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Dynamic transition from complete population transfer to self-induced transparency
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We explore the connection between adiabatic rapid passage, a technique that allows for robust complete
population transfer (CPT) in a resonant absorber, and self-induced transparency solitons. We employ the auxiliary
differential equation finite-difference time-domain method to fully resolve the dynamics of femtosecond light
pulses propagating through an absorbing two-level medium. Using the example of linearly chirped Gaussian
pulses we find that the pulses achieving robust CPT for a single two-level system are also pulses that will
transform into solitary waves when incident on a resonantly absorbing medium. At the entrance into the absorber
strongly chirped, adiabatic pulses completely transfer the electronic population from the ground to the upper
state. As the pulses suffer absorption they undergo a dynamic transition and quickly split into an off-resonant
radiation part and one or several unchirped solitary pulses that may carry away some of the initially achieved
population inversion. This spectral and temporal transformation process limits the spatial depths of the region
of CPT in a dense absorber regardless of the initial pulse amplitude. We also show that the frequency-domain
pulse area, defined as the spectral amplitude at the resonance frequency, allows for a better distinction between
the regimes of 2π -pulse and 0π -pulse formation than time-domain measurements.
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I. INTRODUCTION

Studies of the resonant interaction of a light pulse with
absorbing systems are usually concerned with either the
induced electronic excitation or the propagation characteristics
of the pulse. One of the most remarkable effects occurring
when light pulses propagate through a resonant absorber is
the possibility of a coherent cancellation of absorption by
re-emission, known as self-induced transparency (SIT) [1–3].
In fact, assuming plane waves in the limit of a slowly varying
envelope and unidirectional propagation, it has been proven
that a sech-shaped 2π pulse constitutes a fundamental soliton
of the nonlinear light-matter interaction [4]. If the plane-wave
approximation is dropped, solitary propagation appears to be
only possible in certain situations (e.g., in waveguides that
allow for a laterally constant Rabi frequency [5,6] or as light
bullets with a complicated lateral pulse shape [7]).

Considering the induced electronic excitation, the tech-
nique of adiabatic rapid passage (ARP) has been developed to
achieve a complete population transfer (CPT) in multilevel sys-
tems (e.g., semiconductor quantum dots [8,9]) by illuminating
them with strongly chirped, intense pulses [10–13]. As ARP is
robust against small pulse detuning and variations in amplitude
it allows the manipulation of the state of an electronic system
with unmatched precision and has applications in fields as
diverse as nuclear magnetic resonance [14], femtochemistry
[15], single photon generation [16], and quantum computing
[17]. In contrast to SIT, which is inherently nonlinear, ARP
is commonly treated in linear approximation. This is possible
for weak atomic (molecular) polarization in which case the
feedback on the exciting light field can be ignored and only
the Bloch equations need to be solved. Studies combining
light propagation and population transfer have been performed
theoretically, using the slowly varying envelope approximation
(SVEA) and the rotating wave approximation (RWA), and
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experimentally [18,19]. There, it was found that strongly
chirped pulses are subject to pulse reshaping and stimulated
emission in dense ensembles of absorbers, which limits the
efficiency of ARP.

In this article, we investigate the pulse reshaping process
that constitutes a dynamic transition from complete population
transfer to solitary propagation in the interaction between
chirped pulses and a dense two-level medium. The creation of
solitons out of moderately chirped pulses has previously been
investigated for SIT [20,21] and also for Kerr solitons [22,23].
In Refs. [20,21] the number of solitons created asymptotically
in dependence of chirp and pulse amplitude for different pulse
shapes are calculated but the state of the two-level systems
after passage of the pulses is not considered. Also, no results
on the dynamics of the soliton generation could be obtained in
those studies since static techniques such as conservation laws
and the inverse scattering transform [24] were used.

Here, we use a rigorous model for plane-wave pulse
propagation without employing RWA and SVEA, to study
the interaction of linearly chirped sech-shaped few-cycle
pulses with dipolar electronic transitions represented by
quantum mechanical two-level systems. The approach taken is
known as the auxiliary differential equation finite-difference
time-domain (ADE-FDTD) approach [25,26] and integrates
numerically the combined Maxwell-Bloch equations. We will
explicitly show that and how plane-wave pulses that induce
CPT in single atoms transform into solitons in dense ensembles
of two-level systems, thereby limiting the efficiency of CPT
in dense ensembles and at the same time enabling the creation
of unchirped pulses out of arbitrarily (negatively or positively)
chirped input pulses.

This article is organized as follows. Section II outlines the
model equations and specifies the frequency-resolved optical
gating (FROG) technique used for pulse analysis. In Sec. III
we analyze the origin of CPT by comparing polarization and
inversion of a single atom driven by light pulses that do or
do not fulfill the conditions for ARP and thus identify the full
time-domain signatures of adiabatic following. In addition,
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we map and compare the regimes for soliton creation in dense
ensembles and CPT for varying chirp and pulse amplitude and
find that the adiabaticity condition resembles the pulse area
theorem of SIT when it is formulated in frequency domain.
Section IV explores the propagation of moderately chirped
pulses in a dense ensemble of two-level systems. In this regime
we find that the chirp is rapidly lost and that the pulses reshape
into SIT solitons with intensity-dependent group velocity.
Propagation of strongly chirped pulses well inside the CPT
regime is investigated in Sec. V. Here, the pulses induce CPT
for the first few wavelengths, undergo substantial absorption
at the resonance frequency, and shed radiation while reshaping
into solitary waves. The main findings of the present study are
summarized in Sec. VI.

II. METHODS

The semiclassical equations governing the (nonlinear)
propagation of electromagnetic fields through an atomic two-
level system are the Maxwell-Bloch equations. For simplicity
we here restrict ourselves to one-dimensional propagation
and linear polarization of the electric field. The restriction
to linear polarization does not lead to a loss of generality of
the analysis [26]. The governing equations are then given by

∂tB = − E

∂z
(1)

and

∂t (ε0εE + P ) = 1

μ0

∂B

∂z
, (2)

for the electric field E(z,t) and the magnetic field B(z,t). The
polarization P (z,t) = 2Nμu(z,t) of the resonant absorber is
calculated from

∂tu = ων − γpu ∂tν = −ωu − 2Elocμ

h̄
W − γpν

(3)

∂tW = 2μEloc

h̄
ν − γr (W + 1)/2,

with relaxation γr of the inversion W and dephasing of
the polarization γp. The local field effect is included for
completeness, although its impact on the dynamics in the
regime of short pulse durations is small [27]. The local field
acting on the atom is given by [28]

Eloc(z,t) = E(z,t) + P (z,t)/3 . (4)

We integrate Eqs. (1)–(4) using the ADE-FDTD method
[29]. For accuracy, the Bloch equations are advanced in
time with the fourth-order Runge-Kutta method using an
interpolation of the electric field values at intermediate time
steps [30]. Pulses are launched into the simulation domain
using the total-field scattered-field technique [31] to inject a
linearly chirped Gaussian pulse into the simulation domain at
z = 0 with the time dependence of the electric field E(t) =
Ex(t) given by

E(t) = E0 cos{[ω0 + α(t − t0)](t − t0)} exp

[
t − t0

2τ 2

]
. (5)

leading to a frequency domain field of

Ẽ(ω) = Ẽ0 exp

[
− (ω − ω0)2

2
2
+ iα′ (ω − ω0)2

2

]
. (6)

The parameter α determines the magnitude of the linear
temporal chirp, whereas α′ is the linear spectral chirp and
ατ 2 = α′/
2.

In time domain the pulse area θt is given by

θt = μ

∫ ∞

−∞
dtE0 exp

[
t − t0

2τ 2

]
, (7)

whereas a frequency domain area can be defined by the electric
field magnitude at the center frequency [32]

θω = 2μẼ0/(
h̄). (8)

Thus, the frequency domain area θω and the time domain area
θt are only equivalent if the chirp α = 0 while α �= 0 results
in θt > θω.

The pulse propagation is analyzed with the help of temporal
pulse shapes, spectra, and FROG traces [33]. The polarization
gate FROG technique employed here measures the following
spectrogram

|Eg(ω,τ )|2 ∝
∣∣∣∣
∫ ∞

−∞
dtEsignal(t,τ )e−iωt

∣∣∣∣
2

, (9)

with a signal field comprised of a product of electric field and
its envelope as gate function

Esignal(t,τ ) = E(t)g(t − τ ) = E(t)|Eenv(t − τ )|2 . (10)

III. PULSE AREA AND ADIABATICITY CONDITION

In this section we explore the full time-domain mani-
festations of adiabatic following as well as the connection
between the pulse area of SIT theory and the adiabaticity
condition on complete population transfer (CPT). Let us first
look at the polarization and inversion dynamics during robust
CPT via adiabatic rapid passage (ARP) in full time-domain.
We consider a pulse with fixed frequency bandwidth 
 and
different values of dimensionless chirp ατ 2 and frequency
domain pulse area θω. Figure 1 shows the excitation dynamics
of a single coherent (γp = γr = 0) two-level system driven
by an intense, chirped few-cycle pulse (FWHM of 5 cycles)
for different values of chirp and frequency domain area. The
complete rotation of the inversion W experienced for an
unchirped 2π pulse gives way to a partially inverted system
and finally, for sufficiently high chirp values, to CPT. For the
unchirped pulse [Fig. 1(a)] the real part of the polarization
(which couples back to the electric field) is always out of
phase with the electric field and performs a phase jump of π at
the point of maximum inversion. This phase jump leads to the
re-emission that lies at the heart of self-induced transparency
(SIT). For a moderate dimensionless chirp value of ατ 2 = 2
[Fig. 1(b)] the polarization has an indefinite phase relationship
to the electric field. Therefore, the excitation only achieves a
final inversion of W ≈ 0.5 and a Rabi oscillation is still visible.
When the pulse is strongly chirped [ατ 2 = 5, see Fig. 1(c)] the
polarization is almost exactly in phase with the electric field.
No sudden phase jump occurs and the polarization and electric
field have almost identical pulse shapes, so that a final inversion
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FIG. 1. (Color online) Evolution of a two-level system driven
by a pulse with different values of frequency domain pulse
area and chirp (a) ατ 2 = 0, θω = 2π , (b) ατ 2 = 2, θω = 2π ,
(c) ατ 2 = 5, θω = 2π , (d) ατ 2 = 5, θω = π, and (e) ατ 2 = 5,
θω = π/2. The inversion W is given by the blue (dark gray)
solid line, the real part of the polarization by the red (light
gray) solid line and the electric field by the black dashed
line.
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FIG. 2. Contour plot of the final inversion W of a single two-level
system after excitation by a pulse with area θ and dimensionless
chirp ατ 2. Above the dashed line, 2π pulses are created in a dense
ensemble of two-level systems. Note, that the contour plots in the
negative chirp regime are an exact mirror image of the positive chirp
regime (compare Fig. 4 of Ref. [13]).

of W ≈ 1 can be reached without visible Rabi oscillations.
Thus, we conclude that adiabatic following manifests itself
in full time domain as a polarization almost in phase with
the electric field and following its pulse shape. Reducing the
pulse area of the strongly chirped pulse to a value of θω = π

[see Fig. 1(d)] introduces an oscillatory tail in the population
inversion, leading to an incomplete final inversion, which is
occasioned by an imperfect following of the polarization for
late times. These imperfections increase for lower pulse areas
[see Fig. 1(e)] such that the final inversion is further reduced.

The regime of robust CPT is shown in Fig. 2, containing a
contour plot of the inversion reached in a single atom when it
is excited by a Gaussian pulse of area θω and dimensionless
linear chirp ατ 2. The spectral chirp required to achieve ARP is
best expressed in terms of a dimensionless linear chirp |α|τ 2 =
|α′|/
2 � 1. The necessary pulse amplitude is given by θω �
π [13], which is a reformulation of the adiabaticity condition
in terms of pulse area.

In addition to the impact of the exciting light pulses on a
single atom we also studied the propagation behavior of the
light pulse in a dense ensemble of two-level systems. Here, we
assumed a dephasing rate of 0.001f0, a two-level density of
N = 106λ−3, and a dipole length of d = 10−4λ. The dashed
line in Fig. 2 denotes the approximate critical initial pulse
area needed for a 2π pulse to be created in the numerical
simulations. Note that a 2π pulse in the presence of dephasing
and backscattering does not strictly constitute a soliton since it
eventually decays and that it is therefore difficult to distinguish
a 2π pulse from background radiation close to the critical
area. It can be seen that for high chirp values a 2π pulse is
only created if the pulse is well inside the regime of complete
population transfer. The comparison between the conditions
for ARP and the condition for soliton creation thus reveals
the deep connection between the phenomena of SIT solitons
and ARP. Indeed, Fig. 2 shows that pulses, which achieve
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robust CPT in single two-level systems reshape into solitary
waves when propagating through a dense ensemble of two-
level systems.

In the following section we investigate the dynamical
reshaping process of pulses in resonant absorbers. As a first
step, we study moderately chirped pulses with a chirp value
of ατ 2 = 1, insufficient for robust CPT via ARP (Sec. IV).
For these parameters we see the creation of unchirped solitary
waves and radiation and are able to illustrate the difference
between frequency-domain pulse area and time-domain pulse
area for chirped pulses. The dynamics of strongly chirped
pulses with ατ 2 � 1 propagating through a dense ensemble
of two-level systems is investigated in Sec. V. Here, the
dynamic transition from CPT to solitary propagation of one or
several solitary waves and its limiting impact on the achievable
population inversion becomes evident.

IV. RESHAPING OF MODERATELY CHIRPED PULSES

Moderately chirped pulses with a dimensionless chirp on
the order of ατ 2 ≈ 1 are neither capable of robust CPT nor do
they achieve a full Rabi oscillation of the Bloch vector as can
be seen from Fig. 2. Therefore, for such pulses propagating
through a dense absorber some initial absorption is expected
as well as a reshaping into a solitary wave if θω > 1.1π . As we
want to study differences in group velocities, which are more
pronounced the denser the absorber and the longer the pulses
we assume a dense ensemble of two-level systems with N =
107λ−3, a dephasing rate of ω0/1000, and Gaussian pulses of
12 cycles duration (FWHM).

Pulses that propagate through the system first lose am-
plitude but then stay stable apart from the decay associated
with dephasing and backscattering. Figure 3 shows the FROG
traces of initial pulses and pulses after propagation through
the ensemble of two-level systems. The chirp disappears in
propagation for both initially negatively or positively chirped
pulses. If the amplitude of the initial pulse corresponds to
a frequency domain area θω = 2π [see Figs. 3(c) and 3(d)]
the pulses narrow in time domain and narrow only slightly in
frequency domain due to some initial absorption. If, however,
the amplitude of the initial pulse is smaller [see Figs. 3(e)
and 3(f)], so that it corresponds to a time domain area of
2π the temporally broadening pulses narrow significantly in
frequency domain.

These last observations can be appreciated more clearly
by comparing the spectra of the pulses, shown in Fig. 4(a).
Firstly, the narrowing of the pulses in frequency domain
that the FROG traces already suggested is clearly visible in
the spectra together with a reshaping of the pulse from a
Gaussian pulse to the sech-shaped pulse typical of a soliton.
Pulses with less initial amplitude are narrower in frequency
domain and therefore broader in time domain as expected
from the pulse area theorem. Furthermore, all pulses have the
same amplitude at the resonance frequency, confirming the
usefulness of the frequency domain formulation of the area
theorem. The radiation part of the final pulses introduces the
oscillations at the flanks of the spectrum.

Figure 4(b) shows the temporal pulse envelopes after
propagation for the different cases depicted in Fig. 4(a).
As SIT theory predicts the solitary waves created from the
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FIG. 3. FROG plots calculated from Eq. (10) for positive (left)
and negative (right) initial chirp of ατ 2 = 1. (a) and (b) show the
initial pulses, (c) and (d) the final FROG traces of pulses with initial
frequency domain area of 2π and (e) and (f) the final FROG traces of
pulses with initial time domain area of 2π . The contour lines indicate
80%, 60%, 40%, and 20% of the maximum values respectively.

less intense initial pulses experience a longer delay, are less
intense, and are wider in the temporal domain. Secondly, a
comparison between negatively and positively chirped pulses
reveals that the negatively chirped pulses have a slightly longer
delay. Nevertheless, the pulse with time domain area 2π and
negative chirp is slightly more intense than its positively
chirped counterpart, an unexpected combination that may be
caused by a slower reshaping and stimulated emission process
for positively chirped pulses.

V. PROPAGATION OF STRONGLY CHIRPED PULSES:
DYNAMICAL TRANSITION FROM COMPLETE
POPULATION TRANSFER TO SELF-INDUCED

TRANSPARENCY

In this section we investigate the dynamical transition from
CPT to SIT, using the same parameters for the two-level system
as in the previous section. The transform-limited pulse length
is kept at 12 cycles FWHM but a greater chirp is applied, so
that we are well inside the regime of robust CPT. Pulse A has
a chirp of ατ 2 = 5, corresponding to the single atom response
of Fig. 1(c) and a frequency domain pulse area θω = 3π ; pulse
B is characterized by ατ 2 = 5 and θω = 4π ; and pulse C by
ατ 2 = 10 and θω = 3π .
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FIG. 4. (Color online) (a) Spectra of initial pulse with θω = 2π ,
ατ 2 = 1, and τ0 = 12 cycles (solid black line), compared to spectra of
final pulses after propagation for θω = 2π and ατ 2 = 1 (short-dashed
red line) or ατ 2 = −1 (dotted blue line); and for θt = 2π and ατ 2 = 1
(dash-dotted dark green line) or ατ 2 = −1 (long-dashed orange line).
(b) Intensity envelopes after propagation for the final pulses.

In Fig. 5 we present the spatiotemporal dynamics of the
inversion of the dense ensemble of two-level systems excited
by pulses A (a), B (b), and C (c). We can see the transition from
CPT to transparency for all three cases. Pulse A evolves into
two solitary waves that each achieve a complete rotation of the
Bloch vector (i.e., they are 2π pulses). At a later point in time
(not inside range of graphs), another weak pulse develops from
the inverted two-level system and eventually gets absorbed
again due to the dephasing in the atomic system. By this
mechanism some of the population inversion achieved at the
entrance into the medium is stripped away. Pulse B, which
has an increased pulse area of 4π , initially excites population
across a larger region at the entrance into the medium but
another spawned solitary wave later distributes this inversion
deeper into the ensemble of two-level systems. Also, two fast
pulses are created instead of one. When the chirp is increased
(pulse C) the region of effectively achieved CPT in the long
time limit does not increase significantly. Again fast solitary
waves, slow solitary waves, and radiation carry most of the
excitation energy away.

In order to understand the process of formation of solitary
waves out of CPT we can study the electric field spectra at
different spatial points along the absorbing medium. Figure 6
compares, for pulse A, the input spectrum with spectra taken at
z = 4λ and z = 8λ inside the absorbing medium. For z = 4λ

and for z = 8λ most of the spectral amplitude is decreased,
an indication that absorption has taken place. At z = 4λ

absorption has eaten away most of the pulse amplitude close to
the resonance frequency. The peak at the resonance frequency
can be understood as the late, slow solitary wave that builds in
the top left corner of Fig. 5(a). At z = 8λ the frequencies close
to resonance are partially restored at the expense of frequencies
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FIG. 5. Inversion W (black: W = −1, white: W = 1) plotted over
time and propagation distance for initial pulses with θω = 3π and
ατ 2 = 5 (a), θω = 4π and ατ 2 = 5 (b), and θω = 3π and ατ 2 = 10
(c).

further away from resonance, an indication of the formation
of a solitary wave that is spectrally narrower than the initial
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FIG. 6. (Color online) Initial pulse spectrum (solid blue line)
compared to pulse spectra taken at z = 4λ (dashed black line) and
z = 8λ (dotted red line) for pulse A [Fig. 5(a)].
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FIG. 7. (Color online) Pulse envelopes and spectra for pulses
that propagated 200λ through the absorber. Initial pulse area and
dimensionless chirp are: (a) and (b) θω = 3π and ατ 2 = 5, (c) and
(d) θω = 4π and ατ 2 = 5, (e) and (f) θω = 3π and ατ 2 = 10. The
spectra are taken in the time windows indicated by the dashed red
line on the right for the dashed red line on the left and by the dotted
blue line on the right for the solid blue line on the left. Note that the
intensity scales are not uniform across the graphs.

pulse. In fact, at z = 8λ CPT is not observed anymore, as the
exciting pulse has already split into soliton and radiation parts.
Radiation is mostly responsible for the strong oscillations in
the spectrum. A narrow soliton peak on top of the broader
soliton peak of the fast 2π pulse is the consequence of a
second, slower solitary wave. These results clearly indicate
that the formation of 2π pulses out of strongly chirped pulses
involves a complex interplay between absorption, dispersion,
and nonlinear processes that dynamically alter the frequency
content of the pulse over very short length scales.

In Fig. 7 we show pulse envelopes and spectra at the exit of
the medium (i.e., at a distance where the reshaping of the pulses
has been achieved). Because of the long propagation distance,
the slow solitary waves have accumulated a considerable delay
and can be clearly separated. The spectra are taken in two
time windows, the first of which contains the fast propagating
radiation part and intense solitary waves whereas the second
window contains only the slow propagating solitary wave.
These results illustrate some of the fundamental aspects of
SIT and clearly show the solitary wave character of the
propagation. For pulse A [Figs. 7(a) and 7(b)], two solitary
waves arrive, one of which is fast, intense, very short, and
has a broad spectrum (again, the oscillations in the spectrum
are caused by radiation). In contrast, the slower pulse is less
intense, longer in duration, and with a narrower spectrum. The
spectral amplitude at the resonance frequency of both pulses
corresponds to θω = 2π . Increasing the initial amplitude to
θω = 4π (pulse B) leads to the creation of an additional

pulse [as already observed in the inversion map (Fig. 5)]
that also propagates very fast, so that the first two pulses
cannot be separated in the spectrum [see Figs. 7(c) and 7(d)].
Because of their close proximity the pulses interact via the
absorbing medium and are not independent solitary waves.
In the spectrum the interaction between the pulses manifests
itself as oscillations that reach up to 4π . Exactly at resonance it
only reaches 2π , again illustrating that these two pulses cannot
be seen as independent entities, while the slowly propagating
pulse constitutes another, well separated 2π pulse.

The last row of Fig. 7 shows pulse C with an even higher
chirp of ατ 2 = 10. Here, only one soliton is created out
of the initial pulse of area θω = 3π . Although the initial
electric field could be confused with a solitary wave in
time domain, the spectra clearly show that only the second
part is a 2π pulse with a 2π amplitude at the central
frequency. The first strong electric field pulse registered in
time domain is completely off-resonant, containing merely
radiation. Figure 7, in particular panels 7(e) and 7(f), reveal
the importance of measuring the pulse spectra in order to
determine the nature of a pulse propagating through resonant
absorbers. The spectral amplitude at resonance gives a simple
criterion for the experimental distinction between a 2π pulse
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FIG. 8. (a) and (b) polarization gate FROG traces corresponding
to Fig. 7(b); (c) and (d) corresponding to Fig. 7(d); and (e) and (f)
corresponding to Fig. 7(f). The FROG traces on the left [(a), (c), and
(e)] are taken for the earlier time windows and the traces on the right
[(b), (d), and (f)] are taken for the later time windows, as marked by
dashed (dotted) lines in Fig. 7. The contour lines indicate 80%, 60%,
40%, and 20% of the maximum values respectively.
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and an off-resonant 0π pulse. The measured temporal pulse
shape without phase information is not sufficient to distinguish
between off-resonant 0π pulses and resonant 2π pulses.

Polarization gate FROG traces of pulses A–C after propaga-
tion have been taken in the time windows shown on the right of
Fig. 7 and are depicted in Fig. 8. The fast pulses are depicted on
the right; the slow, delayed solitary waves on the left. For both
fast and slow pulses the chirp has clearly disappeared as the
FROG traces are symmetric with regards to τ = 0. However,
for the fast pulses corresponding to Figs. 7(d) and 7(f) the
complicated spectral structure is reproduced in their FROG
traces. The FROG traces on the right, in contrast, largely
correspond to simple, sech-shaped, transform-limited pulses
with different broadening, in other words they are FROG traces
of the fundamental 2π pulses of SIT theory. Hence, the FROG
traces illustrate most clearly the transformation of strongly
chirped pulses after propagation through a resonant absorber.

VI. CONCLUSION

In this article we investigated the dynamic transition from
complete population transfer (CPT) via adiabatic rapid passage
(ARP) to self-induced transparency (SIT) by numerically
integrating the Maxwell-Bloch equations for chirped pulses
incident on a resonantly absorbing medium. For moderate
initial chirp the pulses quickly reshape into solitary waves,
suffering weak absorption at entrance into the medium. In

contrast, strongly chirped pulses suffer substantial absorption
while initially achieving CPT but they also form into solitary
waves during propagation. The spectral amplitude at resonance
recovers and unchirped solitons emerge as clearly illustrated
by the symmetry of the FROG traces with regard to positive
and negative delay. Because of the reshaping process and
stimulated emission from regions of inverted population into
additional solitary waves, CPT is not achievable via ARP
across dense ensembles. Consequently, increases in chirp or
pulse area do not cause the deposition of more inversion in
the system but rather lead to more energy being converted into
solitary waves.

Having studied chirped pulse propagation using the time-
domain and frequency-domain pulse area theorem we finally
remark that neither theorem is able to correctly predict the
number of created solitons from chirped pulses. A frequency-
domain definition, however, proves to be more useful since
it allows to more clearly distinguish between 2π pulses and
0π pulses [32]. The results presented show the limits of
adiabatic techniques for population transfer and highlight the
importance of combining time-domain and frequency-domain
approaches when investigating resonant pulse propagation.
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