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Solvability of the two-photon Rabi Hamiltonian
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The spectrum of the two-photon Rabi Hamiltonian is found, proceeding in full analogy with the solution of
the standard (one-photon) Rabi Hamiltonian, published by D. Braak [Phys. Rev. Lett. 107, 100401 (2011)]. The
Hamiltonian is rewritten as a set of two differential equations. Symmetries that get hidden after further treatment
are found. One can plainly see how the Hilbert space splits into four disjunct subspaces, categorized by four
values of the symmetry parameter c = ±1, ± i. There were only two values, ±1, for the standard Rabi model.
The values of c are in fact the eigenvalues of the respective parity operators. Four analytic functions are introduced
by a recurrence scheme for the coefficients of their series expansion. All their roots yield the complete spectrum
of the Hamiltonian. Eigenstates in Bargmann space can also be found.
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I. INTRODUCTION

There were many trials to solve the model called (in
quantum optics) the Rabi Hamiltonian exactly, until Braak [1]
recently presented a new extraordinarily effective approach
for this task. The same model is known under several
pseudonyms, e.g., the single-mode spin-boson system and the
Jaynes-Cummings model without rotating-wave approxima-
tion; a brief survey can be found in [2]. Let us introduce
a more general form of Rabi Hamiltonians [3], describing
the interaction between a bosonic mode with energy ω and a
two-level atom with level spacing ω0:

Ĥ (m) = ω0

2
σ z + ωb†b + g(σ+ + σ−)[(b†)m + bm], (1)

where m = 1,2, . . ., g is the interaction constant, σ z and σ±
are the Pauli matrices, and b† and b are boson creation and
annihilation operators, respectively. We set h̄ = 1. For the most
studied m = 1 case Braak [1] recently presented an algebraic
solution without large matrix diagonalization; we are going to
solve the m = 2 model in full analogy.

Before Braak’s general solution, some special points, also
called the Juddian points, were known to be exactly solvable.
This means that for some constraints on the Hamiltonian
parameters, one can find both an eigenfunction and its
eigenenergy. It does not give the complete spectrum, just
one excited eigenstate. This was shown first for the standard
m = 1 Rabi Hamiltonian [4]. Later the same picture, but
of course with different constraints and eigenvalues, was
shown for m = 2, i.e., the two-photon Rabi Hamiltonian [5].
These special points manifest themselves as cross sections
of general solutions, and they will serve as a check of our
results.

It is also known that the parameters of the two-photon Rabi
model are restricted by |4g| < ω; otherwise, the eigenfunc-
tions are not normalizable [5,6].

II. THE ALGEBRAIC SOLUTION

The first step of the solution is to go over to Bargmann
space [7], introducing complex variable z, where the bosonic
operators simplify to

b → ∂

∂z
, b† → z. (2)

The eigenfunctions have to be analytic in the whole complex
plane. Let us suppose that the solution of the stationary
Schrödinger equation is a vector composed of two analytic
functions [ψ1(z),ψ2(z)]T . We can insert Eq. (2) into the
Hamiltonian (1), case m = 2, and using the well-known 2 × 2
Pauli matrices, we obtain a coupled system of second-order
differential equations:

2gψ ′′
2 + ωzψ ′

1 + 2gz2ψ2 +
(

ω0

2
− E

)
ψ1 = 0,

(3)

2gψ ′′
1 + ωzψ ′

2 + 2gz2ψ1 −
(

ω0

2
+ E

)
ψ2 = 0,

where the prime indicates the derivative with respect to z

and E is the energy from the Hamiltonian’s spectrum. For
better symmetrization it is useful to go over to a linear
combination of the considered functions, namely, φ1(z) =
ψ1(z) + ψ2(z) and φ2(z) = ψ1(z) − ψ2(z). Thus we get the
set

2gφ′′
1 + ωzφ′

1 + (2gz2 − E)φ1 + ω0

2
φ2 = 0,

(4)
−2gφ′′

2 + ωzφ′
2 − (2gz2 + E)φ2 + ω0

2
φ1 = 0.

The next step is to find important symmetries present in the
set (4) before they become less clear after some transformation
followed by a series expansion. Here we prefer a somewhat
different way than Braak [1], but a very obvious one. We will
perform two transformations of the variable z. The first one is
z → −z. One can easily see that it leaves the set (4) unchanged.
Thus, if {φ1(z),φ2(z)} are a solution, then {φ1(−z),φ2(−z)}
are also a solution. Hence, as the system is linear, one
may work with solutions that are either symmetric or anti-
symmetric under inversion: φS(z) = φ(z) + φ(−z), φA(z) =
φ(z) − φ(−z). It is then that symmetric (antisymmetric) φ1(z)
goes with symmetric (antisymmetric) φ2(z). Plainly speaking,
such solutions must both be either even,

φ1(−z) = φ1(z),
(5)

φ2(−z) = φ2(z),
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or, alternatively, odd,

φ1(−z) = −φ1(z),
(6)

φ2(−z) = −φ2(z).

The second applied transformation is y = iz. Set (4)
becomes

−2g
d2φ1

dy2
+ ωy

dφ1

dy
− (2gy2 + E)φ1 + ω0

2
φ2 = 0,

(7)

2g
d2φ2

dy2
+ ωy

dφ2

dy
+ (2gy2 − E)φ2 + ω0

2
φ1 = 0.

Now functions φ1 and φ2 have evidently swapped their places,
and thus up to some common multiplicative constant,

φ1(iz) = c φ2(z),
(8)

φ2(iz) = c φ1(z).

Possible values of parameter c can be found by inserting
iz instead of z, and we get φ1(−z) = c φ2(iz) = c2 φ1(z)
and, analogously, φ2(−z) = c2 φ2(z). Hence c2 = 1 from
Eq. (5) or c2 = −1 from Eq. (6). The symmetry parameter
can acquire four values: c = ±1, ± i. In the standard m = 1
Rabi model, such a parameter has only two values, ±1,
and the transformation z → −z is sufficient. The values of
c are, in fact, the eigenvalues of the parity operator �m =
exp[iπ (b†b + σz/2 + 1/2)/m], m = 1,2 (see, e.g., [5]), which
commutes with the Hamiltonian (1), thus becoming one
integral of motion.

Finally, let us introduce four functions Gc(z,E) whose roots
with respect to E will be used to fulfill Eq. (8):

G+(z) = φ2(iz) − φ1(z),

G−(z) = φ2(iz) + φ1(z),
(9)

Gi(z) = iφ2(iz) + φ1(z),

G−i(z) = iφ2(iz) − φ1(z).

In the last two cases the second expression in Eqs. (8) was
multiplied by i in order to keep the Gc functions real. They
share the common parity of their φ1,2 functions. The first
expression in Eqs. (8) is then no longer independent. The
complete discrete spectra will be given by all roots of all
Gc(z,E) functions, again in full analogy with the standard
Rabi model [1]. Of course, the roots are meant with respect to
E, and they are independent of any chosen z.

Having categorized the symmetries, we return to set (4) and
perform the transformation φ1,2 = e−κz2

ψ̄1,2. We get

2gψ̄ ′′
1 + (ω − 8gκ)zψ̄ ′

1 − (4gκ + E)ψ̄1 + ω0

2
ψ̄2 = 0,

− 2gψ̄ ′′
2 + (ω + 8gκ)zψ̄ ′

2 − (4ωκz2 − 4gκ + E)ψ̄2

+ ω0

2
ψ̄1 = 0, (10)

where we used the parameter κ to simplify the first equation by
removing the term (8gκ2 − 2ωκ + 2g)z2ψ̄1, thus specifying
its value

κ = ω −
√

ω2 − 16g2

8g
. (11)

In fact there should be a ± sign in front of the square
root, but the plus sign would make κ divergent in the limit
g → 0, which is physically not reasonable. Notice that κ

remains real under the above-mentioned restriction 4|g| < ω.
There is also a further analogy with the standard Rabi model,
where the special case ω0 = 0 is exactly solved with the
help of the coherent state exp(±2g/ω b†)|0〉, where |0〉 is the
lowest bosonic state [8,9]. In our notation, Braak performs the
transformation φ1,2 ∝ exp(−2gz/ω)ψ̄1,2; recall b† → z in (2).
The m = 2 Rabi Hamiltonian solution at ω0 = 0 involves the
squeezed vacuum [10] term exp(±κ b†

2
)|0〉. We will return to

this case later.
In the next step we expand the functions ψ̄1,2:

ψ̄1(z) =
∞∑

n=−∞
Qn(E)zn,

(12)

ψ̄2(z) =
∞∑

n=−∞
Kn(E)zn.

To keep the solutions analytic we expect Qn(E) = Kn(E) = 0
for n < 0 [1]. Inserting these expressions into Eqs. (10), we
get the iteration scheme

2g(n + 2)(n + 1)Qn+2 + [(ω − 8gκ)n − 4gκ − E]Qn

+ ω0

2
Kn = 0,

−2g(n + 2)(n + 1)Kn+2 + [(ω + 8gκ)n + 4gκ − E]Kn

− 4ωκKn−2 + ω0

2
Qn = 0. (13)

Notice that the indexes differ by 0, 2, or 4; thus only the
coefficients Qn and Kn with common parity will be nonzero,
either for even n = 0,2,4 . . . [Eq. (5)] or odd n = 1,3,5 . . .

[Eq. (6)]. The prefactor e−κz2
does not spoil the parity.

The starting point of our iteration scheme is either at n =
0 or n = 1. Let us first have a look on the case n = 0
and the symmetry parameter c = 1. The top expression in
Eqs. (8), φ1(iz) = φ2(z), at z = 0 implies Q0 = K0, which
can itself be a function of Hamiltonian parameters, serving as
a normalization constant for the eigenfunctions. But as we are
interested only in the roots of G+(z,E), this constant becomes
an unimportant multiplication factor, and we can choose

Q0 = 1, K0 = 1. (14)

The second case is c = −1. We have φ1(iz) = −φ2(z), and
again at z = 0,

Q0 = 1, K0 = −1. (15)

The third case with c = i is only a bit more complicated. The
symmetry condition from Eqs. (8) is now φ1(iz) = iφ2(z), and
its value at z = 0 is rather trivial, Q0 = K0 = 0. But we will
compare the first derivatives with respect to z, i.e., φ′

1(iz) =
iφ′

2(z) at z = 0, and we get iQ1 = iK1; thus now our starting
point is

Q1 = 1, K1 = 1. (16)

Finally, for c = −i we get

Q1 = 1, K1 = −1. (17)
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Concluding this part we can see that the Hilbert space
of eigenfunctions splits into four disjunct subspaces. The
corresponding eigenvalues can be found separately as roots of
four Gc(E) functions, Eq. (9). We substitute φ1,2 = e−κz2

ψ̄1,2,
and the coefficients of the expanded ψ̄1,2 functions are found
by applying the iteration scheme (13) subsequently with four
starting points, Eqs. (14)–(17). The coefficients not defined by
Eq. (13) are zero because of parity demands. K−2 = K−1 = 0
as well.

Before proceeding to numerical calculations, we ought to
mention several special cases, where the exact solution was
already known. They will serve as a check of our general
solution.

III. SOME EXACTLY KNOWN CASES

A. Case g = 0

If the interaction constant is zero, the system separates into
independent two-state atoms with energy levels ±ω0/2 and a
phonon with the mode Nω, where N = 0,1,2, . . . Thus the
overall energy is ±ω0/2 + Nω. It is instructive to see how
these values split into four groups as roots of four Gc functions.
Therefore we will solve this simple case explicitly. We return to
the original functions ψ1,2, as the set of equations (3) decouples
for g = 0, and the two independent solutions are found easily:

ψ1 = C1z
2E−ω0

2ω = C1z
k′
,

(18)
ψ2 = C2z

2E+ω0
2ω = C2z

k,

where we denoted the exponents by k′ and k, as the parity
conditions (5) and (6) are common for the φ1,2 and ψ1,2

functions. They force k′ and k to be integers, and the
analyticity demands make them non-negative. The energies
E = −ω0/2 + kω and E = ω0/2 + k′ω should be common,
but they are generally different; thus the overall solutions will
have either C1 = 0 or C2 = 0.

Let us first analyze the case (0,ψ2)T with energy E =
−ω0/2 + kω. The linear combinations are φ1 = ψ1 + ψ2 =
C2z

k and φ2 = ψ1 − ψ2 = −C2z
k . The solutions for the

functions Gc = 0 finally yield

G− = −C2(iz)k + C2z
k = 0 ⇒ k = 0,4,8, . . . ,

G+ = −C2(iz)k − C2z
k = 0 ⇒ k = 2,6,10, . . . ,

(19)
G−i = −iC2(iz)k + C2z

k = 0 ⇒ k = 3,7,11, . . . ,

Gi = −iC2(iz)k − C2z
k = 0 ⇒ k = 1,5,9, . . .

The second solution (ψ1,0)T with φ1 = φ2 = C1z
k′

and
eigenenergies E = ω0/2 + k′ω gives

G− = C1(iz)k
′ + C1z

k′ = 0 ⇒ k′ = 2,6,10, . . . ,

G+ = C1(iz)k
′ − C1z

k′ = 0 ⇒ k′ = 0,4,8, . . . ,
(20)

G−i = iC1(iz)k
′ + C1z

k′ = 0 ⇒ k′ = 1,5,9, . . . ,

Gi = iC1(iz)k
′ − C1z

k′ = 0 ⇒ k′ = 3,7,11, . . .

We will later analyze mainly the cases when ω0 and ω are
comparable, and the eigenenergies as roots of Gc functions

reorganize as follows:

G− : −ω0

2
,

ω0

2
+ 2ω, − ω0

2
+ 4ω, . . . ,

G+ :
ω0

2
, − ω0

2
+ 2ω,

ω0

2
+ 4ω, . . . ,

(21)
G−i : −ω0

2
+ ω,

ω0

2
+ 3ω, − ω0

2
+ 5ω, . . . ,

Gi :
ω0

2
+ ω, − ω0

2
+ 3ω,

ω0

2
+ 5ω, . . .

We can see that real values of the symmetry parameter c are
connected with an even number of phonon excitations N ,
whereas the imaginary c is coupled to odd N . The global
ground state is always given by the lowest root of G−, which
is true also for nonzero g.

B. Case ω0 = 0

If the gap ω0 between atomic levels disappears, all eigenen-
ergies become twice degenerate. They are exactly known, and
now the complete spectrum is given by [5]

E = −ω

2
+

(
n + 1

2

)

ω n = 0,1,2, . . . , (22)

where another dimensionless quantity was introduced:


 =
√

1 − 16g2

ω2
= 1 − 8gκ

ω
. (23)

Let us reproduce this result. We return to the φ1,2 functions
because now the system of equations (4) decouples for ω0 = 0,
and the general solutions are

φ1 = exp

[(
κ − ω

4g

)
z2

] [
C11H−n−1

(√
ω


4g
z

)

+C21 1F1

(
n + 1

2
,
1

2
,
ω


4g
z2

)]
,

φ2 = exp(κz2)

×
[
C12Hn

(√
ω


4g
z

)
+ C22 1F1

(
−n

2
,
1

2
,
ω


4g
z2

)]
,

(24)

exploiting the well-known Hermitian polynomials Hn and
the hypergeometric function 1F1. Further we introduced the
quantity n = (ω + 2E)/(2
ω) − 1/2, which is nothing but
Eq. (22) reversed. Thus, if the parity demands force n to be
a non-negative integer again, the spectrum is reproduced. Let
us show it in detail at least for the simpler case of even n. We
make use of a formula relating the Hermitian polynomials and
the hypergeometric function, valid for n = 0,2,4, . . . ,

Hn(iqz)

2n/2(n − 1)!!
= ine−q2z2

1F1

(
n + 1

2
,
1

2
,q2z2

)
, (25)

whereas for any n, including the noninteger one, the Kummer
transformation [11] gives

1F1

(
−n

2
,
1

2
, − y

)
= e−y

1F1

(
n + 1

2
,
1

2
,y

)
. (26)

First of all we set C11 = 0 because the Hermitian polynomial
with a negative index has no parity, whereas the rest of the
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solutions (24) are even functions for even n. We define q2 =
ω
/(4g), y = q2z2, and require G± = 0 using Eqs. (23)–(26).
We get

(−2)n/2(n − 1)!!C12 + C22 ∓ C21 = 0. (27)

For a noninteger n (or odd integer), the term with the Hermitian
polynomial would become complex, but our functions φ2(iz)
and G± are real; hence we set also C12 = 0. We already men-
tioned that one parameter can be chosen, say the integration
constant C21 = φ1(0) = 1. Thus C22 = φ2(0) = ±1, and the
two Gc functions are identical, G+ = G−. One can compare
the series expansion of these φ1,2(z) solutions with those given
by scheme (13) with starting points (14) or (15) and see that
in fact we managed to perform the complete sum of Eqs. (12).

Having exact formulas for some φ1,2 and Gc(z,E) functions
at our disposal allows us to make several observations. In
the Supplement Material for Ref. [1], Braak reports some
problems with the radius of convergence R of his series in
z. R seemed to be finite in some cases, though analyticity
in the whole complex plane of z is required. To keep the
series analogous to our Eqs. (12) convergent, as a necessary
condition, the ratio Kn+1/Kn had to go to zero for n → ∞. If
it was nonzero, R became finite. For the special case ω0 = 0
we can calculate this ratio explicitly. The coefficients Qn with
n = 2k become rather simple:

Q2k = 1

(2g)k(2k)!
(E − ε2k−2)(E − ε2k−4) . . . (E − ε0),

(28)

where εn are eigenenergies from Eq. (22). En route we see
that the energy E = εn terminates ψ̄1(z) to a (Hermitian)
polynomial. The ratio

Q2k+2/Q2k ≈ −ω


2g

1

2k
→ 0, k → ∞, (29)

as required. The equations for K2k are not so simple; thus we
resort to the exact solution of φ2 and find

K2k+2/K2k ≈ ω


2g

1

2k
→ 0, k → ∞. (30)

For odd n and especially for nonzero ω0 we performed at least
numerical study of Kn and Qn from scheme (13) and found that
their ratios are also proportional to 1/n in leading term. Hence
we experience no problems with analyticity of the expanded
functions, even including very large z.

The next remark concerns the practical numerical calcula-
tions of the roots Gc(z,E) = 0, independent of z. It turns out
that such calculations are numerically more stable for large
z, which is allowed by the previous notion. One can exploit
the large-z asymptote for the φ1(z) contribution to G± given
by [11]

1F1(a,b,y) = �(b)

�(a)
eyya−b

[
1 + O

(
1

y

)]
, y 
 0, (31)

which is analytic for non-negative integer power a − b = n/2,
i.e., n = 0,2, . . ., as expected. φ2(iz) gives the same result after
Kummer transformation (26).

Further we return to the complete spectrum in Eq. (22).
For |g| → ω/4 the quantity 
 → 0, and the energy becomes

infinitely many times degenerate. This point is physically
unsound, though well defined in the sense of a limit.

Concluding, the eigenvalue of Eq. (22) for n = 0 coincides
with the mutually equal lowest roots of G− and G+; for n = 1
it is the lowest root of both G−i and Gi , for n = 2 is is the
second lowest root of both G− and G+, etc.

C. Special cases with nonzero ω0,ω,g

Let us now recall the result of Emary and Bishop [5], who
found a set of isolated solutions for our model. We are not going
to rederive it, but the basic fact is that under some constraint
on the Hamiltonian’s parameters and energy E, at least one of
the original eigenfunctions ψ1,2 becomes a product of some
exponential function and of a polynomial.

The main statement is that there exist exactly known
eigenstates with eigenenergies

E = −ω

2
+

(
N + 1

2

)

ω (32)

if the following conditions are fulfilled:

2 − 6
2 + ω2
0

4ω2
= 0, N = 2,

6 − 10
2 + ω2
0

4ω2
= 0, N = 3,

8(3 − 30
2 + 35
4) + 2(7 − 17
2)
ω2

0

4ω2
+ ω4

0

16ω4
= 0,

N = 4,

(33)

etc. We will proceed so that we choose the values of ω0 and ω,
and then we gradually change g. Equations (33) yield values
of g, and correspondingly, the energy is derived from Eq. (32).
These solutions will manifest themselves as crossing points
of appropriate roots of G− and G+ in the case of even N

or crossings of the G−i and Gi roots in the case of odd N .
This is again analogous to the standard m = 1 Rabi model,
where the Juddian points appeared as crossings of the roots
of G

(1)
− and G

(1)
+ [1]. Recall that, contrary to Eq. (22), this is

only one known excited state for a chosen set of Hamiltonian
parameters, not the complete spectrum.

IV. NUMERICAL RESULTS

The resulting energies as roots of Gc functions should not
depend on z; this would be true after summing an infinite
number of summands in Eq. (12). In numerical calculations
we truncate the sum and hope that the higher powers are not
significant. We cannot use very small z because of numerical
instability. Somewhat surprisingly, we can use values as large
as z = 1000 or even z = 104 without a real change of the
roots. This fact was already noted for exactly solvable cases;
nevertheless, one even does not have to use compromise
medium values despite the truncated expansions. Using the
symbolic program MATHEMATICA, we could sum up to the zL

term with L = 34 for even solutions or L = 35 for the odd
ones. If the values of a root with smaller L converged to the
same value, we accept it. It turns out that for smaller values
of |g| the convergence is excellent, but it becomes poorer as
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E

n
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 E2(G+-)

ω0 = 0
ω = 1

FIG. 1. Eigenenergies as roots of Gc(E) functions for ω0 = 0 and
ω = 1. Solid lines are exact values. All quantities En, ω0, ω, and g

are in energy units with h̄ = 1.

we approach the maximal possible value, i.e., if |g| → ω/4.
The interval of g in our plots is limited to 0 � g � w/4. It is
known that although the eigenfunctions differ after changing
the sign of g, the eigenenergies remain the same; i.e., there is
a mirror symmetry E(−g) = E(g).

Let us test our calculations at first on the exactly solved case
ω0 = 0. We choose ω = 1. Parts of parabolas with a common
top form the exact spectrum from Eq. (22); see solid lines in
Fig. 1. It is clear that, in the vicinity of the infinitely many times
degenerate point with g = ω/4, the roots of Gc(E) functions
become very dense and the functions themselves are quickly
oscillating. That is the reason why, even for the orders as large
as L = 34, the values of appropriate roots did not converge
completely, and we have to resort to some fitting procedure,
yielding a better guess of the saturation value for L → ∞.
The roots are denoted so that the lowest one is E1(Gc), the
second lowest one is E2(Gc), etc. We can see that the calculated
eigenenergies fit the exact values almost perfectly, except for
some deviation at g close to ω/4 and for the higher root, in
this case E2(G±).

In Fig. 2 we present the three lowest roots of G± (solid
symbols) and two lowest roots of G±i (smaller open symbols).
The values ω0 = 1 and ω = 2 are chosen so that the spectrum

0 0.1 0.2 0.3 0.4 0.5
g
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E
n
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 E1(G+)
 E1(G-i)
 E1(Gi)
 E2(G+)
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 E2(Gi)
 E2(G-i)
 E3(G-)
 E3(G+)

ω
0 = 1

ω = 2

N=2

N=3
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N=4

FIG. 2. Eigenenergies as roots of Gc(E) functions for ω0 = 1 and
ω = 2. All quantities are in energy units with h̄ = 1.
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FIG. 3. Eigenenergies as roots of Gc(E) functions for ω0 = 2 and
ω = 1. The description of the symbols is the same as in Figure 2. All
quantities are in energy units with h̄ = 1.

at g = 0 becomes equidistant; see Eq. (21). The large open
circles are exact solutions of Eqs. (33) and (32). The value of
N is written nearby. We can see an almost perfect match with
the crossings of appropriate lines. The bottom four lines with
N = 0 and N = 1 do not cross; lines with N = 4 cross twice.

Figure 3 shows the same roots denoted by the same symbols
as Fig. 2, except for ω0 = 2 and ω = 1. Besides the well-fitted
exact crossing points, there are other crossings of lines with
different N , which are not exactly known. A similar figure
with, in fact, the same Hamiltonian parameters was already
published in [2], where the authors plot also numerical results
from larger matrix diagonalization.

There are a couple of simpler analytic results that can be
derived from our approach. We can find, e.g., the small-g
expansion of the (global) ground-state energy E0 = E1(G−):

E0 ≈ −ω0

2
− 8g2

2ω + ω0
+ O(g4), g � ω,ω0, (34)

which can be compared with a similar result for the m = 1
Rabi model: E

(1)
0 ≈ −ω0/2 − 4g2/(ω + ω0) + . . . [9].

V. SUMMARY

We have found the complete spectrum of the two-photon
Rabi Hamiltonian as roots of four analytic functions G± and
G±i in the whole parametric space. These functions are given
by the recurrence scheme (13) with four starting points, (14)–
(17). The unnormalized eigenfunctions in Bargmann space
can be found as well, using ψ1(z) = [φ1(z) + φ2(z)]/2 and
ψ2(z) = [φ1(z) − φ2(z)]/2.

Solano [12] states that Braak [1] managed to enlarge the
class of exactly solvable models and that he added the standard
Rabi model to the short list of exactly solvable quantum
systems. We believe that this paper adds also the two-photon
Rabi Hamiltonian to the same list. This list can almost surely
be extended further by using Braak’s approach on other
related models, and another task for the future is finding
a deeper understanding of the criteria of its applicability.
Nevertheless, there are disputes on whether the term exact
solvability should be used, if the Gc functions are given only
by some Taylor expansions with coefficients coming from
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a recurrence scheme. In my opinion, the word integrability
should be left rather for models where a sufficient number of
integrals of motion are known, which is not the case for Rabi
models. Possibly, some new name should be introduced for
the “solvability” in Braak’s sense.
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