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We investigate many-body effects on a mixture of interacting bosons and fermions loaded in an optical lattice
using a generalized dynamical mean-field theory combined with the numerical renormalization group. We show
that strong correlation effects emerge in the presence of bosonic superfluidity, leading to a renormalized peak
structure near the Fermi level in the density of states for fermions. Remarkably, this kind of strong renormalization
appears not only in the metallic phase but also in the insulating phases of fermions such as in the empty- and
filled-band limit. A systematic analysis of the relation between the quasiparticle weight and the strength of
superfluidity reveals that the renormalization effect is indeed caused by the boson degrees of freedom. It is found
that such renormalization is also relevant to a supersolid phase consisting of a density-wave ordering of fermions
accompanied by bosonic superfluidity. This sheds light on the origin of the peak structure in the supersolid phase.
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I. INTRODUCTION

Strongly interacting atoms in optical lattices have attracted
much interest [1]. In these systems, one can tune the interaction
strength and the lattice structure by controlling a magnetic field
and the intensity of lasers. Due to such high controllability, the
cold-atom systems can be regarded as efficient simulators of
quantum many-body physics. Several intriguing phenomena
related to strong correlations were already observed experi-
mentally, for example, a superfluid-Mott transition in bosonic
systems [2], a metal-Mott transition in fermionic systems
[3,4], etc.

Experimental research has already been extended to the
topics which are not easy to investigate in conventional
condensed-matter physics. A typical example is a Bose-Fermi
(BF) mixture realized in a harmonic trap [5–10], and also in
optical lattices [11–17]. Rapid progress in these experiments
has stimulated theoretical research on related topics [18–27];
for example, the possibility of fascinating ground states such
as a supersolid state (coexistence of bosonic superfluidity
and density-wave ordering of fermions) has been proposed
[18,22,24–26]. In this context, Titvinidze et al. [24,25] pointed
out that the density of states for fermions has an anomalous
peak near the Fermi surface in the supersolid phase. It should
be important and interesting to further clarify the many-body
aspects of this structure, which naturally motivates us to
provide a detailed analysis of it.

On the other hand, dynamical properties of the BF mixture
systems have not been studied systematically. Recent rapid
advances in probing dynamical properties of fermions via rf
spectroscopy make it possible to observe the single-particle
excitation spectrum in a BCS-BEC crossover region [28–30],
the quasiparticle weight in a polaronic system (an extremely
imbalanced system) [31,32] etc. These experimental devel-
opments would be also applied for BF mixture systems in
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the near future, encouraging theoretical studies on dynamical
properties of BF mixture systems.

Motivated by these research activities, we investigate many-
body effects on the BF Hubbard Hamiltonian with particular
emphasis on its dynamical properties. We reveal unique
features inherent in BF mixture systems; the renormalization
effect caused by the boson degrees of freedom gives rise to a
peak structure near the Fermi level for the density of states for
both metallic and insulating phases. A similar peak structure
due to many-body effects appears even in the supersolid phase,
which we discuss in the following sections. Our systematic
study in this paper clearly explains that the origin of the peak
structure is many-body effects induced by the interplay of the
boson and fermion degrees of freedom.

This paper is organized as follows. In Sec. II, we introduce
the BF Hubbard model and briefly explain the framework
of a generalized version of dynamical mean-field theory
(DMFT), which extends the original fermionic DMFT to treat
additional boson degrees of freedom. We make use of the
numerical renormalization group (NRG) as an impurity solver
of DMFT. In Sec. III, we reveal the renormalization effects in
the presence of bosonic superfluidity. In the last part of this
section, we shortly discuss how the many-body effects occur
in the impurity model corresponding to the effective impurity
model in the DMFT calculation. In Sec. IV we discuss how
the renormalization effects appear in a supersolid state. In
Sec. V, we summarize our results.

II. MODEL AND METHOD

We consider a BF mixed system, which can be described
by the following BF Hubbard Hamiltonian:

H = Hb + Hf + Hbf , (1)

Hb = −tb
∑
〈i,j〉

b
†
i bj −

∑
i

μbnb
i +

∑
i
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2
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nb
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)
, (2)
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Hf = −tf
∑
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Hbf =
∑
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Ubf nb
i n

f

i , (4)

with nb
i = b

†
i bi (nf

i = f
†
i fi), where bi (fi) annihilates a boson

(fermion) at site i. Here, tb (tf ) is the boson (fermion)
transfer integral, μb (μf ) the chemical potential for bosons
(fermions), and Ub (Ubf ) the onsite boson-boson (boson-
fermion) interaction. Note that 〈i,j 〉 denotes the summation
over the neighboring lattice sites. Note that we treat spinless
(one-species) fermions in this paper. The corresponding
circumstance, where one species of fermions are mixed with
bosons, has already been realized experimentally by properly
selecting one of the hyperfine states in fermionic atoms (see
Ref. [6]).

To investigate the ground state as well as the dynamical
properties of the system, we employ the DMFT. In order to treat
the boson degrees of freedom, we use a generalized version of
the DMFT which is introduced in Refs. [25,33]. In the gen-
eralized DMFT, the lattice model is mapped onto an effective
impurity model embedded in an effective medium, as usually
done in DMFT [34,35]. The Green’s function is obtained via
the self-consistent solution of this impurity model. This is
why the DMFT exactly includes local quantum fluctuations,
which cannot be taken into account by conventional mean-field
approaches. The different point from the fermionic DMFT is
that the bosonic superfluid order parameter, ϕ = 〈b〉, should be
obtained in self-consistency steps. We perform the calculation
using a semielliptic local density of states with a bandwidth
W = 4tf for the noninteracting system. In the following, the
half bandwidth D = 2tf is used as a unit of energy.

In order to discuss many-body effects in the phases with and
without a density-wave order, we introduce the corresponding
effective impurity models. When we analyze the phases
without a density-wave order, we use the following generalized
single-impurity Anderson model (GSIAM) as an effective
impurity model:

HGSIAM = −ztb(ϕb† + ϕ∗b) + Ub

2
nb(nb − 1) − μbnb

−μf nf +
∑

k

{εka
†
kak + Vk(f †ak + H.c.)}

+Ubf nbnf , (5)

where z is the coordination number, ϕ = 〈b〉 the superfluid
order parameter, and Vk the hybridization for fermions.

For the phases with a density-wave order, we divide
the bipartite lattice system into two sublattices [35]. The
corresponding Hamiltonian is

HGSIAM =
∑
α=±1

[
−ztb(ϕαb†α + ϕ∗

αbα) + Ub

2
nb

α

(
nb

α − 1
) − μb

αnb
α

−μf nf
α +

∑
k

{εka
†
kαakα + Vkα(f †

αakα + H.c.)}

+Ubf nb
αnf

α

]
, (6)

where α = A,B represents the sublattice index (α = A,B with
α �= α). For this Hamiltonian, we perform single-site DMFT
calculations for each sublattice structure. In the following, we
fix the parameters Ub = 1.0, ztb = 0.05.

We calculate the superfluid order parameter ϕ and the
self-energy �bf (ω) self-consistently by employing the NRG
[36,37] as an impurity solver. NRG has the advantage in
performing the high-accuracy calculation in the low-energy
region thanks to the logarithmic discretization of the conduc-
tion band. This method has been already extended to include
boson degrees of freedom [24], which are incorporated in
the impurity Hamiltonian. This allows us to apply NRG with
the same accuracy in the low-energy region as the ordinary
fermion case.

We compute several thermodynamic quantities and the
quasiparticle weight defined by

Z = 1

1 − dRe�(ω)/dω|ω=0
, (7)

which is inversely proportional to the effective mass of
fermions. This quantity represents how strong the correlation
effect is. We also calculate the density of states (DOS), ρ(ω),
i.e., the single-particle excitation spectra derived from the
imaginary part of the Green’s function.

III. MANY-BODY EFFECTS IN NORMAL
PHASES OF FERMIONS

We first discuss many-body effects in the BF mixture system
without a density-wave long-range order of fermions. We
employ the effective impurity model described by Eq. (5) for
generalized DMFT calculations.

A. Correlation effects in a metallic phase

In order to figure out possible phases in the BF mixture
system, we calculate several quantities, such as the fermion
filling 〈nf 〉, the boson filling 〈nb〉, the bosonic superfluid order
parameter ϕ, and the quasiparticle weight Z as a function of the
chemical potential for bosons. In particular, the quasiparticle
weight Z can be used as a measure of correlation effects:
for a free-particle system Z = 1, whereas for an extremely
correlated system Z → 0.

The computed results are shown in Fig. 1. Note that the
origin of the chemical potential �μb for bosons is defined so
that it gives the fillings 〈nf 〉 = 1/2, 〈nb〉 = 5/2 for Ubf = 1.0
and Ubf = 2.0. At nonintegral fillings, the boson sector is
always in a superfluid phase with finite ϕ, while for 〈nb〉 =
1,2,3,4 (upper panel) and 〈nb〉 = 1,4 (lower panel), it is in
an insulating Mott phase with ϕ = 0. It is seen that there
is no renormalization effect (Z = 1) without superfluidity
(ϕ = 0). On the other hand, in the presence of superfluidity,
the quasiparticle weight Z of fermions decreases from unity,
implying that the renormalization of fermions occurs. Figure 1
also elucidates that the strength of the renormalization depends
on the magnitude of superfluid order parameter ϕ; stronger
renormalization (smaller Z) occurs for larger ϕ. These results
certainly suggest that the many-body effects in the fermion
sector are induced by the boson degrees of freedom via the
boson-fermion interaction Ubf .
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FIG. 1. (Color online) Fermion filling 〈nf 〉, boson filling 〈nb〉,
superfluid order parameter ϕ, and the quasiparticle weight Z as a
function of the chemical potential �μb for bosons for fixed Ubf = 1.0
(top) and Ubf = 2.0 (bottom).

We note here that the strong boson-fermion interaction may
possibly induce orderings such as a density-wave ordering both
for fermion and boson sectors. This kind of instability indeed
appears around the region near �μB � 0 in Fig. 1 (Ubf = 2.0).
The corresponding data for the physical quantities are lacking
there because such density-wave ordering is not taken into
account in the homogeneous DMFT calculations, so there is
no convergent solution. We separately discuss the results for
the density-wave state in Sec. IV.

We now discuss how the renormalization effects appear in
the DOS for fermions. In Fig. 2, we show a typical profile
of the DOS for fermions in a metallic region with bosonic
superfluidity at Ubf = 1.0 and �μb = 0.0 where fillings are
〈nf 〉 = 1/2 and 〈nb〉 = 5/2. There is a sharp peak structure at
the Fermi level due to the renormalization effects with bosonic
superfluidity, which is one of the characteristic properties of
the present BF mixture system. One may immediately notice
that a similar peak structure is quite commonly observed in
correlated electrons in condensed-matter physics. Actually,
there is a close relationship and a crucial difference between
the present BF system and the electron systems; in both
cases the strong renormalization of the DOS is caused by
low-energy collective excitations, but in the former (latter)
case the collective excitations come from electrons themselves
(additional boson degrees of freedom).

Therefore, we naturally expect that some intriguing aspects
of correlation inherent in the BF systems should appear,
which are not observed in correlated electron systems. Such
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FIG. 2. (Color online) DOS for fermions with the boson-fermion
interaction Ubf = 1.0 and �μb = 0.0, where the renormalization
effects occur in the presence of bosonic superfluidity.

examples can be indeed found in the empty- and filled-band
limit of fermions in our case. We can see from Fig. 1 that
the renormalization of fermions occurs even in the extreme
conditions for fermion filling: the empty-band limit (〈nf 〉 ∼ 0)
or the filled-band limit (〈nf 〉 ∼ 1). Since these cases provide
unique aspects of the BF systems beyond ordinary electron
systems, in the next section we give more detailed discussions
on the many-body effects in the two limiting cases.

B. Correlation effects in empty- and filled-band limit

1. Empty-band limit

We first discuss the relation between the quasiparticle
weight and the bosonic superfluid order parameter in the
empty-band limit (〈nf 〉 ∼ 0). The computed results are shown
in Fig. 3. It is seen that the evolution of the superfluid order
parameter enhances the renormalization effects. This figure
also indicates that the increase in the boson-fermion interaction
Ubf makes the renormalization effects stronger (smaller values
of Z). For Ubf = 2.0, the quasiparticle weight becomes almost
zero around ϕ � 1.2, which means that the quasiparticle mass
of fermions becomes extremely heavy. This tendency may be
related to instability toward the density-wave formation, as
mentioned above.
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FIG. 3. (Color online) Quasiparticle weight Z as a function of
the superfluid order parameter ϕ in the empty-band limit. The boson-
fermion interaction is fixed at Ubf = 1.0 (+) and Ubf = 2.0 (×).
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FIG. 4. (Color online) DOS as a function of the superfluid order
parameter ϕ at Ubf = 1.0 (left) and 2.0 (right). The origin of the DOS
is shifted for ease in viewing.

In order to address how the renormalization affects dynam-
ical properties, we calculate the DOS for fermions for several
choices of ϕ. The results are plotted in Fig. 4. Note that only the
particle-addition spectrum has finite values (ω > 0) because
we cannot remove fermions from the system in this limiting
case. In this figure the DOS has a peak near the Fermi level
which becomes sharper as ϕ becomes larger. This is consistent
with the relation between the quasiparticle weight and the
bosonic superfluidity mentioned above.

We note here that this kind of BF mixture in the empty-band
limit has been already realized in recent experiments [16,17]
and is sometimes referred to as a “polaronic system” [31]. We
hope that the above-mentioned renormalization effect could
be observed experimentally in the near future.

2. Filled-band limit

We next focus on the opposite extreme case, a filled-band
limit, where the fermion filling is close to unity (〈nf 〉 ∼ 1),
while the boson sector is still at noninteger filling. In this limit,
we can still tune the boson filling to control the amplitude of
superfluidity. We plot the quasiparticle weight Z as a function
of the superfluid order parameter ϕ in Fig. 5. Note here again
that only the particle-removal spectrum has finite values (ω <

0) because we cannot add fermions into the system in this
limiting case.

Figure 5 suggests that the increase in the superfluid order
parameter enhances the renormalization effects, resulting in
smaller values of Z. Also, we can see that the boson-fermion
interaction enhances the renormalization effects as for the
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FIG. 5. (Color online) Quasiparticle weight Z as a function of
the superfluid order parameter ϕ at the empty-band limit. The boson-
fermion interaction is fixed at Ubf = 1.0 (+) and Ubf = 2.0 (×).
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FIG. 6. (Color online) DOS as a function of the superfluid order
parameter ϕ at Ubf = 1.0 (left) and 2.0 (right). The origin of the DOS
is shifted for ease in viewing.

empty-band limit. We show typical examples of the DOS for
several choices of ϕ with fixed interactions in Fig. 6. With
increasing ϕ, the peak becomes sharp in accordance with the
corresponding behavior of the quasiparticle weight Z as a
function of ϕ. Therefore, we conclude that the many-body
effects induce the peak near the Fermi level in the DOS for
fermion systems.

As mentioned above, in the filled-band limit, only the
particle-removal spectrum can be observed. Experimentally,
this limiting case may be more tractable than the empty-band
limit if one could use the rf spectroscopy. We note that in
this case the renormalization effects should be discussed for a
“hole”-type quasiparticle.

Before concluding this section, we would like to briefly
discuss the properties of the impurity Hamiltonian, Eq. (5), in
order to exclude the possibility that the peak originates from
the DMFT iteration process. We use NRG as an impurity solver
with a constant density of states and a constant hybridization in
order to extract general properties of the impurity Hamiltonian.
Filling and interaction parameters are 〈nf 〉 = 1/2, 〈nb〉 =
5/2, and Ub = 1.0. Figure 7 shows the DOS for fermions
with several boson-fermion interactions in the presence of
the bosonic superfluidity. The DOS has two structures for
finite boson-fermion interactions (Ubf �= 0). The main part of
the excitation spectrum comes from the bare hybridization.
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FIG. 7. (Color online) DOS for fermions in the impurity Hamilto-
nian with several boson-fermion interactions (Ubf = 0.0,1.0,2.0,3.0)
in the presence of the bosonic superfluidity. A small peak structure
on the Fermi surface disappears at U = 0.0. Inset: enlarged view in
the region around the Fermi surface.
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On the other hand, the small peak on the Fermi surface only
appears in the presence of finite boson-fermion interactions.
We also confirm that the peak structure only appears in the
presence of the bosonic superfluidity, which elucidates that the
many-body effects occur in terms of boson degrees of freedom.
These results are consistent with the DMFT calculations in the
lattice system and support that the peak structure originates
not from the DMFT iterations but from the interplay of the
boson and fermion degrees of freedom.

IV. MANY-BODY EFFECTS IN A SUPERSOLID PHASE

We now turn to the many-body effects in the phase with a
density-wave order in the fermion sector. This case was already
studied theoretically by Titvinidze et al. with DMFT [24,25],
so we perform complementary calculations to highlight the
importance of many-body effects which was not addressed in
the previous work.

To treat a density-wave order, we employ Eq. (6) as an
effective impurity model, which allows us to treat the sublattice
symmetry breaking. Here, we present the results for fixed
fillings 〈nf 〉 = 1/2 and 〈nb〉 = 5/2, where we define 〈nf (b)〉 =
1/2

∑
α=A,B n

f (b)
α . We briefly summarize the phase diagram

with a density-wave order of fermions [24,25]. As far as Ubf �=
0, there always exists the difference in the particle density
between two sublattices, �Nb(f ) = 1/2|nb(f )

α − n
b(f )
α | �= 0,

signaling the stability of a density-wave state. The density-
wave state is referred to as an alternating Mott insulator
(AMI) for bosons and as a “charge” density wave (CDW)
for fermions, where “charge” is used following the tradition
in solid-state physics. Furthermore, for �Nb �= m + 1/2 (m is
an integer), the boson sector favors a superfluid phase because
the commensurability condition is not satisfied. Therefore, in
the presence of bosonic superfluidity, the BF mixture system
becomes a “supersolid” (SS) phase [25], which is a main topic
in this section.

In order to focus on the essential points, we here fix
the boson-boson interaction Ub = 1.0. In this condition, we
end up with the phase diagram as a function of Ubf , as
shown schematically in Fig. 8. The physical properties in
this phase diagram are essentially the same as those obtained
by Titvinidze et al. [25] for different fillings 〈nf 〉 = 1/2 and
〈nf 〉 = 3/2. Interestingly, they pointed out that the DOS for
fermions has a peak structure near the Fermi level in the SS
phase. We demonstrate here that this peak is caused by the
many-body effects.

To address the above point, we focus on the supersolid SS2
phase where the correlation effects are observed more clearly
than the SS1 phase. We show the DOS in the SS2 phase in
Fig. 9. It is seen that the DOS has two characteristic structures,
as expected. In the high-energy region, there is a hump

SS 1 AMI 1 SS 2 AMI 2SS 1 AMI 1 SS 2 AMI 2

FIG. 8. Schematic phase diagram for the BF Hubbard model with
fixed fillings 〈nf 〉 = 1/2, 〈nb〉 = 5/2. SS, supersolid phase; AMI,
alternating Mott insulator.
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FIG. 9. (Color online) (a) DOS for Ubf = 1.8,1.9,2.0,2.2,2.4.
(b) DOS enlarged around the Fermi level.

structure which comes from the mean-field-type effect of Ubf .
This exists in both the metallic and insulating phases. On the
other hand, in the low-energy region, there is a sharp peak near
the Fermi level, which only emerges in the supersolid phase,
as already found by Titvinidze et al. for different fillings [25].

We now provide evidence that this peak indeed originates
from the correlation effects due to boson degrees of freedom.
We show the DOS for different choices of the interaction Ubf

in Fig. 9. With increasing Ubf , the weight of the peak initially
increases and then decreases, as seen in the lower panel of
Fig. 9. This behavior is similar to the one observed between
the quasiparticle weight and the bosonic superfluidity, so it is
consistent with the results obtained in the previous section.
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FIG. 10. (Color online) DOS for the A and B sublattices at Ubf =
2.0.
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FIG. 11. (Color online) Quasiparticle weight Z as a function
of superfluid order parameter ϕ for several values of interaction
1.6 < Ubf < 2.5. Fillings are fixed at 〈nf 〉 = 1/2,〈nb〉 = 5/2. +,
A sublattice; ×, B sublattice in Fig. 10.

In order to check the sublattice dependence, we show the
DOS for each sublattice in Fig. 10. In both cases, the DOS
has a peak near the Fermi level, suggesting that not only
sublattice A but also sublattice B has the anomalous peak,
which was not obvious in the previous study [24,25]. Note
that the shapes of the DOS are quite different from each other.
In the supersolid phase, the occupation number of fermions
at each site is alternating between two sublattices: if �Nf

is close to full (〈nf

A〉 ∼ 1), the B sublattice remains almost
empty (〈nf

B〉 ∼ 0), and vice versa. Note that the condition
for each sublattice approximately corresponds to the empty-
and filled-band limit discussed in the previous section, and
therefore the corresponding DOS indeed exhibits analogous
properties discussed in Figs. 4 and 6. Therefore, we can say
that the emergent peak structure in the supersolid phase is a
fingerprint of many-body effects inherent in the BF mixture
system.

To further confirm our statement, we show the relation
between the quasiparticle weight Z and the superfluid order
parameter ϕ in Fig. 11. The data include the calculations
performed for several different interactions (1.6 < Ubf < 2.5)
with fixed fillings 〈nf 〉 = 1/2, 〈nb〉 = 2/5. It is seen that the
increase of ϕ enhances the renormalization effects (i.e., smaller
Z), whereas there is no correlation effect (i.e., Z = 1) in the
absence of the bosonic superfluidity ϕ = 0. This behavior is
consistent with that for the metallic phase in the previous
section. Therefore, we confirm that the renormalization effects
in the supersolid phase are induced by the boson degrees of
freedom.

V. CONCLUSION

We have theoretically investigated a mixture of bosons and
fermions loaded in an optical lattice using a generalized DMFT
combined with NRG. We have revealed that strong correlation

effects emerge in the fermion sector in the presence of bosonic
superfluidity regardless of whether the system is metallic or
insulating. This conclusion has been drawn via a systematic
study of the close relationship between the renormalization
factor and the magnitude of superfluidity.

This kind of boson-driven renormalization effect gives rise
to the characteristic peak structure in the low-energy region
of the DOS. The formation of such a many-body peak is
similar to that expected for the ordinary Fermi liquid, but
there is a crucial difference between them. Whereas in the
ordinary Fermi liquid, the renormalization is caused by the
low-energy excitations of fermions themselves, in the present
mixture system, it is driven by boson degrees of freedom.
Therefore, the latter brings about some unique correlation
effects inherent in the BF mixture systems: for example,
the strong renormalization appears even in the empty- and
filled-band limit of fermions. Since the empty-band limit
was already realized in recent experiments, we hope that the
many-body effects proposed here will be observed in the near
future.

We have confirmed the appearance of the peak structure
in the impurity model and concluded that many-body effects
occur in the presence of bosonic superfluidity even in the
impurity Hamiltonian. This implies that the peak structure
originates from the boson degrees of freedom, not from DMFT
iterations. In the preceding work [25] an instability toward the
phase separation was pointed out as a possible mechanism for
the peak formation. Although in the present calculation we
have not encountered such a tendency, more detailed analyses
should be necessary to figure out the relationship between our
scenario and the previous one.

Although the calculation in this paper has been done at T =
0, we expect that such an anomalous peak structure in the DOS
can be observed with rf spectroscopy experiments [28–31] at
sufficiently low temperatures where fermions and bosons are
both in the quantum-degenerate regime. The emergence of
such a peak structure should be a fingerprint of the many-body
effects inherent in the BF mixture.
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