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Nonthermal fixed points of the dynamics of a dilute degenerate Bose gas far from thermal equilibrium
are analyzed in two and three spatial dimensions. Universal power-law distributions, previously found within
a nonperturbative quantum-field theoretical approach and recently shown to be related to vortical dynamics
and superfluid turbulence [Phys. Rev. B 84, 020506(R) (2011)], are studied in detail. The results imply an
interpretation of the scaling behavior in terms of independent vortex excitations of the superfluid and show that the
statistics of topological excitations can be described in the framework of wave turbulence. The particular scaling
exponents observed in the single-particle momentum distributions are found to be consistent with irreversibility
as well as conservation laws obeyed by the wave interactions. Moreover, long-wavelength acoustic excitations
of the vortex-bearing condensate, driven by vortex annihilations, are found to follow a nonthermal power law.
Considering vortex correlations in a statistical model, the long-time departure from the nonthermal fixed point is
related to vortex-antivortex pairing. The studied nonthermal fixed points are accessible in cold-gas experiments.
The results shed light on fundamental aspects of superfluid turbulence and have strong potential implications for
related phenomena, for example, in early universe inflation or quark-gluon plasma dynamics.
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I. INTRODUCTION

Turbulence is a generic phenomenon observed in the
relaxation dynamics of many-body systems far from thermal
equilibrium [1]. It comprises a quasistationary flow of energy
within certain inertial regimes in momentum space [2]. Corre-
lation functions like the energy spectrum and higher momenta
of the velocity distribution exhibit universality and scaling
[3,4]. This and quasistationarity are the key characteristics
rendering turbulence a nonthermal fixed point of the system’s
dynamics.

In quantum many-body systems, from the formation of
Bose-Einstein condensates in ultracold gases to quark-gluon
plasmas produced in heavy-ion collisions and reheating after
early universe inflation, nonequilibrium dynamics governs
many interesting phenomena. In this context, turbulence
during thermalization is being studied with increasing effort
[5–17]. A nonthermal fixed point of the evolution of a
many-body system has the potential to strongly affect the
equilibration process by forcing the evolution to critically slow
down before the system can thermalize. New scaling laws were
found by analyzing nonperturbative quantum field dynamic
equations [6–8,10]. Analogous predictions for a dilute ultra-
cold Bose gas were given in Ref. [9], proposing strong matter-
wave turbulence in the regime of long-range excitations.

Superfluid turbulence, also referred to as quantum turbu-
lence (QT) has been the subject of extensive studies in the
context of helium [18,19] and dilute Bose gases [20–23]. In
contrast to eddies in classical fluids, vorticity in a superfluid is
quantized [24,25], and the creation and annihilation processes
of quantized vortices are distinctly different [18,19]. The
observation of a Kolmogorov 5/3 law [3,4] in experiments with
superfluid helium [26–28] received much attention [29–35].
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In particular, the role of the normal fluid as compared to the
superfluid component in the turbulent flow is under debate
[18,19].

Superfluid turbulence plays an important role in the context
of the kinetics of condensation and the development of long-
range order in a dilute Bose gas. This, as well as turbulence in
its acoustic excitations has been discussed in Refs. [36–42]. A
possible observation of QT in ultracold atomic gases presently
poses an exciting task for experiments [43–45]. Here we
emphasize that the experimental study of superfluid turbulence
and, more generally, of nonthermal fixed points in ultracold
Bose gases has strong potential implications for many other
areas of physics. Besides vortical excitations this also includes
other (quasi-)topological excitations such as solitary waves in
one-dimensional gases.

A satisfactory ab initio mathematical description of both
quantum and classical turbulence is inherently difficult due
to the strong correlations building up within the system.
Analytical results are known, however, in regimes where
kinetic theory applies: In a dilute, degenerate Bose gas the
normal-fluid component can vary at the expense or gain of
the superfluid part. As a consequence, the gas is compressible
and so-called weak-wave-turbulence phenomena can occur
for which scaling laws can be derived by analyzing kinetic
equations [46–48].

Generically, however, the description in terms of wave
kinetic equations such as the quantum Boltzmann equation
breaks down in the infrared (IR) regime of long wavelengths.
For a Bose gas in this regime, single-particle occupation
numbers grow large and the description in terms of, for
example, elastic two-to-two collisions becomes unreliable. In
the IR limit, so-called strong wave turbulence is expected to
occur. Recent developments presented in Refs. [6–10,14] allow
one to set up a unifying description of scaling, both in the
ultraviolet (UV) quantum Boltzmann kinetic regime and in
the IR limit. In the IR regime, new scaling laws were found
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for a relativistic scalar field by analyzing nonperturbative
Kadanoff-Baym dynamic equations with respect to nonthermal
stationary solutions [6].

In this article, we present the details of our studies of the
relaxation of two- and three-dimensional dilute Bose gases
through stages of superfluid turbulence and the approach of
a nonthermal fixed point by means of simulations in the
classical-wave limit of the underlying quantum field theory.
In Sec. II, we summarize the quantum-field theoretical predic-
tions of Refs. [9,46], in particular for the scaling exponents
of the single-particle momentum distribution and compare
these with the numerically determined scaling. While we find
excellent agreement, our results provide an interpretation of
the nonthermal fixed points proposed in Refs. [6,9] for the case
of an ultracold Bose gas: The appearance of nonperturbative
IR scaling reflects the presence of statistically independent
vortices, as previously reported in brief in Ref. [16]; see also
Figs. 2–5. This phenomenon appears to be distinctly different
from the weak-wave-turbulence we observe in the UV part of
the spectrum.

In Sec. III, we describe a model of independent as well
as pair-correlated vortical excitations [24], which allows the
more refined interpretation of the scaling behavior during
the different stages of the evolution presented in Sec. IV.
We show that the stationary scaling is maintained by the
presence of energy (UV) and particle (IR) fluxes, further
supporting the analytic theory. In Sec. V, we study the power-
law distributions of the compressible and incompressible
contributions to the flow pattern. This adds to the clear
understanding of the bimodal scaling laws in the overall
momentum spectrum. IR power-law spectra of subdominant
compressible excitations suggest the presence of acoustic
turbulence [46] on the top of the vorticity-bearing quasicon-
densate. In comparison with recent experiments and analytical
predictions, the velocity-field probability distribution as well
as the velocity statistics of individual vortices are studied.
This observable is of great interest, since it has recently been
used to experimentally verify a distinction between classical
and QT [49]. We finally show that the complete decay of the
turbulent scaling is anticipated by the appearance of weaker IR
power laws reflecting vortex-antivortex pairing correlations.

II. SUPERFLUID TURBULENCE AS A NONTHERMAL
FIXED POINT

We begin with a brief summary of the analytical and
numerical results on dynamical fixed points and matter-wave
turbulence reported in Refs. [9,16] before we discuss these
results in terms of a statistical model of vortex excitations.
Motivated by the original work presented in Ref. [6] nonther-
mal fixed points of Kadanoff-Baym dynamic equations for
time-dependent Green’s functions were analyzed, for the case
of an ultracold Bose gas, in Ref. [9]. At these fixed points
of the dynamical evolution of the system, the single-particle
momentum distribution n(k,t) becomes (quasi-)stationary,
ṅ(k,t) = 0. It furthermore exhibits a characteristic universal
power-law behavior; that is, it scales according to

n(sk) = s−ζ n(k), (1)

in a certain regime of momenta k. Here s is some positive,
real number and ζ a universal exponent which was determined
from the dynamic equations for the field correlation functions.
Different exponents resulted in different momentum regimes.
Exponents valid in the UV regime of large |k| were found
to correspond to well-known fixed points of weak wave
turbulence [46] in the respective systems. In addition to these,
new, larger exponents were predicted in the IR regime of
small |k| on the basis of a nonperturbative analysis of the
Kadanoff-Baym dynamic equations derived from the two-
particle-irreducible (2PI) effective action [6–10].

Simulations of the classical field equations for a relativistic
O(N )-symmetric scalar model, for N = 4, confirmed the
existence of the analytically derived scalings in the IR regime
[6]. As reported in Ref. [16], corresponding simulations were
performed for an ultracold, degenerate Bose gas in two and
three spatial dimensions, which demonstrated that for these
systems the IR scalings predicted in Ref. [9] reflect and are
caused by the presence of quantized vortical excitations of
the superfluid. In this way, the nonthermal fixed points can
be related in a clear manner to topological excitations of the
interacting coherent matter-wave field which shows that both
weak wave turbulence and macroscopic topological excitations
of the field can be described within a unified field-theoretic
approach. Differently expressed, both weak turbulent flow and
nonlinear solitary bulk excitations are described in a unified
manner as representing a nonthermal critical fixed point of
the system. In turn, the approach also implies that superfluid
turbulence can be studied in a new way, in the frame of a
universal quantum field theoretical approach. We remark that
the relation between the new IR exponents and topological
excitations of the background (i.e., condensate) field gains
further support by the topological pattern formation described
in Ref. [17] for a relativistic O(2)-symmetric scalar model,
which serves as a particular model for the reheating period
after early universe inflation.

We discuss in detail vortical excitations in a degenerate
Bose gas and their relation to the above nonthermal fixed
points. Before this we summarize briefly the relevant results of
Refs. [9,16]. To be specific, throughout this article we consider
an ultracold Bose gas of atoms in d = 2, 3 space dimensions
interacting through s-wave collisions, which is described by
the Hamiltonian

H =
∫

ddx

[
−�† ∇2

2m
� + g

2
�†�†��

]
, (2)

where the time- and space-dependent fields � ≡ �(x,t) satisfy
Bose commutation relations, and where the coupling g =
4πa/m in three dimensions is defined in terms of the s-wave
scattering length a. Here and in the following we set h̄ = 1
(see Appendix B for more details).

A. Weak wave turbulence

Suppose the generic case that for sufficiently large momenta
|k| = k occupation numbers n(k,t) = 〈�†(k,t)�(k,t)〉 are
small enough such that for a given coupling g the quantum
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Boltzmann equation (QBE)

∂tnk = I (k,t), (3)

I (k,t) =
∫

ddpddqddr|Tkpqr|2δ(k + p − q − r)

× δ(ωk + ωp − ωq − ωr)[(nk + 1)(np + 1)nqnr

− nknp(nq + 1)(nr + 1)], (4)

describes the evolution of nk ≡ n(k,t) under the effects of
collisions. In our case, the transition matrix element squared
|Tpkqr|2 is a numerical constant proportional to g2 and thus
independent of momenta. Zeros of the scattering integral I (k)
correspond to fixed points of the time evolution within the
regime of applicability of the QBE [46]. Most prominent
among these are the thermal fixed point corresponding to the
system in thermal equilibrium and the trivial fixed point where
the occupation number is independent of k. At both fixed
points the scattering integral vanishes and n(k,t) becomes
independent of t . Note that both the trivial distribution and
the thermal Bose-Einstein distribution in the Rayleigh-Jeans
regime, for ω(k) ∼ k2, show a power-law behavior of the form
Eq. (1) with ζ = 0 and ζ = 2, respectively.

The theory of weak wave turbulence [46] makes it possible
to analytically derive further, nonthermal fixed points at which
the occupation number n(k) obeys a scaling law of the form
Eq. (1) and, in general, ζ �= 2. As in classical turbulence of
an incompressible fluid one assumes that universal scaling
appears within a certain regime of momenta, the inertial
range. According to this picture, outside the scaling regime
kinetic energy enters the system from an external source
and/or is dissipated into heat, whereas there are no sources
and sinks within the inertial interval. Instead, kinetic energy
is transported from momentum shell to momentum shell
without loss or gain. To a good approximation, this process is
described by a continuity equation in momentum space, with a
momentum-independent, radially oriented current vector.1 A
central aspect of weak-wave-turbulence theory is that the QBE
can be cast into different such equations [46], for the radial
number density N (k) = (2k)d−1πn(k) and the energy density
E(k) = (2k)d−1πε(k), ε(k) = ω(k)n(k),

∂tN (k,t) = −∂kQ(k), (5)

∂tE(k,t) = −∂kP (k). (6)

Depending on whether the radial particle current Q(k) =
(2k)d−1πQk(k) or energy current P (k) = (2k)d−1πPk(k) is
taken to be independent of k, one derives different scaling
exponents. The resulting exponents are

ζ UV
Q = d − 2/3, ζ UV

P = d. (7)

These exponents can be obtained by simple power counting:
Combining Eqs. (3) and (5) gives the radial relation ∂kQ(k) ∼
kd−1I (k), which implies that stationarity requires kdI (k) to
become k independent, that is, scale like k0. Counting all

1Note that justification of this assumption, that is, locality of the
transport, needs to be checked for each particular wave-turbulent
solution [46].

powers of k in I (k) [Eq. (4)] in the wave-kinetic regime
where the terms of third order in the occupation numbers
dominate the scattering integral, this requires n(k) ∼ k−d+2/3.
Analogously, one infers the exponent ζ UV

P from the balance
equation (6) for the energy density ε(k) ∼ k2n(k). Despite
this simple procedure, the existence of the respective scaling
solutions has to and can be derived rigorously from the QBE
by means of Zakharov conformal integral transforms [46].
We note that, similar to classical turbulence, the case d = 2
is special, where the scaling exponent ζ UV

P equals that of a
thermal distribution in the Rayleigh-Jeans regime.

B. Strong wave turbulence

Given a positive scaling exponent ζ momentum occupation
numbers n(k) ∼ k−ζ grow large in the IR regime of small k.
As a consequence, for a given coupling g, the QBE fails in
this regime, where contributions to the scattering integral I (k)
which are of higher order than g2n3 become important.

To find scaling solutions in the IR, an approach beyond
kinetic theory is required. This is available through quantum-
field dynamic equations derived from the 2PI effective action
or � functional [50–52] beyond the two-loop order in the
expansion of the self-energy. See Ref. [9] for details of the
procedure summarized in the following. The 2PI equations
include the Dyson equation for the time-ordered Green’s
function G(x,y) = 〈T �†(x)�(y)〉 [here, we use four-vector
notation x = (x0,x)], from which a time evolution equation
(3) for n(k) is derived. As before, one considers zeros of the
scattering integral which in the dynamic theory reads

I (k) =
∫

dω [	ρ(k)F (k) − 	F (k)ρ(k)]. (8)

Here, k ≡ (ω,k), and ρ and F are the spectral and statistical
components of G, respectively, defined in coordinate space
by F (x,y) = 〈{�†(x),�(y)}〉/2, ρ(x,y) = i〈[�†(x),�(y)]〉,
G(x,y) = F (x,y) − (i/2)sgn(x0 − y0)ρ(x,y). The corre-
sponding contributions to the self-energy 	(x,y) =
2iδ�2/δG(x,y) are defined in terms of G through a loop
expansion of the 2PI effective action (see Fig. 1). Resumming

=           +

(a) (b)

(c)

FIG. 1. (Color online) 2PI diagrams of the loop expansion of
�2[G]. (a) The two lowest-order diagrams of the loop expansion
which lead to the QBE. Black dots represent the bare vertex
∼gδ(x − y); solid lines represent the propagator G(x,y). (b) Diagram
representing the resummation approximation which, in the IR,
replaces the diagrams in (a) and gives rise to the scaling of the T

matrix in the IR regime. (c) The wiggly line is the scalar propagator
which is represented as a sum of bubble-chain diagrams. See text for
more details.
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an infinite set of such loop diagrams contributing to the 2PI
effective action [53,55] leads to a nonperturbative, effectively
renormalized coupling in the dynamic equations [6,9].

To derive the scaling solutions of the dynamic equations for
Green’s functions G(ω,k) one assumes separate scaling of its
spectral and statistical components according to ρ(szω,sk) =
s−2+ηρ(ω,k), F (szω,sk) = s−2−κF (ω,k), s > 0. Here, z is
the dynamical scaling exponent accounting for a different
scaling in ω as compared to k. The scaling exponent ζ is
related to κ by n(sk) = sz−2−κn(k). κ is derived from the
condition that the scattering integral (8) vanishes, making use
of Zakharov transformations, while the anomalous scaling
exponent η remains undetermined by this and, for the first,
can be assumed to vanish for the d = 2- and 3-dimensional
cases considered in this paper. The IR scaling exponents for
radial quasiparticle flow (Q) and radial energy flow (P ) in d

dimensions were predicted in Ref. [9] to be

ζ IR
Q = d + 2, ζ IR

P = d + 2 + z. (9)

In situations where a quasiparticle picture applies the
dynamical exponent z corresponds to the homogeneity index
of ω: ω(sk) = szω(k). In this case the nonperturbatively
resummed effective coupling can be related to the diagonal el-
ements of an effective many-body T matrix, T eff

kpqr ≡ T eff
k+p,q+r

in the kinetic Boltzmann formulation. In the scaling regimes
this scales as |T eff

k | ≡ |T eff
k,k| ∼ |gCkz−2/[1 + C ′gkd−2nk]|,

k = |k|, where C ′ is some constant which fine tunes the
position of the transition from UV to IR scaling: For small nk

and z = 2 one recovers the UV case discussed in the previous
section; that is, T eff

k is a constant independent of k. For large
nk , the second term in the denominator dominates, which,
assuming scaling of nk ∼ k−ζ , implies a power-law behavior
|T eff

k |2 ∼ k2(ζ−d+z) and, in turn, the modified scaling (9) of
nk in the IR regime of small wave numbers as compared to
the UV regime discussed before. Physically, the renormalized
T matrix implies a reduction of the effective interaction
strength in the IR regime of strongly occupied modes [6].
As a consequence, single-particle occupation numbers rise,
toward smaller wave numbers, in an even steeper way than in
the weak-turbulence regime.

C. Wave-turbulent scaling and vortices in a Bose gas

We now briefly review the relation between wave-turbulent
scaling and the appearance of vortical excitations in an
ultracold degenerate Bose gas. In Ref. [16] the results of
semiclassical simulations of the gas dynamics were reported,
obtained by solving the classical field equation

i∂tφ(x,t) =
[
− ∇2

2m
+ g|φ(x,t)|2

]
φ(x,t) (10)

in a box with periodic boundary conditions. See Appendix B
for details on the simulations and on lattice units. The initial
field φ(x,0) was prepared by macroscopically populating a few
of the lowest momentum modes in the computation such that
the resulting condensate density in configuration space varied
between zero and some maximum value. Quantum noise is
taken into account by adding a small random contribution to
each field mode. Vortical excitations were created in large
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FIG. 2. (Color online) The plot shows the phase of the complex
field for a single run of the evolution in d = 2 dimensions. Parameters:
g = 3 × 10−5, N = 4 × 108, Ns = 512, t = 46 340; coordinates in
lattice units of as (see Appendix B). White rings (crosses) mark
vortices (antivortices). For a video of the evolution, see [54].

numbers, within shock waves forming during the nonlinear
evolution of the coherent matter-wave field. Figure 2 shows
an example of the condensate phase distribution over a
numerical lattice in d = 2 dimensions, with vortices and
antivortices indicated by white crosses and circles, respec-
tively. Figure 4 depicts the location of vortex-ring cores in
a d = 3-dimensional system. For videos of the evolution,
see [54]. Both figures show a snapshot of the system at some
time after the vortical excitations have formed. At these times,
in d = 2, part of the vortex-antivortex pairs have reannihilated
with each other already, and in d = 3 some of the rings have
undergone reconnections and also disappeared by shrinking to
zero size.

Runs were repeated many times (∼100 times in d =
2 and ∼10 times in d = 3) for an ensemble of initial
configurations differing by statistical noise. The number of
runs was chosen such that the statistical error arising from
run-to-run fluctuations was reduced to a value on the order
of the size of the symbols used in the figures. In the regime
of momenta with large occupation numbers where quantum
statistical fluctuations play little role, correlation functions
like the spectrum nk could be computed in a quasiexact
way by averaging at a given time over the ensemble. In this
way, the flow was analyzed in terms of the ensemble- and
angle-averaged single-particle spectrum,

n(k) =
∫

dd−1�k 〈φ∗(k)φ(k)〉ensemble, (11)

as a function of radial momentum k = |k|. Figures 3 and 5
show this spectrum for d = 2 and 3, at the times chosen in
Figs. 2 and 4, respectively. Most importantly, these spectra
show scaling [Eq. (1)] within a range of momenta between
about the maximum of the initially occupied momentum
modes indicated by the vertical lines and k 
 0.3 in lattice
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FIG. 3. Single-particle mode occupation numbers are shown as
functions of the radial momentum k at the time shown in Fig. 2. k is
in lattice units (see Appendix B). Note the double-logarithmic scale.
The development of an IR scaling with n(k) ∼ k−4 coincides with
the presence of superfluid vortices, with additional wave-turbulent or
thermal background short-wavelength fluctuations in the UV. Dashed
lines indicate the filling of the initially occupied modes with k > 0.

units. The exponent ζ is in agreement with the field theoretical
prediction ζ IR

Q = d + 2 given in Eq. (7).
It was found that the annihilation processes which even-

tually destroy the vortical structure while coherence builds
up in the system are very slow and thus stabilize the scaling
solution over a long time. In particular, only after the last
vortex-antivortex pair has annihilated and the last ring shrunk
to zero the power law n(k) ∼ k−ζ IR

Q breaks down and a thermal
distribution of particles is left over. Characteristic times are
t ∼ O(102) for vortex formation, t ∼ O(103) for stabilization
of the scaling solution and t ∼ O(104)–O(105) for the last
vortices to annihilate.
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FIG. 4. Vortex line tangles are shown in three dimensions. Black
dots indicate where the amplitude of the complex field falls below 5%
of the mean density n. Parameters: g = 4 × 10−4, N = 6.4 × 1010,
Ns = 512, t = 3276; coordinates in lattice units (see Appendix B).
For a video of the evolution, see [54].
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FIG. 5. Single-particle mode occupation numbers are shown as
functions of the radial momentum k for the snapshot in Fig. 4. k is
in lattice units. Note the double-logarithmic scale. The development
of an IR scaling n(k) ∼ k−5 coincides with the presence of superfluid
vortex lines. Dashed lines indicate the filling of the initially occupied
modes with k > 0.

III. POINT- AND LINE-VORTEX MODELS

As we have seen above, the scaling of the momentum
occupation numbers in the IR regime of large wave num-
bers, predicted within a nonperturbative analysis of strong
wave-turbulence, correspond, for two- and three-dimensional
degenerate Bose gases, to the appearance of macroscopic
vortical excitations. In the following, we analyze the observed
scaling spectra by comparing them to the single-particle
momentum distributions for a set of randomly positioned
point vortices (vortex lines) in d = 2 (d = 3) dimensions. We
show that uncorrelated vortices (vortex lines) are sufficient to
yield the IR scaling with exponent ζ IR

Q [see Eq. (9)]. We also
show that beyond this, pair correlations between vortices and
antivortices as well as configurations with small rings well
separated from each other can give rise to a further scaling
exponent deviating from ζ IR

Q (see Fig. 6).
The point (line) vortex model employed here was intro-

duced by Onsager in 1949 [24]. It describes the complex
flow pattern in terms of the statistical mechanics of interacting
classical point objects. This model has been constructed as a
discrete vorticity approximation of classical fluid turbulence,

FIG. 6. (Color online) (Left) Sketch of a random vortex-
antivortex distribution underlying the IR scaling close to the non-
thermal fixed point. (Right) Correlated vortex distribution causing a
modification to weaker pair scaling in the IR for momenta smaller
than the inverse of the average pairing length.
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but it is even more suitable to describe superfluid turbulence
consisting of quantized vortices. Further applications include
plasma physics or stellar dynamics [56–58].

In the following, we study the spectrum of a set of
vortices, finding different scaling regimes dependent on vortex
correlation functions. With this approach, nonthermal fixed
points in an ultracold Bose gas can be related to the statistics of
vortices. Numerical calculations, sampling field configurations
of static randomly positioned vortices, confirm the analytical
result. Finally, the velocity probability distribution of a vortex-
dominated flow [49,59] is derived and numerically confirmed.

A. Independent vortices in d = 2

In two dimensions, an isolated, singly quantized vortex is
described by the complex field φ(r,ϕ) ≡ √

n(r)eiϕ . As the
r-dependence of the density n(r) only becomes important at
small scales on the order of the healing length ξ = 1/

√
2mgn

where our simulations are dominated by thermal excitations,
we omit it in the following and assume n to be uniform.

A system of M vortices in d = 2 dimensions can be defined
as φ(x) = �M

i φi(x), where φi(x) = φ(x − xi) is the single
vortex field centered around xi . We derive the corresponding
particle spectrum by considering the hydrodynamic velocity
field v = ∇ϕ/m. Denoting the velocity field of a single vortex
as ṽ(x) (see Appendix A 1) we can express the mean classical
kinetic energy density of the velocity field as

Ev(x) = m

2
〈| v(x)|2〉 = m

2

〈∣∣∣∣
∫

d2x ′ ṽ(x − x′) ρ(x′)
∣∣∣∣
2〉

,

(12)

where ρ(x) = ∑M
i=1 κiδ(x − xi) defines the spatial distribution

of vortices with winding number κi = ±1. Here and in the
following, 〈· · ·〉 denotes an ensemble average over different
realizations of the classical field φ(x). We derive the low-k
scaling of n(k) from the kinetic-energy spectrum Ev(k), given
by the angle-averaged Fourier transform of Ev(x), taking into
account that at low k, the single-particle spectrum is dominated
by the superfluid velocity field v; that is,

n(k) 
 2mk−2Ev(k). (13)

One has, from Eq. (12),

Ev(k) ∼ 〈|v(k)|2〉 = 〈 |ρ(k)|2 |ṽ(k)|2〉, (14)

with

|ρ(k)|2 =
M∑
i,j

κiκj e
ik(xi−xj ). (15)

Below the healing length scale kξ = 2 sin(π/2ξ ) (lattice units),
the modulus of the velocity field of a single vortex scales
as |ṽ| ∼ k−1 and is radially symmetric in momentum space.
Hence, the angle-averaged single-particle spectrum scales like

n(k) = k−4

(
M + 2

∑
i<j

κiκjJ0(klij )

)
. (16)

Here, J0(y) = (2π )−1
∫ π

−π
dθ cos[y cos(θ )] denotes the

zeroth-order Bessel function and lij = |xi − xj | is the
distance between vortices i and j .

Assuming that the positions xi of the vortices are uncorre-
lated one can take the average over relative positions lij within
the area VR = πR2,

2π

VR

∫ R

0
dl l J0(kl) = 2

J1(kR)

kR
, (17)

and, for fixed k, the limit R → ∞. Hence, the second term
in brackets in Eq. (16) vanishes and one finally obtains the
scaling [60]

n(k) ∼ k−4. (18)

B. Independent vortex-antivortex pairs

In a two-dimensional superfluid containing vortices and
antivortices an effectively attractive force between the two
species can lead to pair correlations. We study a signature
of this feature in the single-particle momentum spectrum by
applying the point vortex model introduced above to the case
of vortex-antivortex pairs.

As a first step we calculate the velocity field vVA for a
vortex-antivortex pair with the vortex situated at x1 and the
antivortex at −x1,

vVA = ṽ(x − x1) − ṽ(x + x1). (19)

The squared velocity field far away from the center of the pair
can be obtained via a dipole approximation |x| � |x1|, which
yields the scaling vVA ∼ r−2. Hence, in Fourier space, the
pair velocity field scales as |vVA|2 ∼ k0 for low momenta. In
this regime, the vortex-antivortex pair can again be treated as
a pointlike object with modified velocity scaling. To obtain
the IR scaling of a set of random vortex-antivortex pairs,
we define a spatial pair distribution ρpair(x) = ∑

i δ(x − xi),
with xi denoting the center of the ith vortex-antivortex pair.
Then, the analysis performed for random vortices above
can be adopted. Therefore, in the case of independently
distributed pairs, the approach predicts the IR scaling of the
occupation number to be the same as for a single pair; that is,
n(k) ∼ k−2.

C. Pair correlated vortices in d = 2

The considerations from Sec. III B are only valid in the
far IR (or equivalently for pair size going to zero). In our
numerical simulations we found, however, that for large
evolution times, a finite minimum distance emerged between
vortices and antivortices, and also between vortices with the
same circulation (see Sec. V D). To take into account this
observation and to analyze the full spectrum, we go back
to writing the distribution ρ(x) = ρV(x) − ρA(x) as the sum
of distributions ρV(x) = ∑M

i=1 δ(x − xV
i ) of M vortices and

ρA(x) = ∑M
i=1 δ(x − xA

i ) of M antivortices. Hence,

〈 |ρ(k)|2 〉 =
∫

d2x d2x ′ eik(x−x′)C(x,x′), (20)
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with C(x,x′) = 〈 ρV
x ρV

x′ 〉 − 〈 ρV
x ρA

x′ 〉 − 〈 ρA
x ρV

x′ 〉 + 〈 ρA
x ρA

x′ 〉.
This allows for a derivation of the kinetic-energy distribution
in terms of correlation functions of vortex positions.

We model pairing by the density-density correlation func-
tions 〈

ρV(A)
x ρ

V(A)
x′

〉 = M

VR

δ(x − x′) + Px,x′ , (21)

〈
ρV(A)

x ρ
A(V)
x′

〉 = M

VRVλ

θ (λ − |x − x′|) + Px,x′ , (22)

where Vλ = πλ2 is the area in which the θ function equals
one. The contributions

Px,x′ = M(M − 1)

VR(VR − V�)
θ (|x − x′| − �) (23)

take into account that, besides the pairing, vortices and
antivortices avoid each other in the dilute gas, keeping a
minimum distance �. This is due to vortex-vortex repulsion
and fast vortex-antivortex annihilation on small distances. The
functions Px,x′ cancel out in Eq. (20).2

Inserting Eqs. (21) and (22) into Eq. (20), evaluating the
Fourier transform and angular averaging gives

〈 |ρ(k)|2 〉 = 2M

(
1 − 2

kλ
J1(kλ)

)
. (24)

The expansion of the integral for k � 2π/λ yields the leading-
order result

〈 |ρ(k)|2 〉 = M(kλ)2/4 + O(k4) (25)

and, from Eqs. (13) and (14), the same occupation-number
scaling as for independent pairs,

n(k) ∼ k−2. (26)

At momenta k � 2π/λ the independent-vortex scaling
n(k) ∼ k−4 is restored. We note that the IR result (26) can also
be achieved by choosing more general pair correlations of the
form 〈ρV

x ρA
x′ 〉 = 〈ρA

x ρV
x′ 〉 = Mε[2VRπ (λε

max − λε
min)]−1|x −

x′|ε−2θ (λmax − |x − x′|)θ (|x − x′| − λmin) + Px,x′ , with ε � 0
and λmin < λmax, which is closer to our numerical observations
and includes the case of a fixed “binding length” λmin → λmax.
As before, pair scaling k−2 is found for kλmax � 1, critical
scaling k−4 for kλmax � 1, irrespective of ε. We supplement
our discussion of scaling in the point vortex model with
numerical data obtained by averaging over an ensemble of field
configurations in d = 2 dimensions. These configurations
were constructed by multiplying uncorrelated single-vortex
fields centered at positions according to the probability
distribution

P (M)(xV
1 ,xA

1 , . . .
) =

M∏
i

P (1)(xV
i

)
P (2)(xV

i ,xA
i

)
, (27)

with P (1)(xV
i ) = 1/VR,P (2)(xV

i ,xA
i ) = V −1

λ θ (λ − |xV
i − xA

i |),
where we neglect that unpaired vortices avoid each other; that
is, choose � = 0. They do not represent stable solutions of

2If different avoidance scales � apply for vortices and antivortices,
the terms do not cancel, but the remaining term does not alter the
results for pair scaling derived here.
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FIG. 7. Radial momentum distribution for a randomly distributed
set of M = 80 bound vortex-antivortex pairs on a N2

s = 10242

grid. Note the double-logarithmic scale. The vortices are positioned
according to the probability distribution (27). At low momenta the
power law is consistent with the existence of random vortex pairs
nk ∼ k−2. Above kpair, the distribution exhibits the scaling of an
ensemble of independent vortices, nk ∼ k−4, while at momenta larger
than the healing-length scale kξ one observes the vortex-core scaling
∼k−6.

the classical field equation nor do they contain sound-wave
and related excitations yet which would build up through the
interactions of the field and the vortices.

The resulting momentum spectrum is presented in Fig. 7.
Three scaling regimes can be observed. At low momenta the
power law is consistent with the existence of random vortex
pairs nk ∼ k−2. Above kpair = 2sin (π/2λ) 
 π/λ, choosing
λ = 25 (lattice units), the distribution exhibits the scaling of an
ensemble of independent vortices, nk ∼ k−4, while at momenta
larger than the healing-length scale kξ one observes the vortex-
core scaling ∼k−6. The above results reflect that in a vortex-
dominated flow, particles with low momenta are found far
away from vortex cores. In the case of pairing, the flow field far
away from the cores is given by the field of a vortex pair, and the
low-momentum scaling follows the pair-field scaling. Particles
closer to the vortex cores pick up a higher momentum. Above
kpair the field will be dominated by the field of a single vortex.
Note that Fig. 7 shows the result of a numerical calculation in
which we have sampled field configurations of random static
vortices. Dynamical simulations of the classical field equation
[Eq. (10)] are shown in Sec. IV.

We close with recalling the picture Onsager developed
in Ref. [24] of thermodynamic equilibrium states of a fixed
number of vortices and antivortices in two dimensions. He
used the Hamiltonian of vortical flow in two dimensions [61],

H = − 1

2π

M∑
i>j

κiκj ln(|ri − rj |) , (28)

to describe the dynamics of a system of M vortices in a
superfluid which hence behave like a Coulomb gas. Here, the
position of the ith vortex is denoted as ri = (xi,yi). Due to the
fact that the x and y coordinates of each vortex are canonical
conjugates, phase space is identical with configuration space of
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the vortex positions. Hence, for vortices moving in a volume
V the total phase space is given by V M . The Hamiltonian
(28) implies that low-energy configurations feature vortices
of opposite sign close to each other, whereas high-energy
configurations require vortices of equal sign to group. Due to
these constraints, the number of configurations �(E) available
for the system at a given energy E decreases toward high and
low energies, with a maximum at some intermediate E = E0.
According to Boltzmann, the entropy is S(E) = kB ln[�(E)]
and the inverse temperature 1/T = ∂S/∂E is positive for
E < E0 and negative for E > E0. It follows that positive-
temperature states are characterized by vortex-antivortex pair-
ing, while negative-temperature states feature vortices of the
same circulation to cluster. At the point of maximum entropy
S(E0) and infinite temperature, Onsager expected a state of
uncorrelated vortices and antivortices. This understanding
of the nonthermal fixed point as a quasiequilibrium state of
vortices corroborates our result that the IR scaling behavior at
the fixed point corresponds to the appearance of topological
excitations.

D. Vortex loops in d = 3

We now consider the three-dimensional case of vortex lines
and loops. A formulation similar to the Onsager point vortex
model in Sec. III A is possible [34,62,63]. See also Refs. [64–
67] for an extension including the dynamics of tangles of
vortex lines.

We write the classical kinetic energy spectrum of the
velocity field in terms of the vorticity density

ω(x) = m ∇ × v(x) (29)

as

Ev(k) = 〈|ω(k)|2〉
2mk2

. (30)

The vorticity is vanishing everywhere but on the vortex lines,
that is, assuming M individual vortex loops,

ω(x) =
M∑
i

∫ Li

0
dτ s′

i(τ )δ(si(τ ) − x). (31)

In this expression, the vortex filaments are represented by the
connected curves si(τ ), parametrized by the one-dimensional
coordinate τ ∈ {0,Li}, Li being the arc length of filament
i. The loops are closed, si(Li) = si(0), possibly also across
the walls of the three-dimensional volume in accordance with
periodic boundary conditions. s′

i(τ ) is the tangent vector along
the filament at si(τ ), of unit length |s′

i(τ )| = 1. We parametrize
the ith vortex loop in terms of a single center coordinate and a
relative curve, si(τ ) = Ri + ri(τ ) and write the vorticity as

ω(x) =
M∑
i

∫
d3y δ(y − Ri)

∫ Li

0
dτr′

i(τ )δ(ri(τ ) − x + y).

(32)

Hence, in Fourier space,

ω(k) =
M∑
i

eikRi ω̃i(k), (33)

where ω̃i(k) is the Fourier transform of the vorticity of the ith
vortex loop, given by

ω̃i(x) =
∫ Li

0
dτ r′

i(τ )δ(ri(τ ) − x). (34)

The ensemble-averaged vorticity 〈|ω(k)|2〉 becomes

〈|ω(k)|2〉 =
M∑
i,j

〈eik(Ri−Rj )ω̃i(k)ω̃j (k)〉. (35)

Assuming that the shapes of the individual vortex loops
are statistically independent of their position, it fol-
lows that 〈eik(Ri−Rj )ω̃i(k)ω̃j (k)〉 = 〈eik(Ri−Rj )〉 〈ω̃i(k)ω̃j (k)〉.
If the loops are also uncorrelated among themselves, then
〈ω̃i(k)ω̃j (k)〉 = 〈|ω̃i(k)|2〉δij . Hence, for statistically identical
loops,

〈|ω(k)|2〉 = M〈|ω̃(k)|2〉, (36)

which means that the vorticity spectrum scales in the same
way as the average vorticity of a vortex loop centered at the
origin. Finally, the scaling of the momentum spectrum n(k) =
2mk−2Ev(k) follows from that of the angle-averaged vorticity,

n(k) ∼ k−4
∫

d�k〈|ω(k)|2〉. (37)

For the case of two straight parallel vortex lines of opposite
circulation Eq. (36) is evaluated in Appendix A 2, for an
ensemble of such paired lines in Appendix A 3. Making use
of the procedure developed there, the case of circular vortex
rings of radius r is discussed in Appendix A 4. For the latter,
the resulting angle-averaged momentum spectrum scales like
n(k) ∼ k−2 for momenta k � kr = 2 sin(π/2r) and n(k) ∼
k−5 for momenta k � kr . To include effects from squeezed
vortex loops, we consider elliptical filaments. The ellipse is
defined by a major radius ra and minor radius rb. In Fig. 8,
the angle-averaged momentum spectrum of an elliptical vortex
loop is shown. Three scaling regimes can be distinguished. For
the lowest momenta, one has n(k) ∼ k−2, which equals the
IR scaling for a vortex ring. For momenta ka � k � kb, one
finds n(k) ∼ k−3, which coincides with the IR scaling of two
anticirculating vortex lines (see Appendix A 2). For the ellipse,
above kb, the momentum distribution scales like n(k) ∼ k−5,
which is the same as the high-momentum scaling of a vortex
ring (see Appendix A 4) or of a pair of straight vortex lines
(Appendix A 3).

E. Velocity distribution

The vortex model can provide insight into another observ-
able accessible in our numerical simulations, the velocity
distribution. See Refs. [59,68–70] for discussions of the
velocity distribution and Ref. [49] for recent experimental
results. As discussed above, the velocity field scales, far away
from any core, as ∼r−α , with α = 1 for a single vortex
and α = 2 for a vortex-antivortex pair in two dimensions.
The velocity probability distribution P(v) is calculated as
P(v) = |∂x/∂v| ρ(x), with spatial vortex distribution function
ρ(x). For a uniform distribution ρ(x) = const., it follows after
angular averaging that

P(v) = |v|−2(α+1)/α. (38)
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FIG. 8. Radial momentum distribution of an elliptical vortex
loop on a N 3

s = 10243 grid. Note the double-logarithmic scale.
The major and minor radius scales ka , for ra = 40, and kb, for
rb = 4, respectively, are indicated. These scales separate pair scaling
n(k) ∼ k−2 as for a near-circular vortex ring, scaling n(k) ∼ k−3 for
two anticirculating vortex lines, and n(k) ∼ k−5, as for a vortex ring
or of a pair of straight vortex lines, corresponding to the scaling
exponent ζ IR

Q at the nonthermal fixed point. See Sec. III D for more
details.

It is numerically convenient to calculate the probability density
of a single component of the field, for example,

P(vx) =
∫

dvy P(v) 
 v1−2(α+1)/α
x . (39)

In Fig. 9, the corresponding velocity distribution P(vx) is
shown. In accordance with the analytical predictions two
scaling regimes are observed. At low momenta the velocity
field follows the scaling of vortex-antivortex pairs, whereas at
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FIG. 9. Velocity distribution (39) as obtained from a random
distribution of M = 80 bound vortex-antivortex pairs on a N2

s =
10242 grid, as in Fig. 7. Note the double-logarithmic scale. At low
momenta the velocity field follows the scaling of vortex-antivortex
pairs (α = 2), whereas at higher momenta the distribution reflects
the presence of vortices (α = 1). Note that there is a deviation from
α = 2 in the regime of low velocities. From simulations with higher
resolution, we find the best agreement for α = 1.8. We remark that
in the limit M → ∞ the velocity distribution is expected to be
Gaussian [68].

higher momenta the distribution reflects a random distribution
of vortices.

IV. BOSE GAS APPROACHING THE NONTHERMAL
FIXED POINT

In this section we return to the process of the formation
of vortical excitations and of the Bose gas approaching the
nonthermal fixed point characterized by the wave-turbulent
scaling solutions discussed in Sec. II and Refs. [9,16]. Thereby
we first focus on the evolution of the single-particle momentum
distributions and the emergence of nonthermal power laws.
We relate these to structure formation in the form of vortical
excitations. In order to identify in a clearer way the relevant
processes in approaching the fixed point we compute the fluxes
in momentum space. Remarkably, we find that the appearance
of the particle scaling exponent ζ IR

Q in the IR and of the energy
exponent ζ UV

P in the UV are compatible with predictions based
on general arguments of irreversibility as well as energy and
number conservation in a collision process [46].

A. Time evolution of the single-particle spectrum

As discussed in Sec. II C, vortical excitations can be
created in large numbers within shock waves forming during
the nonlinear evolution of the coherent matter-wave field.
Figures 10 and 11 show the angle- and ensemble-averaged
radial momentum spectra [Eq. (11)] for a Bose gas in a
box with periodic boundary conditions, in d = 2 and d = 3
dimensions, respectively. Four snapshots are shown, taken
at the dimensionless times t̄ as indicated in each panel.
See Appendix B for details on the simulations and on
lattice units. The initial field configurations were prepared
by macroscopically populating a few of the lowest momentum
modes in the computation such that the resulting condensate
density in configuration space varied between zero and some
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FIG. 10. Single-particle mode occupation numbers as functions
of the radial momentum k, for four different times of a run in d =
2 dimensions. Parameters: g = 3 × 10−5, N = 4 × 108, Ns = 512.
Note the double-logarithmic scale. An early development of a scaling
n(k) ∼ k−3 is followed by a quasistationary period of bimodal scaling
with n(k) ∼ k−4 in the IR, due to the presence of vortices, and n(k) ∼
k−2 in the UV, corresponding to weak wave turbulence or thermal
equilibrium.
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FIG. 11. Single-particle mode occupation numbers as functions
of the radial momentum k, for the four different times of a run in
d = 3 dimensions. Parameters: g = 4 × 10−4, N = 8 × 109, Ns =
256. Note the double-logarithmic scale. A period of bimodal scaling
n(k) ∼ k−5 (vortex lines, IR) and n(k) ∼ k−3 (weak wave turbulence,
UV) is followed by trimodal scaling, which also exhibits pairing, that
is, n(k) ∼ k−3 in the far IR, induced by a set of far separated small
vortex rings, in addition to n(k) ∼ k−5 (IR), and thermal scaling
n(k) ∼ k−2 in the UV.

maximum value. In Figs. 10 and 11, the panels representing
the earliest times show the system after a brief initial evolution
during which momentum is rapidly transported from the few
initially occupied modes near zero over a comparatively large
range of wave numbers.

Shortly after this, vortical excitations are created which
immediately causes the spectrum in d = 2 dimensions to
exhibit a power-law behavior 2.85 � ζ � 3.0 within a range of
momenta k ∈ [0.04 : 0.4] (see the top right panel of Fig. 10).
Subsequently, the evolution slows down and a quasistationary
period is entered. During an intermediate stage (bottom left
panel of Fig. 10 and top right panel of Fig. 11) of the
vortex-bearing phase two distinct power laws develop which
are in excellent agreement with the analytical prediction in
Eqs. (7) and (9). While in the UV the exponent ζ UV

P = d

exhibits weak wave turbulence [Eq. (7)], in the IR, the
exponent confirms the field theory prediction ζ IR

Q = d + 2 [cf.
Eq. (9)]. More specifically, in two dimensions, at t = 5792, one
observes scaling exponents 3.8 � ζ � 4.0 within a range of
momenta k ∈ [0.02 : 0.2] and 2.0 � ζ � 2.3 within a range of
momenta k ∈ [0.2 : 0.7] (see the bottom left panel of Fig. 10).
At t = 262 144, 4.0 � ζ � 4.2 within a range of momenta
k ∈ [0.02 : 0.2] (see the bottom right panel of Figs. 10). In
d = 3 dimensions, at t = 820, one observes 4.8 � ζ � 5.0
within a range of momenta k ∈ [0.08 : 0.4] and 3.0 � ζ � 3.1
within a range of momenta k ∈ [0.5 : 1.7] (see the top right
panel of Fig. 11). At t = 1640, 5.0 � ζ � 5.1 within a range of
momenta k ∈ [0.05 : 0.5] (see the bottom left panel of Fig. 11).
The appearance of the bimodal power laws corroborates results
for a relativistic O(N ) model reported in Refs. [6,10].

During the ensuing evolution, the weak-wave-turbulence
scaling decays toward ζ = 2, reflecting a thermal UV tail.
Note that in d = 2, the weak-turbulence exponent ζ UV

P = 2 is
identical to that in thermal equilibrium in the Rayleigh-Jeans

regime, n(k) ∼ T/k2 [46]. In d = 3 we observe, at late times,
a change of the IR scaling behavior from ζ = d + 2 = 5 to
ζ = 3, pointing to the development of pairing correlations (cf.
Secs. III C and III D, and Sec. V D below. More specifically,
at t = 26 214, one observes a scaling exponent 2.9 � ζ � 3.0
within a range of momenta k ∈ [0.03 : 0.1] (see the bottom
right panel of Fig. 11).

At late times, after the last vortical excitations have dis-
appeared, we observe the entire spectrum to become thermal,
that is, exhibit Rayleigh-Jeans scaling with ζ = 2 (not shown).
We emphasize that thermal scaling of the single-particle
occupation number with ζ = 2 applies despite the fact that
quasiparticles with a linear dispersion are expected to ther-
malize in the regime of wave numbers smaller than the inverse
healing length 1/ξ 
 0.45 (d = 2) and 1/ξ 
 0.22 (d = 2).
In the Bogoliubov approximation this is seen by taking into
account the power-law dependence of the coefficients u2

k ∼
v2

k ∼ k−1 which contribute to n(k) ∼ (u2
k + v2

k )T/k ∼ T/k−2

[9].
We are going to study more details of the time evolution

of the system in a forthcoming publication and focus in
the remainder of this paper on properties of the stationary
scaling distributions. An important question in this context is
why the system selects the particular exponents ζ UV

P = d and
ζ IR
Q = d + 2 from the set of four possible exponents given in

Eqs. (7) and (9). For this, the fluxes underlying the stationary
but nonequilibrium distributions are relevant.

B. Fluxes

The timeline of distributions shown in Figs. 10 and 11
suggests that the evolution of the gas involves a transport
process from intermediate momenta around 0.05 . . . 0.2 both
toward lower and higher wave numbers, building up a bimodal
power-law distribution. To describe the character of these
transport processes we plot, in Fig. 12 for d = 2 (top set of
four panels) and d = 3 (bottom set), the radial particle and
kinetic-energy flux distributions Qk and Pk , respectively. Note
that the radial particle flux density Qk is multiplied by gn to
have the same units as the energy flux density P (k). These flux
densities are defined through the balance equations (5) and (6),
respectively, with kinetic energy density εk = nkk

2/2m. The
initial stage is governed by an IR particle transport toward
larger k, also causing a flux gnQ of interaction energy. At
intermediate times, Q(k) changes sign. This is accompanied
by a positive kinetic energy transport in the UV, as observed
in two-dimensional simulations in Ref. [71].

We emphasize that the negative particle flux in the IR
and the positive kinetic-energy flux in the UV coincide with
the appearance of the bimodal momentum distributions in
Figs. 10 and 11 (bottom left panels). Although the derivation
of the IR exponents requires the full dynamical theory with
nonperturbatively resummed self-energies, the signs of the
fluxes correspond to the respective scaling exponents, that is,
ζ IR
Q in the IR and ζ UV

P in the UV (cf. Sec. II A) . Moreover, at late
times, the kinetic-energy flux P vanishes due to a thermalized
UV momentum distribution, but Q still reshuffles particles
and therefore interaction energy, keeping the system out of
equilibrium close to the nonthermal fixed point.
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FIG. 12. (Color online) Kinetic-energy and particle fluxes in d =
2 (top set) and d = 3 (bottom set), for the four different snapshots
of Figs. 10 and 11, respectively. Note the logarithmic k axes. The
appearance of the bimodal scaling coincides with a positive kinetic
energy flux in the UV and a negative particle flux in the IR. Flux
units: [P ] = [gnQ] = (4m2ad+4

s )−1 (cf. Appendix B).

We finally remark that, as discussed in detail in Ref. [46],
one can show on the general grounds of the Boltzmann
H theorem that a necessary condition for a nonequilibrium
stationary distribution in our systems is energy damping in
the region of large k. Moreover, energy and particle-number
conservation in the interaction of different momentum modes
can be shown to imply the existence of at least one more
sink, that is, a region where the right-hand sides of Eq. (5)
effectively have an additional damping term ∼�(k)n(k), with
negative �. Between these sinks, a source region supplies the
input to the bidirectional flux pattern toward the UV and IR.
It was shown, moreover, in Ref. [46], within wave-kinetic
theory, that generally, a positive, k-independent flux transports
energy, P > 0, while a negative flux transfers particles,
Q < 0. The only exception is the case of d = 2 where the
thermal and the weak-wave-turbulence exponent ζ UV

P cannot
be distinguished. Remarkably, this pattern remains valid in
our case, beyond the UV weak-wave-turbulence regime, in
the IR region where the exponent emerges from a fixed
point of the full dynamic equations. As already pointed
out in Ref. [9], however, the derivation of the IR exponent

ζ IR
Q = d + 2 requires the existence of a sufficiently well de-

fined quasiparticle dispersion relation, suggesting a treatment
in terms of the QBE with a momentum-dependent scattering
matrix element to be applicable.

From this point of view, the negative flux Q and scaling in
the IR and the positive flux P and weak wave turbulence in
the UV, as observed in the numerics, emerge as a necessary
consequence of conservation laws and transport processes
described by wave-kinetic transport equations.

V. VORTICES, ACOUSTIC TURBULENCE, AND THE
DEPARTURE FROM THE FIXED POINT

In this last section we analyze the single-particle momen-
tum spectra obtained in our numerical simulations in view
of their interpretation in terms of vortical excitations and
wave turbulence as implied by the point- and line-vortex
models introduced in Sec. III. For this we first decompose the
flow pattern of the system which has closely approached the
nonthermal fixed point into transverse (incompressible) and
longitudinal (compressible) contributions. In this way we can
show that the IR scaling is dominated by the incompressible
part while in the UV the particles mainly belong to the
compressible as well as a quantum pressure components. We
find a further scaling exponent ζ 
 d + 1 for the subdominant
compressible component in the IR which is interpreted as a
signature of acoustic turbulence.

Moreover, going beyond the results presented in Ref. [16]
we identify signs of pair formation in the final stage. The
scaling caused by this goes beyond the predictions from
dynamical quantum field theory summarized in Sec. II, and
we interpret it as a signature for the system leaving the fixed
point again for final thermalization.

A. Superfluid turbulence and statistics of vortices

To exhibit vortical flow and define the decomposition we
use the polar representation φ(x,t) = √

n(x,t) exp{iϕ(x,t)} of
the field in terms of the density n(x,t) and a phase angle
ϕ(x,t). This makes it possible to express the particle current
j = i(φ∗∇φ − φ∇φ∗)/2 = nv in terms of the velocity field
v = ∇ϕ.

With this, we decompose the kinetic-energy spectrum
following Refs. [29,30], splitting the total kinetic energy
Ekin = ∫

ddx 〈|∇φ(x,t)|2〉/(2m) as Ekin = Ev + Eq into a
“classical” part

Ev = 1

2m

∫
ddx 〈|√nv|2〉 (40)

and a “quantum-pressure” component

Eq = 1

2m

∫
ddx 〈|∇√

n|2〉. (41)

The radial energy spectra for these fractions involve the Fourier
transform of the generalized velocities wv = √

nv and wq =
∇√

n,

Eδ(k) = 1

2m

∫
kd−1d�d 〈|wδ(k)|2〉, δ = v,q. (42)

Following Refs. [29,30], the velocity wv, which due to the
multiplication of v with the density n becomes regularized
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FIG. 13. (Color online) Occupation numbers as functions of the
radial momentum k, as defined in Eqs. (40)–(43): Total single-particle
occupation number n(k) (black dots), incompressible (solenoidal-
flow) component ni(k) (red circles), compressible (rotationless)
component nc(k) (blue solid squares), quantum-pressure component
nq(k) (gray open squares). Parameters are the same as in Fig. 10
(bottom right panel) for the run in d = 2 dimensions at the time
t = 262 144. Note the double-logarithmic scale. A scaling with k−4.66

corresponds to a power-law exponent 5/3 for the kinetic energy in
d = 2. See text for more details on the scaling exponents. (Inset)
Phase angle ϕ(x,t) as in Fig. 2.

and can be Fourier transformed, is furthermore decomposed
into “incompressible” (divergence free) and “compressible”
(solenoidal) parts, wv = wi + wc, with ∇ · wi = 0, ∇ × wc =
0, to distinguish vortical superfluid and rotationless motion
of the fluid. For comparison of the kinetic-energy spectrum
with the single-particle spectra n(k), we determine occupation
numbers corresponding to the different energy fractions as

nδ(k) = k−d−1Eδ(k), δ ∈ {i,c,q}. (43)

The resulting spectra ni(k), nc(k), and nq(k) add up to ns(k) =
ni(k) + nc(k) + nq(k), which agrees with the single-particle
spectrum up to small corrections (see Appendix A).

In Figs. 13 and 14, we depict the momentum distributions
of the occupation numbers ni(k), nc(k), and nq(k), together
with the previously shown total single-particle spectrum n(k),
each at a late time when the system is close to the fixed point,
that is, shows the predicted scaling in both the IR and the UV.
Red circles denote ni, solid blue squares nc, and open gray
squares nq. Qualitatively, the results are similar for d = 2 and
d = 3.

In the range of large wave numbers, the spectrum is domi-
nated by the compressible and quantum-pressure components.
The scaling of these excitations exhibits the weak-wave-
turbulence exponent ζ UV

P = d. For smaller wave numbers the
scaling changes to n(k) ∼ k−d−2. The decomposition into
the various components now shows that this switching to
a different scaling in the IR is clearly due to the takeover
of a different character of the excitations with a modified
flow pattern accounted for by the incompressible (solenoidal)
component of wv. The fact that in this regime contributions
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FIG. 14. (Color online) Occupation numbers as functions of the
radial momentum k, as defined in Eqs. (40)–(43) (see caption of
Fig. 13 for more information). Parameters are the same as in Fig. 11
(bottom left panel) for the run in d = 3 dimensions at the time
t = 1640. Note the double-logarithmic scale. A scaling with k−5.66

corresponds to a power-law exponent 5/3 for the kinetic energy in
d = 3. (Inset) The black spots mark points around the vortex line
cores where the density falls below 5% of the mean density n.

from vortical flow ni dominate is in accordance with our
interpretation of the strong IR scaling by a model of an
ensemble of vortical excitations. As we have discussed in
the previous section the analytically predicted IR power
laws n(k) ∼ k−d−2 are consistent with a finite density of
independent vortices and antivortices (d = 2) or vortex lines
(d = 3).

Moreover, we find that the compressible component in the
IR represents the second strongest contribution to the flow
and develops a nonthermal scaling as ∼k−d−1. We discuss this
result in more detail in Sec. V B below.

For momenta larger than about k 
 0.2 for d = 2 and
k 
 0.4 for d = 3 the compressible and quantum-pressure
components dominate the momentum distributions. In the
regime of intermediate momenta, above the scale kl ∼ 2π/l

with l the mean intervortex spacing, where the incompressible
flow and the rest are of roughly equal strength one finds a
scaling of approximately ni(k) ∼ k−d−1−5/3, corresponding to
Ei(k) ∼ k−5/3 for both the two- and the three-dimensional
case. Scaling with this exponent, which is the same as in
classical Kolmogorov turbulence in an incompressible fluid,
has been found in simulations of superfluid turbulence in
d = 2,3 before [20,21,29–34,72]. In some of these cases,
turbulent flow appeared in the time evolution of a system
starting from a Taylor-Green configuration of vortex line
tangles. We emphasize that our configuration after the creation
of vortical excitations resembles more a state of the kind
usually termed chaotic turbulence. It is unclear whether chaotic
turbulence can be related to classical Kolmogorov turbulence
as this does not bear near-classical bundles of equal-orientation
vortex lines. Nonetheless, we observe such 5/3 scaling in the
range of intermediate momenta where the interplay between
the incompressible and compressible components is most
pronounced.
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FIG. 15. (Color online) Late-stage acoustic turbulence: Occupa-
tion numbers defined in Eqs. (40)–(43) are shown as functions of the
radial momentum k, from an average over ∼10 single runs in d = 2
dimensions (top) and d = 3 (bottom), at times t = O(106) (d = 2)
and t = O(104) (d = 3), triggered on the decay of the last vortical
excitation. See caption of Fig. 13 for more information. Parameters:
for d = 2, g = 3 × 10−5, N = 4 × 108, Ns = 512; for d = 3, g =
4 × 10−4, N = 109, Ns = 128. Note the double-logarithmic scale.
The figure shows that, shortly after the last vortex ring has disappeared
(incompressible component breaks down), compressible excitations
exhibiting acoustic turbulence scaling ∼k−(d+1) remain present.

B. Acoustic turbulence

The IR scaling ∼k−d−1 of the compressible component
(blue solid squares) in Figs. 13, 14, and also Fig. 18 below
suggests an interpretation in terms of acoustic turbulence
[37,38,42,46] and corroborates the numerical findings reported
in Ref. [73]. The scaling is persistent until late times (see,
for example, Fig. 18), but decays after the vortices have
disappeared. To check that the nonthermal scaling of the in-
compressible component is not an artifact of the decomposition
of the vortical flow into compressible and incompressible parts,
we show the momentum spectrum for an average over selected
runs in d = 3 [see Fig. 15 (bottom), where the snapshot
is taken shortly after the last vortex ring has disappeared].
One can observe that acoustic turbulence can survive for a
limited period, �t = O(100), beyond the time when vortical
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FIG. 16. Velocity-field probability distribution. Parameters are
the same as in Fig. 11, for the run in d = 3 dimensions, at the
time t = 1640. Note the double-logarithmic scale. The black line
is a Gaussian fit to the data which shows that in the low-velocity
regime, the distribution is dominated by Gaussian fluctuations. A
high-velocity scaling with v−3

x reflects the presence of uncorrelated
vortices [cf. Eq. (39)].

excitations are negligible. In the case of d = 2, the effect is
weaker but still present [see Fig. 15 (top), where we show
the averaged spectrum shortly after the last vortex-antivortex
annihilation]. Our interpretation of this finding is that acoustic
turbulence coexists with the dominant vortical flow. It is driven
by vortex motion and especially vortex annihilation processes,
which are known to produce compressible excitations. In
d = 2, signatures of acoustic turbulence are less pronounced,
which we attribute to reduced vortex dynamics or, equivalently,
weaker driving of compressible excitations.

C. Vortex velocities

We furthermore investigated the velocity-field probability
distribution in the turbulent regime to compare our data
with the expectations summarized in Sec. III E. In d = 3
dimensions (see Fig. 16), the results corroborate theoretical
and experimental results reported in Refs. [49,59,74,75].
The low-momentum distribution is characterized by Gaussian
statistics, whereas the UV regime clearly shows scaling
P(vx) ∼ v−3

x predicted by the model of randomly distributed,
uncorrelated vortex lines [see Eq. (39)]. Note that even at
late times, when vortex rings shrink in size, no signs of
vortex pairing, P(vx) ∼ v−2

x , can be seen in the velocity
distribution. This is due to dominating Gaussian fluctuations in
the low-momentum region. In d = 2 dimensions (see Fig. 17),
we compare the velocity-field distribution with the velocity
distribution of the positions of the individual vortices. Similar
to the three-dimensional case the IR part of the velocity-field
distribution is characterized by Gaussian statistics, whereas
the UV regime shows single-vortex scaling [59]. The vortex
velocity distribution is obtained from the statistical analysis
of a vortex-tracking algorithm, which is designed to detect
regions of low density accompanied by a winding number
equal to one. The method is analogous to the experimental
setup of Ref. [49], where particles are trapped inside vortex
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FIG. 17. (Color online) Comparison of the vortex velocity dis-
tribution with the velocity-field probability distribution in d = 2
dimensions at t = 32 768. At this time an average of 86 vortices
are present in the system. Parameters: ḡ = 3 × 10−5, N = 16 × 108,
Ns = 1024. Note the double-logarithmic scale. A high-velocity
scaling with v−3

x reflects the presence of uncorrelated vortices [cf.
Eq. (39)]. Gaussian fluctuations are suppressed in the distribution of
velocities of the individual vortices, measured through the motion
tracking of the vortex cores.

cores to study vortex velocities in d = 3. In agreement with
the experiment, Fig. 17 shows that Gaussian random motion is
suppressed for vortices, but ∼v−3 scaling clearly persists. In
this way, QT can be distinguished from classical turbulence,
where a continuous distribution of vorticity favors a Gaussian
velocity distribution.

D. Pairing and departure from the fixed point

In Fig. 18 we show the decomposition of the single-
particle spectrum into the previously defined incompressible,
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FIG. 18. (Color online) Pairing effects. Occupation numbers are
shown as functions of the radial momentum k. Parameters are the
same as in Fig. 11, for the run in d = 3 dimensions, at the time
t = 26 214 (bottom right panel). Note the double-logarithmic scale.
The scaling ∼k−3 in the far IR reflects pair correlations present in
far-separated small vortex loops (see caption of Fig. 13 for more
information).
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FIG. 19. (Color online) Pairing effects. Occupation numbers are
shown as functions of the radial momentum k in d = 2 dimen-
sions, at the time t = 262 144: occupation number obtained from
averaging over all runs (black dots); occupation number obtained
from averaging over selected runs featuring tightly bound vortex
antivortex pairs with maximum pair correlation length λ � 5 (red
circles). Parameters: ḡ = 3 × 10−5, N = 108, Ns = 256. Note the
double-logarithmic scale. A scaling with k−2 reflects the presence of
correlated vortex-antivortex pairs in d = 2.

compressible, and quantum-pressure components [see
Eq. (43)], for the three-dimensional system at t̄ = 26 214,
as in the bottom right panel of Fig. 11. At this time, only
a small density of vortex rings has survived, which decays
under the influence of the noise field (cf. also Refs. [76,77]).
During the period when only a few small vortex rings remain
one can observe a decrease of the IR scaling exponents of
the occupation number and its incompressible part to the
value ζ = 3. Since vortical excitations are still dominating
the spectrum, we can interpret this observation in terms of
the statistical point vortex model introduced in Sec. III as
vortex-antivortex pair correlations (see Sec. III D). This is
consistent with the snapshots of individual runs showing small
vortex ellipses (see inset of Fig. 18). The scaling transition can
be identified with the scale kb = 2π/2rb, with estimated minor
radius rb 
 15.

Figure 19 shows the average occupation number spectrum
at t = 262 144 in d = 2 dimensions, as in the bottom right
panel of Fig. 10. In the average over all generated runs pairing
effects can hardly be observed. However, for selected runs with
small maximum pair correlation length λ � 5, as introduced
in Sec. III C, the pair scaling appears. We find that in the
selected runs (∼0.2% of total number of runs), at the chosen
point of time one or at most a few vortex-antivortex pairs
with pairing length smaller than the distance between pairs
are present. This constitutes the final period of the evolution,
shortly before the last pair has disappeared through mutual
annihilation and the system fully thermalizes. The generic
configuration in d = 2 dimensions during the preceding time
interval of critical slowing down close to the nonthermal fixed
point is characterized by randomly positioned vortices and
antivortices, with pairing correlations nevertheless present.
Pairing is seen in the density-density correlation function
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FIG. 20. (Color online) Normalized pairing (density-density)
correlations of vortices and antivortices in d = 2. Parameters as
in Fig. 10, at the time t = 131 072. Red crosses, pair correlations
of vortices and antivortices within the same circulation; blue stars,
pair correlations between vortices and antivortices. The rise above 1
indicates an effective “binding.” Black crosses, resulting correlation
function C introduced in Eq. (20).

between vortices and antivortices shown in Fig. 20, from
which we read off a largest scale λmax 
 100, . . . ,150 (cf.
Sec. III C). This implies pair scaling below k 
 0.02, . . . ,0.03,
not visible in the few (black) solid circles in Fig. 19. We
observe that, in d = 2, scattering between the vortices of
equal and opposite circulation can lead to the increase of the
pairing length between correlated vortices and antivortices.
This is in contrast to the situation for d = 3, where the
scattering between vortex rings rarely leads to an increase
in the size of the rings. It is energetically advantageous for
the rings to shrink in size, and thus, at a particular late time of
the evolution the presence of separated small rings is generic
and “pairing” is seen in the spectrum.

In summary, our analysis gives a picture of the necessary
conditions and the character of the nonthermal fixed point.
It also shows that pairing effects are a first signature for the
system leaving this fixed point again for the final move to
thermal equilibrium.

VI. SUMMARY

We have studied in detail superfluid turbulence in two- and
three-dimensional dilute Bose gases by means of simulations
in the classical-wave limit of the underlying quantum field
theory. A focus is set on the identification and characterization
of stationary scaling solutions, in particular for single-particle
momentum distributions. Characteristic exponents ζ of n(k)
corroborate the analytical predictions made in Ref. [9].
Our findings suggest that local field expectation values and
short- to intermediate-range coherence, including topological
excitations, are at the basis of the IR power laws predicted
within a full nonperturbative dynamical field theory [6–10,17]
employing 2PI effective action techniques.

We have shown that the stationary scaling is maintained
by the presence of particle (IR) and energy (UV) fluxes,

originating at intermediate scales and directed toward the
low- and high-frequency limits, respectively. The respective
fluxes were found to be consistent with the particular scaling
exponents of the momentum distribution in the respective
regimes. Our main result is the identification of the nonthermal
fixed point with the appearance of topological excitations in
the system. We could successfully employ statistical models
of point vortices in two dimensions and vortex rings in three
dimensions to interpret the IR scaling exponent of the spectra.
Moreover, we observed in our simulations, during the final
thermalization stage, decay of the turbulence scaling into
a scaling derived from the assumption of vortex-antivortex
pairing. To characterize further the bimodal power spectra
developed close to the nonthermal fixed point we have
analyzed the decomposition of the overall flow pattern into
compressible and incompressible components. We found that
the IR power spectra of underlying compressible excitations
suggest an understanding in terms of acoustic turbulence
on top of the vorticity-bearing quasicondensate. Finally, to
compare with the results of recent experiments and analytical
predictions, the velocity-field probability distribution as well
as the velocity statistics of individual vortices has been studied.
This observable is of great interest, as it can be used to
experimentally distinguish between classical and QT.

The connection of QT phenomena with ab initio dynamical
field theoretic methods points a way to unified analytical
studies of turbulence. Moreover, it provides hints of how
the proposed nonthermal fixed points in relativistic systems
[6–8,10,14] are realized in nature. A manifestation of the
approach of a nonthermal fixed-point in terms of quasisolitary
pattern formation and charge separation in a relativistic scalar
model has recently been reported in Ref. [17].

Experimental studies of universal phenomena in nonequi-
librium dynamics of ultracold atoms have great potential
since universal effects do not depend significantly on initial
conditions and details of the system. Following this idea,
our numerical protocol was chosen such that an experimental
verification of our findings is within reach of present-day cold-
atom experiments. The study of turbulence in ultracold gases
may have great impact on many other fields of physics. Promi-
nent examples are strongly correlated nuclear matter produced
in heavy-ion collisions and early universe cosmology.
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APPENDIX A: VORTICAL EXCITATIONS IN A
SUPERFLUID

1. Single vortex in d = 2 dimensions

A singly quantized vortex with circulation κ = ±1 in two
dimensions is described, in polar coordinates, by the solution
φ(r,ϕ) = f (r) exp{iκϕ} of the Gross-Pitaevskii equation (10),
where f (r) is real and approaches the square root of the
bulk density nbulk for large distances r from the vortex core,
where f (0) = 0. A vortex is a stationary solution of Eq. (10),
evolving as φ(r,ϕ,t) = φ(r,ϕ,0) exp{−iμt} with μ = gn

1/2
bulk.

The velocity field of the vortex is

ṽ(r,ϕ) = κ

mr
eϕ. (A1)

The Fourier transform of this field can be conveniently
evaluated by the help of the first-order Bessel function,∫

dϕ cos(ϕ) exp{iαcosϕ} = 2πiJ1(α), as

ṽ(k,ϕk) = κ

m

∫
dr dϕ

(−sin(ϕ)

cos(ϕ)

)
eikrcos(ϕ−ϕk ) = κ

m

2πi

k
eϕk

.

(A2)

2. Straight vortex line in d = 3

Based on Eq. (31), we calculate the vorticity of two straight
vortex lines in three dimensions, with circulation κi , i = 1,2,
placed at positions (0,−y0) and (0,y0) in the x-y plane and
relate it to the momentum spectrum [see Eq. (37)]. The lines
are parametrized by

si(x) = (0,(−1)iy0,κiτ ), (A3)

with τ ∈ [−∞,∞]. In Fourier space, the vorticity density,
defined in Eq. (29), reads

ω(k) = ezδ(kz)(κ1e
−ikyy0 + κ2e

ikyy0 ). (A4)

The vorticity spectrum follows from Eq. (31):

|ω(k)|2 = 2δ2(kz)[1 + κ1κ2cos(2kyy0)]. (A5)

Hence, for corotating vortex lines (κ1 = κ2)

|ω(k)|2 = 4δ2(kz)cos2(kyy0), (A6)

while for counter-rotating vortex lines (κ1 = −κ2) one obtains

|ω(k)|2 = 4δ2(kz)sin2(kyy0). (A7)

In order to be able to take the angle average over δ2 we
regularize the δ distribution, giving it a finite width � = 1/Lz.
The angle average of Eq. (A6) then reads

|ω(k)|2 =
∫

dϕkdu δ�(ku)24 cos2(ky0

√
1 − u2cosϕk)

= 8π2Lzk
−1[1 + J0(2ky0)], (A8)

where Lz is the length of the system in the z direction and
u = cos(θ ). One obtains the scaling behavior

|ω(k)|2 = 16π2Lzk
−1 + O(k), (A9)

which is the scaling of a single line. With Eq. (37), we conclude
n(k) ∼ k−5. Following the same reasoning, the angle average
of Eq. (A7) is given as

|ω(k)|2 = 8π2Lzk
−1[1 − J0(2ky0)]. (A10)
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FIG. 21. Radial momentum distribution of two straight vortex
lines of circulation κ1 = −κ2 = 1 on a N 3

s = 10243 lattice. The
distance scale ky0 is indicated. Note the double-logarithmic scale.

For ky0 � 1,

|ω(k)|2 = 8π2Lzy
2
0k + O(k3), (A11)

which gives n(k) ∼ k−3. For ky0 � 1,

|ω(k)|2 = 8π2Lzk
−1, (A12)

which gives n(k) ∼ k−5. These scalings are confirmed in
Fig. 21.

3. Ensembles of parallel vortex lines in d = 3

In Secs. III B and III C, we have discussed the scaling of
the momentum distribution for ensembles of independent and
pair correlated vortices in two dimensions, respectively. In this
appendix we generalize the scaling derived above for straight
vortex lines to the case of many such lines in d = 3. We derive
an expression for the momentum spectrum of a system of M

straight vortex lines oriented along the z direction. The average
vorticity squared is given by Eq. (35), where Ri are vectors in
the two-dimensional x-y plane pointing to the ith vortex line
with circulation κi = ±1. The vorticity of the single line is

ω̃i(k) = κi

∫
d3x eikx

∫
dτ ezδ(κiτez − x),

= κiδ(kz)ez. (A13)

Hence, Eq. (35) has the same form as Eq. (15) for d = 2,

〈|ω(k)|2〉 = δ2(kz)
M∑
i,j

〈κiκj e
ik(Ri−Rj )〉, (A14)

up to a δ2(kz) term, which arises from the infinite extent of
the vortex lines in the z direction. As in Appendix A 2, we
regularize the δ distributions, and averaging (A14) over solid
angles yields

〈|ω(k)|2〉 ∼ Lz

k

M∑
i,j

〈κiκjJ0(k|Ri − Rj |)〉, (A15)
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FIG. 22. Radial momentum distribution of a vortex ring of radius
r on a N 3

s = 10243 lattice. The radius scale kr is indicated. Note the
double-logarithmic scale.

which is analogous to Eq. (16) in two dimensions. As the
position of the ith vortex line is determined by Ri , statistical
averaging of (A15) can be done in the same way as in d = 2.

4. Vortex ring in d = 3

A vortex ring with radius r lying in the x-y plane can be
parametrized as

s(x) = (r cos ϕ,r sin ϕ,0), (A16)

with ϕ ∈ [0,2π ]. In Fourier space, similar steps as above lead
to the angle-averaged vorticity density

|ω(k)|2 =
∫

dθk |J1(kr sin θk)|2. (A17)

Evaluating the integral numerically shows that the vorticity
scales like ∼k2 for kr � 1 and ∼k−1 for kr � 1, correspond-
ing to n(k) ∼ k−2 and n(k) ∼ k−5. This is shown in Fig. 22.
Both scalings are also found in the momentum spectrum of a
vortex ellipse, discussed in Sec. III D.

APPENDIX B: SEMICLASSICAL FIELD SIMULATIONS

In this paper, a dilute superfluid gas of Bosons of mass m is
considered, with contact interactions quantified by a coupling
constant g. Its dynamics is described, in the classical wave
limit, by the Gross-Pitaevskii equation (GPE) (10). We use
units where h̄ = 1. We consider the gas to be contained in a
box of size Ld , d = 2, 3, with periodic boundary conditions.
In d = 3, the coupling constant g is related to the s-wave
scattering length a by g = g3D = 4πa/m. In d = 2, one
has g = g2D = −(4π/m)[ln(μma2

2D/4)]−1, where μ is the
chemical potential and a2D is a scattering length in two
dimensions which, for a gas of hard spheres of radius a

is given by a2D = aeγ , with the Euler-Mascheroni constant
γ 
 0.577 [78–80]. For a two-dimensional gas created by
trapping a three-dimensional one tightly in one dimension,
with harmonic-oscillator length lz, the effective 2D scatter-
ing length is given by a2D = 4lz(π/B)1/2 exp{−√

πlz/a3D},
where B 
 0.915 [81]. Diluteness implies that a � l, the

interparticle spacing l = n−1/d being determined by the mean
density n = N/Ld .

The initial values for the real and imaginary parts of the
field φ(k,0) are randomly chosen from a Gaussian distribution
with width 1/2, centered around

√
n(k,0) exp{iϕ(k,0)}, where

n(k,t) = 〈φ†(k,t)φ(k,t)〉 is the occupation number at time t

and ϕ(k,0) is a random phase angle. Correlation functions
including n(k,t) are obtained by averaging over many trajec-
tories. To induce transport from small to large wave numbers,
only a few modes near k = 0 are chosen to be macroscopically
occupied at the initial time, n(k,0) � 1. Such an initial state
can be prepared, for example, by Bragg scattering of photons
from a Bose-Einstein condensate.

Our numerical simulations are performed on space-time lat-
tices with side lengths L = Nsas , with lattice spacing as and in
total Nd

s grid points. We use periodic boundary conditions and
Ns ∈ {256,512} for d = 2 and Ns ∈ {128,256,512} for d = 3.
Equation (10) is written in terms of the dimensionless variables
g = 2mga2−d

s , t = t/(2ma2
s ), and ψn(t) = ψn

√
ad

s exp(2it).
All quantities in the figures are either dimensionless or shown
in lattice units, with the length unit given by as . The dimen-
sionless lattice momenta are k = [

∑d
i=1 4sin2(ki/2)]1/2,k =

2πn/Ns, n = (n1, . . . ,nd ), ni = −Ns/2, . . . ,Ns/2.
In order to relate our simulations to a typical situation

in experiment, we give parameters for Rb-87. We estimate
the total energy of the gas in equilibrium to be given by
the interaction energy which, by equipartition is related to
the temperature, 2Eint = Ldgn2 = Nd

s ad
s gn2 = Nd

s kBT . At
the transition to degeneracy the thermal de Broglie wave
length λdB =

√
2πh̄2/mkBT is of the order of the interparticle

spacing and hence kBTdeg ∼ 2πh̄2n2/d/m. Inserting this into
the expression for the interaction energy makes it possible
to express the lattice spacing in terms of the density and the
scattering length as

as = 1

2n

√
ln 4 − ln(μma2D) (d = 2),

(B1)
as = (n4/3a)−1/3 (d = 3).

Inserting parameters for a typical Rb-87 experiment in d =
3, viz., a = 5 nm, m = 1.4 × 10−25 kg, n = 1020 m−3 we
obtain as = 1 μm. Hence, time scale as t/t = 2ma2

s /h̄
2 =

3 × 10−3 s. Our lattice time typically runs until t 
 1000,
which therefore represents a realistic observation time scale
in experiments. Typical parameter choices in our simulations
are N = 109, Ns = 128, g = 4 × 10−4 for d = 3 and N =
4 × 108, Ns = 512, g = 3 × 10−5 for d = 2.

APPENDIX C: DECOMPOSITION OF w

In Sec. V A, we have defined occupation numbers corre-
sponding to the incompressible, compressible, and quantum
pressure components of the kinetic energy. Numerically, the
resulting spectra ni(k), nc(k), and nq(k) add up to ns(k),
which is equal to the full single-particle spectrum n(k) up to
small corrections. In particular, the scaling behavior emerges
as the same for both ns(k) and n(k). To make this more
explicit, we calculate k2n(k) in terms of generalized velocities
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wδ,δ ∈ {v,q},
k2n(k) = 〈F(wve

iϕ)(k)F(wve
iϕ)∗(k) 〉

+ 2Re〈 iF(wve
iϕ)(k)F(wqe

iϕ)∗(k) 〉
+ 〈F(wqe

iϕ)(k)F(wqe
iϕ)∗(k) 〉. (C1)

“Re” denotes the real part and F the Fourier transform. The
middle term vanishes since the expectation value is purely
imaginary due to isotropy. It follows that

k2n(k) = 〈 [wv ∗ F(eiϕ)](k) [wv ∗ F(eiϕ)]∗(k) 〉
+ 〈 [wq ∗ F(eiϕ)](k) [wq ∗ F(eiϕ)]∗(k) 〉. (C2)

Since phase and phase velocity are expected not to be

correlated, the main contribution to the four-point correlation
functions is assumed to arise from terms of the form 〈wδ(|p −
k|)wδ(|q − k|)〉〈F(exp{iϕ})(p)F(exp{iϕ})∗(q)〉, δ ∈ {v,q}. In
the superfluid regime, the phase of the field is a slowly
varying function in position space. Therefore, F(exp{iϕ})∗(q)
terms are strongly peaked at zero momentum, effectively
acting as regularized δ functions under the convolution.
Hence,

k2n(k) 
 〈|wv(k)|2〉 + 〈|wq(k)|2〉. (C3)

This approximative identity is supported by Fig. 23.
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