studied in our previous work [10]. It was shown that under
certain conditions, one of the colliding solitons can be almost
entirely absorbed by the medium. We call this phenomenon
the controlled absorption of the SIT soliton.

A large density of the two-level medium allows one to
obtain the resulting effects on shorter distances. It is also useful
for reducing the scope of the numerical calculations. The local-
field effects need to be taken into account in this case. In
Ref. [11] it was shown that they do not significantly affect
the dynamics of a pulse with duration of femtosecond order.
However, the local-field correction is taken into account here
for generality; moreover, it is possible that it can somehow
influence the dynamics on relatively long distances, as in our
consideration. Therefore, we discuss this problem further as
well.

The paper consists of the following sections. In Sec. II
we consider the effect of controlled absorption of the SIT
soliton in some detail. Section III is devoted to an explanation
of our mechanism of all-optical diode action. In Sec. IV we
discuss the influence of pulse launch time, relaxation time, and
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medium density (as well as local field) on the demonstration
of our effects. Finally, in Sec. V we make some concluding
remarks.

II. CONTROLLED ABSORPTION

Propagation of light pulse in the dense two-level medium is
governed by the system of semiclassical Maxwell-Bloch equa-
tions for population difference W , microscopic polarization
R, and dimensionless Rabi frequency �′ = �/ω = (μ/h̄ω)E
(i.e., the normalized electric field amplitude) [12,13]:
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where τ = ωt and ξ = kz are dimensionless time and distance,
respectively; δ = 
ω/ω the normalized detuning of the field
carrier (central) frequency ω from the atomic resonance;
γ1 = (ωT1)−1 and γ2 = (ωT2)−1 the rates of longitudinal and
transverse relaxation, respectively; k = ω/c the wave number;
c the light speed in vacuum; and ε = ωL/ω = 4πμ2C/3h̄ω

is the normalized Lorentz frequency, where C is the con-
centration of the two-level atoms, and μ the component of
transition dipole moment parallel to the polarization vector of
the electric field. Here we assume without loss of generality
that the background dielectric permittivity of the medium is
unity (two-level atoms in vacuum). Note that in Eq. (3) we do
not use the slowly varying envelope approximation (SVEA),
while in Eq. (1) the term εW is responsible for the so-called
local field correction (near dipole-dipole interaction) in a dense
medium. The numerical approach used in this paper to solve
Eqs. (1)–(3) can be found in Ref. [14].

We consider propagation of ultrashort pulses with Gaussian
shape � = �p exp(−t2/2t2

p), where tp is the pulse duration.
The amplitude of the pulses is measured in the units of the
characteristic Rabi frequency �0 = √

2π/2tp, which corre-
sponds to the so-called 2π pulse. In our calculations the values
T1 = 1 ns and T2 = 0.1 ns are taken so that femtosecond pulses
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FIG. 1. The scheme of collision of two counterpropagating (FP
and BP) pulses in a two-level medium.

are in the regime of coherent interaction with the resonant
medium. We use the following parameters of calculations
which hold true throughout the paper: ωL = 1011 s−1, δ = 0
(exact resonance), λ = 2πc/ω = 0.5 μm; the thickness of the
medium L = 1000λ. All the pulses have the same duration
tp = 50 fs, which means that the only parameter governing
pulse dynamics is its amplitude. One can estimate that a 2π

pulse with such duration should have peak intensity of about
10 MW/cm2 in the case of atomic dipole moments μ ∼ 1 D.
The required concentration in this case is C ∼ 1019 cm−3.
However, the density and the peak intensity can be significantly
reduced if the media with higher dipole moments is used (for
example, a collection of quantum dots).

We start with the scheme of two ultrashort (coherent) coun-
terpropagating pulses: the forward-propagating (FP) pulse
with the initial amplitude �p1 and the backward-propagating
(BP) one with �p2 (see Fig. 1). If their amplitudes are
large enough, both pulses form self-induced transparency
(SIT) solitons as they propagate inside the medium. Such
two counterpropagating solitons meet somewhere inside the
medium and interact. It is known that, in contrast to the
pair of copropagating solitons, this interaction is inelastic
[15]. Mathematically, this means that two counterpropagating
pulses do not form a stationary solution of the equations
of motion. From the physical point of view, this fact can
be explained with the simple argumentation as follows. For
the copropagating solitons, we always have a situation when
the light energy absorbed at the leading edge of the pulse
is released at its trailing edge. This is not the case for the
counterpropagating solitons: at the point of collision, the
medium excited at the leading edge of the first pulse interacts
with the second pulse, even before the trailing edge arrives.
As a result, the collision of the pulses leads to the partial
absorption of their energy.

It was recently shown [10] that if �p1 = �0 (2π pulse)
and �p2 = 1.5�0 (3π pulse), the FP soliton gets entirely
absorbed, while the BP one appears unperturbed at the output.
In other words, the first pulse is blocked by the second one. For
simplicity, we call this situation the controlled absorption of
light energy inside the two-level medium. This energy leaves
the medium in a long run as a result of fluorescence. We should

FIG. 2. (Color online) The resulting intensities after the collision:
(a) collision of two pulses with �p1 = �0 and �p2 = 1.5�0; (b) the
third (probe) FP pulse �p3 = �0 is added; (c) the probe FP pulse has
�p3 = 1.5�0; (d) the probe pulse with �p3 = �0 is BP. The first and
second pulses start at the instant t = 0, while the third one starts at
t = 100tp .

also emphasize that this effect occurs only for the asymmetric
collision, i.e., when the amplitudes of both pulses are not the
same. The resulting profiles of the FP and BP pulses with initial
amplitudes �p1 = �0 and �p2 = 1.5�0 are demonstrated in
Fig. 2(a). These profiles are recorded at the opposite edges of
the medium: according to Fig. 1, it is the right edge for the
FP pulse and the left edge for the BP pulse. One can easily
see that the FP pulse is absent at the output (its energy is
mostly absorbed), while the BP pulse appears at the other end
of the medium. Note that this pulse (we can call it the control
pulse) can be described by the usual 2π -soliton envelope and is
significantly compressed in comparison with the initial pulse
due to the transient process [10]. There are also low-intensity
tails connected with radiation of absorbed light at both outputs
of the medium.

III. DIODE ACTION

Now one can ask a question: What happens when the third
(or probe) pulse with the amplitude �p3 enters the medium?
There are three possible answers: (i) it will be trapped, (ii) it
will pass through the medium, or (iii) it will not only pass but
also retrieve the previously absorbed pulse from the medium.
Furthermore, we try to investigate this question for different
values of �p3. If possibility (iii) can be realized, one can talk
about optical memory.

Let us add a probe pulse with amplitude �p3 which
enters the medium after the interval t = 100tp when there
are no propagating solitons inside the medium. There are two
alternatives: the probe pulse is FP or BP. The case of an FP
probe pulse with �p3 = �0 is shown in Fig. 2(b). It is seen
that interaction of this pulse with the medium (which stores
the energy of the previous FP pulse) prevents its appearance at
the output. Only the tails have somewhat increased intensity.
As opposed to this case, the pulse �p3 = 1.5�0 is happily
transmitted through the medium, though with a slightly lower
peak intensity than the identical BP pulse [Fig. 2(c)]. This
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FIG. 3. (Color online) The dependence of absorbed energy (as a
fraction of the total energy) on the amplitude �p3 of the probe pulse.
The energy is integrated over the time period t = 200tp .

means that transmittance of the soliton depends on its intensity.
Moreover, we have an interesting deviation from the area
theorem: the pulse with initial area 2π gets absorbed, while
the one with 3π forms a 2π soliton.

Now, if the probe pulse is BP and �p3 = �0, then it
appears at the output [Fig. 2(d)], in sharp contrast with the
FP case [Fig. 2(b)]. In other words, the collision of two
counterpropagating pulses switches the medium into such a
state that it transmits the probe pulse incident from one side
and blocks from the other. We can call this effect the all-optical
diode action. The reason for this effect can be understood if
we recall that the colliding pulses are not identical, i.e., the
collision is asymmetric. As a consequence, this asymmetric
collision “prepares” the asymmetric state of the medium, i.e.,
the diode action entirely depends on light-matter interaction,
but not on the properly chosen geometry of the problem.
Therefore, this scheme is fundamentally different from the
usual proposals of all-optical diodes based on asymmetrically
constructed systems.

To study this asymmetry in more detail and to clarify the
conditions for the diode action, we investigate the dependence
of absorbed energy on the amplitude of the probe pulse
�p3 (see Fig. 3). Absorbed energy is calculated as a part
of the total electromagnetic energy which remains inside
the medium after some period (namely, t = 200tp) from the
start of the first two pulses. The curves for both (FP and
BP) cases are situated between two asymptotes. The first
one characterizes the fraction of the total energy of all three
pulses, which accounts for the first FP pulse. This asymptote
is defined as the function f1(�p3) = �2

p1/(�2
p1 + �2

p2 +
�2

p3) = 1/(3.25 + �̃2
p3), where we use the values �p1 = �0,

�p2 = 1.5�0, and �̃p3 = �p3/�0. It describes the absorbed
energy in the ideal case when only the energy of the first
pulse is trapped in the medium. Similarly, we introduce
the second asymptote f2(�p3) = (�2

p1 + �2
p3)/(�2

p1 + �2
p2 +

�2
p3) = (1 + �̃2

p3)/(3.25 + �̃2
p3), which describes the part of

the energy carried by the first and third pulses together. It

FIG. 4. (Color online) The dependence of peak intensity and
propagation time (in units of tp) on the amplitude �p3 of the probe
pulse. For comparison, the results for a single pulse with the amplitude
�p3 are shown.

corresponds to another ideal situation when both the first and
the probe pulses are absorbed.

It is seen in Fig. 3 that at low values of �p3, the absorbed
energy curves for the FP and BP probe pulses virtually coincide
and are situated closer to the f2 asymptote, i.e., a large part
of energy of the third pulse is absorbed inside the medium.
However, at �p3 > 0.8�0, the curves sharply diverge: the FP
probe pulse is still mainly trapped, while the BP probe pulse
is almost totally transmitted (the blue curve with triangles gets
very close to the f1 asymptote in Fig. 3). The energy of the first
pulse is absorbed by the medium in both cases. Thus, the most
distinction between the FP and BP cases is observed exactly in
the region �p3 ≈ �0. This is the asymmetry seen in Figs. 2(b)
and 2(d). At larger values of �p3, the curves converge again,
so that the medium becomes transparent for the FP pulse as
well [cf. Fig. 2(c)]. Finally, for the FP pulses with �p3 ≈ 2�0,
the fraction of trapped energy increases again. This allows us
to see a certain periodicity of absorption, though we will not
consider the case of large intensities (�p3 � 2�0) here. One
can expect more sophisticated dynamics in that case due to the
process of pulse splitting into several 2π solitons.

The distinction between the FP and BP probe pulses is
easily seen in Fig. 4, which shows the peak intensity of the
probe pulse at the output versus its amplitude at the input.
The BP probe pulse behavior almost coincides with that of the
single pulse (i.e., with �p1 = �p2 = 0). On the contrary, the
FP probe pulse has significantly lower value of peak intensity,
which is equal to zero at �p3 < 1.5�0 (no soliton at the exit).
Note that at high input amplitudes, the secondary pulse appears
as a result of pulse splitting of both the single and BP pulses.
However, this is not the case for the FP probe pulse, i.e., the
controlled absorption blocks the splitting of a high-intensity
pulse in this case.

The next question to be discussed is as follows: How many
FP pulses can be absorbed inside the medium? Obviously,
the number must be limited. To find the answer, we launch a
number of identical FP pulses (with �p3 = �0) in 100tp one
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FIG. 5. (Color online) The dependence of absorbed, transmitted
(FP), and reflected (BP) energy on the number of additional probe
pulses with the amplitude �0. The energy is integrated over the time
period t = 1000tp .

after another and examine the fraction of absorbed energy as a
function of probe pulse number n. The asymptote for ideal trap-
ping of all the pulses is f3(n) = (�2

p1 + n�2
p3)/(�2

p1 + �2
p2 +

n�2
p3) = (1 + n)/(3.25 + n). The results of calculations for

different n are presented in Fig. 5. It is seen that the difference
between the asymptote and the absorption curve grows rapidly
with n. Moreover, the absorbed energy stops increasing already
at n � 3. This means that the saturation of light trapping
takes place while simultaneously the transmitted energy slowly
grows. The increase of transmitted energy becomes significant
at n > 6, while the absorbed part of the energy begins to
decrease. One can expect that there should be not only the
low-intensity tails at the output, but also the solitons as well.
This expectation is proved to be valid by Fig. 6(a): there is
no transmitted pulse at n = 6, but, starting from n = 7, every
extra pulse appears at the output.

Figure 6(b) allows us to trace this saturation process. It
is seen that the energy of the first absorbed pulse (n = 0)
is localized inside the medium: medium excitation near
200 μm is due to the collision with the BP pulse, while the
postcollisional pulse is trapped at larger distances (mainly,
at L < 400 μm). As we launch additional (probe) FP pulses,
their energy is absorbed in the unexcited regions of the medium
(n = 3) until the distribution of excitation becomes practically
uniform (n = 6). Note that the region L > 400 μm remains
almost unexcited, which was predetermined by the first pulse.
This uniform distribution of population difference corresponds
to the saturation and practically does not change when we
add more pulses (n = 9). As a result, the interaction of the
additional pulses gets weaker for n > 7, so that they can
pass the medium. These smeared distributions also allow an
understanding of why the absorbed pulse cannot be recovered.
Therefore, we cannot talk about the storage of light and use the
term “controlled absorption.” The absorbed energy is radiated
by the medium dipoles during the interval of the order of the
relaxation time.
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FIG. 6. (Color online) (a) Transmitted radiation profile for the
nine incident probe pulses with the amplitude �0. (b) Distributions of
population difference W inside the medium at the instant t = 1000tp
for different numbers of probe pulses. Population difference W = 1
corresponds to atoms in the ground state.

IV. PARAMETER REGIONS FOR THE DIODE ACTION
EXISTENCE

In the above consideration we adopted the time interval
100tp between the launch instants of the first two and the third
pulses. Here we must point out the significance of the time
interval between the pulses, which must be much less than
the relaxation times to preserve the coherence of light-matter
interaction. We study this temporal effect in Fig. 7, which
shows the absorbed part of the energy as a function of the
launch time t3 of the probe (second FP) pulse. The first two
pulses were launched at the instant t1 = t2 = 0. It is seen that
at short t3 < 200tp, absorbed energy is somewhere between
the energy of the single FP �0 pulse (0.235) and the energy
of both FP �0 pulses (0.47). This means that at the instant
t = 1000tp (the final time of energy integration), the medium
contains the energy of the first FP pulse and partly of the
probe pulse. This absorbed energy slowly decreases as we
increase the launch time t3, and at t3 > 300tp it drops below
the level of the single FP pulse energy. One can suggest the
main role of relaxation in this behavior. Indeed, the time,
say, t = 500tp = 25 ps, is comparable with the relaxation
time T2 = 100ps adopted in our calculations. To prove this
suggestion, we performed simulations for the relaxation-free
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FIG. 7. (Color online) The dependence of absorbed energy (as a
fraction of the total energy) on t3, the launch time of the probe FP
pulse with amplitude �p3 = �0. The energy is integrated over the
time period t = 1000tp . Time is measured in units of tp .

medium (T1 = T2 = 0). The results are presented in Fig. 7
(the dashed line with the triangles). It is seen that the curve
in this case keeps above the level 0.235, i.e., the relaxation
does not affect the process of controlled absorption of the
first FP pulse. However, the energy of the probe pulse is not
absorbed as well. Nevertheless, as Fig. 8 demonstrates, the
peak intensity of the pulse transmitted is strongly suppressed
for the relaxation-free medium in comparison with the case
of the presence of relaxation (this last case is shown by the
“standard curve” in the figure). Thus, relaxation helps to form
an intense soliton during propagation through the medium
prepared by the collision of two counterpropagating pulses.

FIG. 8. (Color online) The dependence of (a) the peak intensity
and (b) propagation time (in units of tp) on t3, the launch time of
the probe FP pulse with amplitude �p3 = �0. The cases of absence
of local-field correction (LFC) and relaxation are shown as well.
The “standard curve” is calculated taking into account both LFC and
relaxation.

40       60     80     100    120    140    160   180    200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
ea

k 
in

te
ns

ity
 o

f t
he

 p
ro

be

Pulse duration (fs)

BP probe

FP probe

(a)
A B C D

0                      1                      2                       3                      4

0.0

0.2

0.4

0.6

0.8

1.0

A

 FP probe
 BP probe

t
p
=100 fs

P
ea

k 
in

te
ns

ity
 o

f t
he

 p
ro

be

Medium density C/C
0

C

B D

0.0

0.2

0.4

0.6

0.8

1.0

1.2
(b)

t
p
=50 fsA

B

D

0                      1                      2                       3                      4

FIG. 9. (Color online) The dependence of the peak intensity of
the probe pulse on (a) the duration of the pulses, and (b) the density
of the medium (for two different durations). The value C0 used for
normalization corresponds to the Lorentz frequency ωL = 1011 s−1.
In figure (a) the value C = C0 is adopted.

Figure 8 also clarifies the influence of local-field correction
[the nonlinear addition to the detuning in Eq. (1)] on the effects
discussed. It is seen that this influence can be considered as
negligible for our parameters. This is in full accordance with
the conclusion of Ref. [11]. Indeed, for the parameters of our
calculations (ωL = 1011 s−1, tp = 50 fs), the ratio of the pulse
amplitude (peak Rabi frequency) to the Lorentz frequency is
�0/ωL = √

2π × 102 >> 1, while for the local-field effects
to be observed, one needs �0/ωL ∼ 1.

Now let us consider the effect of pulse duration on the
controlled absorption and all-optical diode action. The results
of calculations are depicted in Fig. 9(a). We mark out there
several regions denoted with letters from A to D. In region A
(very short pulses, tp < 30 fs) both FP and BP probe pulses
appear at the output. Moreover, the total absorption of the
first FP soliton is not observed in this case. Therefore, one
can say that region A is the region of elastic collisions of the
counterpropagating solitons, which is characteristic for short
enough (high-intensity) pulses [10,16]. The region D (long
pulses, tp > 150 fs) is the reverse case of strongly inelastic
collisions, so that the soliton is annihilated independently of the
propagation direction [16]. Finally, the intermediate regions B
and C are of interest for us. In region B (conditions considered
above in this paper), the FP probe pulse is absorbed, while the
BP one is transmitted. In region C the situation is reversed, so
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that one can change the direction of the diode action simply
by changing the duration of the incident pulses.

Obviously, the dynamics of light depend not only on the
parameters of the pulses themselves, but also on the parameters
of the medium, such as its density. In other words, the
behavior of the soliton inside the medium is governed by
the combination of the field and matter characteristics. In the
paper [15], the combination ϒ ∼ Ct2

p was proposed, so that
for longer pulses, one can obtain the effect at lower density.
We study this relationship in Fig. 9(b), where the probe pulse
peak intensity is plotted versus the medium density (in units
of C0 corresponding to the previously used Lorentz frequency
ωL = 1011 s−1). One can see that at tp = 50 fs, the diode
action covers a wide region of densities 0.7 < C/C0 < 2.3 [B
region, in terms of Fig. 9(a)]. At lower and higher densities,
there is no directional asymmetry in pulse behavior (elastic
and strongly inelastic conditions, respectively). If we take
longer pulses (tp = 100 fs), region B shifts toward lower
densities and becomes narrower, in accordance with the ϒ

combination. It is also important that the contrast between the
curves in region B is not as impressive as for shorter pulses.
However, we can say with confidence that the asymmetric
propagation appears at lower densities than previously due
to the increase in pulse duration. In addition, a narrow C
region appears at tp = 100 fs, while region A is located
near the very vertical axis. In general, the ϒ combination
satisfactorily describes the effects of density and pulse du-
ration on the location and width of the region of the diode
action.

V. CONCLUSION

In conclusion, we studied the collisions of multiple coun-
terpropagating SIT solitons within the framework of the
semiclassical model of light interaction with a homogeneously
broadened two-level medium. It is shown that by means
of inelastic asymmetric collision of two proper pulses, the
medium can be prepared in such a state that it behaves
as a diode transmitting the probe pulse or not, depending
on propagation direction and peak intensity. This medium

preparation is connected with the controlled light absorption in
the medium which is limited by the process of saturation. By
combining the characteristics of the medium and the pulse,
one can find the proper conditions to observe the effects
of asymmetric collisions. We should also notice that pulse
retrieval was not achieved, so that the stored energy leaves the
medium naturally as a consequence of fluorescence.

One can expect that the effects of SIT solitons collisions can
be observed in usual self-transparency media: solid dielectrics
(including ruby where SIT was first discovered), vapors
of alkali metals, molecular gases, and semiconductors. A
review of the early experiments can be found in Ref. [9].
Obviously, the solid-state systems seem to be the most
convenient for our aims. The conditions considered in this
paper (very short and high-intensity pulses, short distances of
propagation) are in good agreement with the requirements
of semiconductor materials which possess short relaxation
times and comparatively high transition dipole moments.
The theoretical and experimental results on self-induced
transmission in semiconductors were reported, for example,
in [17–20]. Another prospective material for SIT collision
experiments is the collection of semiconductor quantum dots
which can be considered as artificial two-level atoms with high
dipole moments [21,22].

The final remark deals with the problem of inhomogeneous
broadening when the resonant frequency of two-level atoms
is distributed in a certain range. Recall that our calculations
were performed for the case of a homogeneously broadened
medium, i.e., for broadening only due to the finite phenomeno-
logical relaxation T2 (equal for every atom). As a matter
of fact, we are in the well-studied regime of SIT solitons
which have essentially the same main properties in both
cases of homogeneous and inhomogeneous broadening [9].
Moreover, the well-known area theorem (one of the attributes
of SIT) is not valid in a strict sense for the homogeneously
broadened medium [9], as it was confirmed recently by direct
numerical simulations [23]. Therefore, although the role of
inhomogeneous broadening is still to be studied, we believe
that the main features of SIT pulse collisions should remain
unchanged in that case.
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