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Dynamical phases and intermittency of the dissipative quantum Ising model
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We employ the concept of a dynamical, activity order parameter to study the Ising model in a transverse
magnetic field coupled to a Markovian bath. For a certain range of values of the spin-spin coupling, magnetic field,
and dissipation rate, we identify a first-order dynamical phase transition between active and inactive dynamical
phases. We demonstrate that dynamical phase coexistence becomes manifest in an intermittent behavior of
the bath quanta emission. Moreover, we establish the connection between the dynamical order parameter that
quantifies the activity and the longitudinal magnetization that serves as static order parameter. The system that
we consider can be implemented in current experiments with Rydberg atoms and trapped ions.
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I. INTRODUCTION

The remarkable progress in the control of ultracold atomic
gases and trapped ions has opened a plethora of possibilities
for studying dissipative many-body quantum systems. Very
recently it was shown that a carefully designed dissipative
dynamics arising from an engineered heat bath can lead to
the formation of pure and coherent many-body quantum states
[1–5]. Moreover, it was demonstrated that open many-body
systems with competing dissipative and coherent interactions
possess a rich phase structure [6–12]. However, despite their
intrinsic dynamical nature, these phases are often classified
by means of equilibrium order parameters such as particle
densities or spatial correlation functions.

In this work we pursue a complementary route that aims
at describing dynamical phases in terms of strictly dynamical
order parameters. The approach that we will use is called
thermodynamics of trajectories. It has already proven to be
useful for the study of classical many-body systems displaying
complex cooperative dynamics such as glasses [13,14]. Recent
theoretical work [15] has adapted this approach for simple
open quantum systems and has shown that dynamical phase
behavior can be uncovered by means of an activity order
parameter [13,16,17], i.e., an observable that counts the
emission of quanta from an open quantum system into its
environment (events often referred to as quantum jumps).

Here we show that the thermodynamics of trajectories
approach can also be used to gain insights into the dynamical
behavior of interacting many-body quantum systems. We
illustrate this by studying a quantum Ising model in a
transverse magnetic field subject to Markovian dissipation
that couples to individual spins (see Fig. 1). Beyond the fact
that Ising models such as the one we study here serve as
paradigmatic examples of many-body systems, the system at
hand can be implemented with recently developed techniques
in experiments with trapped ions [5,18] or Rydberg atoms
[12,19,20].

We show that depending on the experimental parameters the
system is found either in a specific dynamical phase or at co-
existence conditions of two such phases. We demonstrate that
this phase coexistence is accompanied by strong fluctuations in
the activity that become manifest in pronounced intermittency
in the emission of the bath quanta. The thermodynamics of

FIG. 1. (Color online) (a) Schematic of the open Ising model in a
transverse field. Internal states of trapped atoms or ions are described
by spin-1/2 degrees of freedom on a lattice. The interaction between
nearest neighbors has strength V and there is an applied transverse
field � (e.g., the Rabi frequency of a laser). Interaction with the
radiation field leads to the incoherent emission of bath quanta (e.g.,
photons) with rate κ , which are detected and counted. (b) Quantum
jump trajectory in a one-dimensional version of (a). Emitted photons
are temporally (and spatially) resolved, so each point indicates where
and when a quantum jump event took place. This particular trajectory
shows intermittency, which manifests the coexistence of an active and
an inactive dynamical phase (see the text).

trajectories approach also sheds light on the intermittency
that has recently been found theoretically in an open fully
connected spin model [12].

The paper is organized as follows. In Sec. II A we outline the
thermodynamics of trajectories approach for quantum systems.
In particular we establish the relation between the dynamical
phases, as classified by their activity, and equilibrium phases
characterized by static observables (Sec. II B). In addition
we show that such a direct connection in general does not
hold between dynamical and static fluctuations. Following
these general considerations, we study the dynamical behavior
of the dissipative quantum Ising model in a transverse field
using the thermodynamics of trajectories approach in Sec. III.
After briefly discussing a possible realization of this model
with highly excited atoms (Sec. III A) we investigate the
dynamics of the system on the level of mean-field theory
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(Sec. III B) as well as by using the numerical techniques of
exact diagonalization (Sec. III C) and quantum jump Monte
Carlo simulations (Sec. III D). We focus in particular on
the regime in which the model displays strongly intermittent
behavior in the emission of bath quanta. We show that this is
a consequence of the system being at a first-order coexistence
point between two dynamical phases.

II. THERMODYNAMICS OF TRAJECTORIES

A. Dynamical order parameter and ensembles
of quantum trajectories

Let us consider a quantum many-body system composed
of N particles coupled to a Markovian bath. The state of
the system is described by the density matrix ρ and its time
evolution governed by the Master equation ∂tρ = W(ρ) with
the superoperator

W(•) = −i[H,•] +
N∑

ν=1

Jν • J †
ν − 1

2

N∑
ν=1

{J †
ν Jν,•} (1)

and system Hamiltonian H [21]. The coupling to the thermal
bath is assumed to take place at the single-particle level and is
mediated by the Lindblad operators Jν [21]. These operators
induce sudden changes of the state of the system and therefore
describe spontaneous emission events of quanta into the bath.

We are interested in the statistics of these emission
events and their connection to the quantum dynamics of the
system. To illuminate this we employ the thermodynamics of
trajectories approach, which will allow us to gain immediate
insights into the emission characteristics of bath quanta. The
idea, which for quantum systems is outlined in Ref. [15], is to
consider time records of emission events—so-called quantum
jump trajectories—and to study ensembles of trajectories in a
manner analogous to how one studies ensembles of microstates
(or configurations) in equilibrium statistical mechanics. A
trajectory of length (i.e., observation time) t contains K

emission events [see, e.g., Fig. 1(b)]. The probability for such
a trajectory to occur is given by pK (t) = Trρ(K)(t), where
ρ(K)(t) is the projection of the density matrix ρ onto the
subspace in which K emission events have taken place [22].
The generating function of the probability distribution pK (t)
is defined as

Z =
∞∑

K=0

e−sKpK (t) =
∞∑

K=0

e−sKTrρ(K)(t)

= Tr
∞∑

K=0

e−sKρ(K)(t) ≡ Trρs(t). (2)

Here ρs(t) is the Laplace transformed density matrix, which
evolves according to the generalized master equation ∂tρs =
Ws(ρs) = W(ρs) + Vs(ρs) [23,24], where

Vs(•) = (e−s − 1)
∑

ν

Jν • J †
ν .

This generalized master equation is not probability conserving
and corresponds to nonphysical dynamics where the proba-
bility of quantum jump trajectories with K events is biased
by a factor e−sK . This means that for negative (positive) s

trajectories with more (less) emission events than the average

are more likely to occur. The physical (probability-conserving)
dynamics takes place at s = 0, where the generalized master
operator coincides with Eq. (1). However, as we show below,
information about the behavior of the system in the vicinity
of this physical point (i.e., at s �= 0) can be crucial for the
understanding of its emission dynamics [15,25].

We are interested in dynamical properties in the stationary
regime. Therefore, we consider observation times long enough
for all initial transient effects to have become negligible. For
these long times the generating function Z acquires a large-
deviation form [26,27]. Using the spectral decomposition of
the generalized master operator, we can write in the limit of
long times Z = Trρs(t) → etθ(s), where θ (s) is the eigenvalue
of Ws with the largest real part. The crucial idea behind the
thermodynamics of trajectories approach is to interpret Z as a
partition function and of θ (s) as a free energy, i.e., to ascribe
a real physical meaning to these quantities. This allows us to
view the (s-dependent) mean emission rate 〈k〉(s) = 〈K〉(s)/t

of bath quanta as a dynamical order parameter, which we call
the activity. The activity can be written as the derivative of
the free energy with respect to the conjugate field s: 〈k〉(s) =
−∂sθ (s). Likewise, higher moments of the emission statistics
are encoded in higher derivatives of θ (s). Of particular interest
here is Mandel’s Q parameter Q(s) = −∂2

s θ (s)/∂sθ (s) − 1,
which quantifies the deviation of the emission statistics from
a Poissonian distribution.

We would like to remark that technically the thermody-
namics of trajectories approach bears similarities to that of
full counting statistics (FCS) [28,29]. However, despite the
similarities to FCS, we approach the counting problem from a
somewhat different angle. We regard the counting field s as the
conjugate field to a dynamical order parameter (the event count
K). This very perspective allows us to construct a theoretical
framework similar to equilibrium statistical mechanics for the
analysis of ensembles of stochastic trajectories. For example,
just like in equilibrium statistical mechanics, nonanalytical
points of the dynamical free energy θ (s) will determine
transitions between dynamical phases [15,25,30]. Of particular
importance are of course nonanalyticities that occur at or very
near the physical point s = 0, as they strongly influence the
dynamical behavior of the system.

Before we further illustrate this point by investigating the
emission statistics of a particular model system, let us use
the approach outlined above to assess possible connections
between dynamical and static quantities. In particular we will
show that the activity can be related directly to the expectation
value of a static observable. We will also see that, in contrast,
the same is not true in general for fluctuations (and higher
moments) of the dynamical order parameter.

B. Connection between dynamic and static quantities

As a consequence of the large-deviation principle, the
dynamical free energy for long times can be written as
θ (s) = ∂t lnZ = ∂t ln Trρs = Tr∂tρs/Trρs . Using the equation
of motion for ρs , we get Tr∂tρs = TrVs(ρs), where we have
exploited that TrW(ρs) = 0. Combining these results yields

θ (s) = (e−s − 1)Tr

( ∑
ν

J †
ν JνR(s)

)
, (3)
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where we have introduced the normalized density matrix
R(s) = ρs/Trρs , which becomes stationary in the long-time
limit. Furthermore, R(s) coincides with the stationary density
matrix of the system at the physical point R(s = 0) = ρ.
Differentiation of Eq. (3) with respect to s reveals the relation
between the dynamical order parameters and the expectation
value 〈∑ν J †

ν Jν〉 at s = 0,

〈k〉(0) = −∂sθ (s)|s=0 = Tr
∑

ν

J †
ν Jνρ. (4)

A further differentiation of Eq. (3) shows that this direct
connection between dynamical and static quantities does not
hold for higher moments. In particular, temporal fluctuation
of emission records (quantum jump trajectories) are in general
not solely determined by static spatial correlations. Assessing
higher moments of the event count distribution therefore
requires knowledge of the dynamical phases of the system
in the vicinity of the physical point, i.e., for s �= 0. This can
been seen, e.g., when evaluating the Q parameter

Q(0) = −2
Tr

∑
ν J †

ν Jν∂sR(s)|s=0

Tr
∑

ν J
†
ν Jνρ

. (5)

Calculating Q requires the evaluation of the first derivative of
R(s) with respect to the field s, i.e., information about R(s)
for s �= 0.

This is in fact known from strongly interacting classical
systems. There, dynamical fluctuations are not necessarily
simple manifestations of static fluctuations. A notable example
is glasses: There, the thermodynamics can essentially be
trivial, while the corresponding dynamics can be very complex.
For example, Refs. [13,14] show that both idealized lattice
models and realistic liquid models, when explored by means
of techniques similar to those employed here, display phase
transitions in dynamical trajectories that have no static counter-
part. To uncover these dynamical transitions it is necessary to
go beyond purely static treatments and consider the statistical
properties of trajectories. In the following we will apply the
general ideas of the thermodynamics of trajectories approach
to study the dynamical behavior of a specific open many-body
quantum system.

III. DISSIPATIVE ISING MODEL IN A TRANSVERSE
MAGNETIC FIELD

We consider a system of N spin-1/2 particles arranged on
the sites of a regular lattice with lattice spacing a and coupled
to a thermal bath with zero temperature. The Hamiltonian H

is that of a quantum Ising model in a transverse field [31]

H = �
∑

ν

S(ν)
x + V

∑
〈μ,ν〉

S(μ)
z S(ν)

z , (6)

with � characterizing the transverse field strength and V

being the interaction strength between adjacent spins (〈μ,ν〉
indicates that the sum is only over nearest-neighbor pairs). The
Lindblad operators are given by Jν = √

κS
(ν)
− = √

κ[S(ν)
x −

iS(ν)
y ], with decay rate κ . This model is sketched in Fig. 1(a).
A natural static order parameter for this system is the

magnetization m = N−1 ∑
ν〈S(ν)

z 〉, which has also been used
to characterize dynamical properties in Refs. [11,12]. Using

Eq. (4) we immediately see that the static order parameter is
indeed proportional to the dynamical order parameter,

〈k〉(0) = κN
[
m + 1

2

]
. (7)

The static magnetic susceptibility, however, is not directly
related to quadratic fluctuations in the activity, as the former
only captures static spatial correlations, while the latter also
includes correlations in time.

A. Realization with Rydberg atoms

Experimentally the dissipative Ising model can be achieved,
to a good degree of approximation, with electronically ex-
cited ultracold alkali-metal atoms confined to a lattice or
alternatively with Rydberg states of trapped ions [32]. Here
the state |↓〉 is identified with the atomic ground state and
the state |↑〉 is an electronically excited Rydberg nS state.
When two atoms on the νth and μth lattice sites (with position
vectors rν and rμ, respectively) are excited simultaneously
they interact via a van der Waals potential of the form
Vνμ = C6

|rν−rμ|6 |↑〉ν〈↑| ⊗ |↑〉μ〈↑|. Here C6 is the dispersion
coefficient that characterizes the interaction strength. Due
to the quick decay of the interaction as a function of the
distance one can replace the van der Waals potential by a
nearest-neighbor interaction [33]. When Rydberg states are
excited by a laser of Rabi frequency � and detuning � with
respect to the energy difference of the transition |↓〉 ↔ |↑〉,
the Hamiltonian for the νth atom reads hν = �S(ν)

x + �S(ν)
z .

Combining this with the interaction, one finds that by choosing
� = −V = −C6/a

6 one arrives at the Hamiltonian (6). The
dissipative dynamics is realized naturally as Rydberg states
decay radiatively. For nS states of alkali-metal atoms this
decay takes place predominantly to the lowest-P state (on
the time scale of a few microseconds) and subsequently to the
ground state. The last decay is very fast (tens of nanoseconds)
such that it can be considered instantaneous. Within this
approximation we find the dynamics of the system to be
governed by the master operator (1). The activity can then
be directly monitored by detecting photons that are emitted
during the decay from the lowest-P state to the ground state.

B. Mean-field approximation to statics and dynamics

The static properties of our open Ising model, including the
nature of its structural phases and the transitions between them,
are given by its stationary density matrix. This is obtained from
the eigenstate(s) of the operator W with zero eigenvalue [21].
Finding the exact eigenstate(s) is a difficult task, but we can
learn much from a mean-field approximation [11,12].

Since the dynamical order parameter is directly pro-
portional to the static one [see Eq. (7)], determining the
activity is equivalent to calculating the magnetization. In a
mean-field approximation this can be done in a standard
manner by approximating the many-body density matrix ρ as
a product of single-particle density matrices ρ ≈ ⊗N

ν=1 r (ν)

and solving Tr2,...,NW(
⊗N

ν=1 r (ν)) = 0 [34]. The partial traces
are taken over the degrees of freedom of all spins but one.
Parametrizing the single-particle matrices r (ν) as r (ν) = 1/2 +
αS(ν)

x + βS(ν)
y + mS(ν)

z , this procedure leads to the following
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self-consistency equation for the magnetization m:

0 = 8z2V 2m3 + 4z2V 2m2 + 2(κ2 + 2�2)m + κ2, (8)

where z denotes the coordination number of the lattice. The
analysis of this third-order polynomial shows that below a crit-
ical interaction strength V ∗ = (3

√
3/z)κ the self-consistency

equation (8) has only one stable real solution. Above V ∗ one
finds, depending on the value of �, either one or two stable real
solutions. The two spinodal lines [35] separating the regions
of unique and multiple real solutions for m are given by

v1 ≡ 1

8

⎡
⎣�

κ
+

√(
�

κ

)2

+ 2

⎤
⎦

2

,

v2 ≡ 1√
2

⎡
⎣�

κ
+

√(
�

κ

)2

− 1

⎤
⎦ ,

which are valid for V/κ,�/κ � 1.
The corresponding phase diagram is shown in Fig. 2. In the

colored regions there is a unique steady state. In the gray
domain two stable solutions exist, one with small magne-
tization mA ∼ 0 and one with large negative magnetization
mI ∼ −1/2. By virtue of Eq. (7) we can now conclude that
the activity 〈k〉 is small (large) in the blue (red) regions. To
understand the dynamical behavior of the Ising system in the
gray region we have to explore the behavior of θ (s) in the
vicinity of s = 0.

For this we expand θ (s) given in Eq. (3) to first order
in s and find that θ (s) ≈ −s

∑
ν TrJ †

ν JνR(0) = −s〈k〉(0) =
−sκN (m + 1/2). Taking the magnetization obtained from the
mean-field calculation, we see that in the colored regions of

FIG. 2. (Color online) Mean-field phase diagram. Colored re-
gions have a unique steady-state solution. In the gray region, delimited
by the two spinodal lines v1 and v2 (see the text), two steady-state
solutions with different magnetization exist. These solutions merge
at (�∗; V ∗) = (2κ; (3

√
3/z)κ). The small panels show a sketch of the

behavior of the free energy θ (s) (solid line) and its first derivative
〈k〉(s) (dotted line) in the vicinity of s = 0. While in the region with
a unique steady state both functions are smooth, the dynamical order
parameter 〈k〉(s) has a jump at s = 0 for parameter values taken in the
gray region. This indicates the existence of a first-order dynamical
phase transition.

Fig. 2 we obtain a θ (s) whose first derivative is smooth (see
the top left and bottom right panels). In the gray region one
has to compare the values of θ (s) that one obtains for the two
solutions mA and mI , choosing the one that maximizes θ (s);
hence

θ (s) = −sκN
(
mI + 1

2

)
for s > 0,

θ (s) = −sκN
(
mA + 1

2

)
for s < 0.

Since mA �= mI , the slope of θ (s) changes at s = 0, causing a
nonanalyticity of θ (s) and a jump of its first derivative, the
activity (see the top right panel of Fig. 2). The gray area
in the phase diagram can thus be regarded as a coexistence
region of two dynamical phases: an active and an inactive one.
Trajectories in the active phase are dense in quantum jumps
and are characterized by a large 〈k〉; quantum jumps are scarce
in trajectories in the inactive phase, which is characterized by
a small 〈k〉. The discontinuity of 〈k〉 at s = 0 indicates that
the transition between active and inactive phases is of first
order.

To illuminate the implications of these results on the emis-
sion dynamics of the system let us consider a thermodynamic
analogy: a fluid system at the transition point between a
high-density liquid phase and a low-density vapor one. Here
a small change in pressure will select either the liquid or
the vapor, which are distinguished by their average specific
volumes, confirming that the system is at a point of phase
coexistence. Therefore, the ability to vary the pressure yields
important information about the nature of the phase transition.
As a further consequence of the first-order coexistence one
expects sharp interfaces between the phases. These interfaces
are not a property of either phase, but of the fact that there
exists a “surface tension” between the phases.

In our dynamical case the field s works in exactly the
same way as the pressure in our liquid-vapor analogy—it
selects (depending on its sign) an active (bright) or inactive
(dark) phase. This allows us to uncover a first-order dynamical
phase transition and again shows the necessity of studying
the system away from s = 0. Furthermore, we expect to
observe sharp interfaces between the dynamical phases. Since
quantum jump trajectories of many-body systems exist in
space and time, the interfaces between distinct dynamical
phases can be temporal. The mean-field results therefore
indicate an intermittent emission pattern for system parameters
chosen from the gray region of the phase diagram shown
in Fig. 2. This region of phase coexistence ends at the
point (�∗; V ∗) = (2κ; (3

√
3/z)κ), which is reminiscent of the

static critical point beyond which liquid-vapor coexistence is
possible [35].

The mean-field approximation above disregards the fi-
nite range of the spin-spin interactions. Such a treatment
would be accurate for a fully connected problem (i.e., every
spin interacts with all other spins with the same strength),
as studied, e.g., in Ref. [12]. There, one might indeed
anticipate strongly collective dynamics. However, the spin
system studied in this work exhibits local interactions and
therefore, it is not evident a priori (particularly in low
dimensions) that the collectiveness in photon emission or the
intermittence predicted by a mean-field analysis should persist
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FIG. 3. (Color online) Dynamical free energy θ (s) determined
by exact diagonalization of the generalized master operator for the
one-dimensional dissipative Ising model in a transverse field for N =
6 spins with periodic boundary conditions. The plot shows θ (s) (in
units of κ) for V = 100κ at three different values of the coupling
strength � corresponding to an active (dashed red line) and inactive
(solid blue line) dynamical phase and the behavior of the dynamical
free energy under conditions of phase coexistence (dotted black line).

when going beyond this approximation, as we will do in the
following.

C. Numerical analysis: Exact diagonalization

To check whether the mean-field treatment yields the
qualitatively correct behavior of θ (s) for our system with short-
range interactions, we have performed an exact numerical
diagonalization of the generalized master operator for chains
up to N = 7 spins. The largest eigenvalue corresponds to the
dynamical free energy θ (s) (see, e.g., Refs. [15,25]).

The results for θ (s) for N = 6 spins are shown in Fig. 3
as a function of s for V = 100κ and different values of �. At
� = 42κ (red curve) we find the system in the active phase,
which is indicated by a large slope at s = 0. Conversely, at
� = 2κ (blue curve) the activity is small as the slope of θ (s)
at s = 0 is almost zero. In the region in between [� = 28κ

(black curve)] we find a crossover compatible with a smoothed
first-order phase transition at s = 0. This result corroborates
the expectations for the large-N limit obtained from the mean-
field calculation. In fact, the curves shown here are a smoothed
version of the ones shown in Fig. 2.

To learn more about the dynamical behavior of the system at
the physical point (s = 0) we have calculated the activity 〈k〉 =
−∂sθ (s)|s=0 [lines in Fig. 4(a)] and Mandel’s Q parameter Q =
−∂2

s θ (s)|s=0/∂sθ (s)|s=0 − 1 [lines in Fig. 4(b)] as a function of
the transverse field strength for system sizes of N = 5, . . . ,7
spins. In addition to the results of the exact diagonalization
approach, Fig. 4 also shows data extracted from quantum jump
Monte Carlo simulations (symbols), which will be discussed
in the following section.

The activity, which is proportional to the magnetization
m, shows the expected behavior as a function of the transverse
field coupling strength �. For small � (m ≈ −1/2) the system
is in an inactive phase with 〈k〉 ≈ 0. In contrast, for large
� (m ≈ 0) the system is in an active phase and the activity
saturates at 〈k〉/κ = N/2 as expected from Eq. (7). Note that
due to the finite size of the system the crossover between
these phases is smooth. The Q parameter is close to zero
in the inactive (small �/κ) as well as in active phase (large
�/κ), indicating a Poissonian distribution of the event counts
in both dynamical phases. It becomes large and positive in
the crossover region, the height of the peak growing with
the system size and its position slightly shifting toward
larger values of �/κ . This region is where we anticipate
dynamical phase coexistence in the thermodynamic limit
(t → ∞, 〈K〉 → ∞ while 〈K〉/t = const < ∞). This is an
indication (but no proof) of the mixing of the two dynamical
phases as would be expected in a region of first-order phase
coexistence.

FIG. 4. (Color online) Numerically determined (a) activity 〈k〉/κ and (b) Mandel Q parameter as a function of �/κ for the one-dimensional
dissipative Ising model in a transverse magnetic field for N = 5, . . . ,7 sites and periodic boundary conditions. The lines show the results of an
exact numerical diagonalization of the generalized master operator and the symbols show the results of quantum jump Monte Carlo simulations
(ensembles of 1000 trajectories of length t = 200κ−1 obtained by slicing a much longer one of length tmax = 2 × 105κ−1).
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To obtain further evidence that the phase-mixing scenario
does indeed hold, one needs further information about the
distribution pK of the event counts. This can be done in
principle by determining higher moments of pK using higher
derivatives of θ (s). This, however, will quickly get intractable
in practice, so we will follow an alternative route to show
that the picture of the mixing of two dynamical phases does
describe the emission dynamics of the system.

D. Numerical analysis: Quantum jump
Monte Carlo simulations

To gain direct insight into the emission characteristics, we
numerically study an unravelling of the full dynamics under
the master operator (1) for spin chains of up to N = 12 sites
using quantum jump Monte Carlo simulations [36]. To connect
with potential experiments we can interpret a single quantum
jump trajectory of the numerical simulation as a time series
of emission events recorded by a detector with temporal and
(for illustration purposes here) also spatial resolution [see
Fig. 1(b)]. For each set of parameters (�,V,κ) this stochastic
dynamics generates an ensemble of quantum jump trajectories.

In Fig. 4 we compare the mean activity and the Q parameter
obtained from quantum jump Monte Carlo simulations for
system sizes of N = 5, . . . ,7 with the results from the exact
diagonalization discussed above and find good agreement be-
tween them. However, while the activity can be obtained very

accurately, the error bars for Q, particularly at intermediate
values of �, are relatively large. This signifies the strongly
fluctuating character of the emission dynamics in the crossover
region and shows that in order to capture the dynamical
behavior of the system in a possible experiment very long
trajectories will be required. Faithfully determining higher
moments of the event count distribution will quickly become
intractable. However, further information about the counting
statistics can still be obtained by resorting to an alternative
way to analyze the emission records. To demonstrate this we
have simulated the emission statistics of a chain of N = 12
spins and analyzed the data by determining the distribution
of activities and studying the distribution of the waiting time
between quantum jumps (Fig. 5).

The mean-field analysis indicates that for certain combi-
nations of (�,V,κ) we should encounter a dynamical phase
transition of first order. The hallmarks of such a transition
would be a bimodal distribution of the activity order parameter
and sharp interfaces at coexistence conditions. We generate
ensembles of trajectories of length t by slicing much longer
trajectories of length tmax � t . The time t can vary, but has
to be long enough so that the dynamics within each phase
is captured, but not too long compared to the persistence
or survival time within each phase, which is finite due to
the finite size of the system. In Fig. 5(a) we show activity
histograms at several values of �/κ for fixed V and two
different values of the time slicing t = 10κ−1 and 50κ−1

FIG. 5. (Color online) Analysis of data from quantum jump Monte Carlo simulations of a one-dimensional open Ising model in a transverse
field with N = 12 spins (κ = 0.1). (a) Activity distributions (units of κ) of trajectories of length t = 10κ−1 (green) and 50κ−1 (transparent with
solid lines) for three different values of �/κ for fixed V = 100κ . These ensembles of trajectories are obtained by slicing longer trajectories
of length tmax = 104κ−1. We also show sample trajectories at the corresponding conditions in which the emission events are site resolved.
(b) Waiting-time distribution p(τ ) (units of κ) for � = 25κ and V = 100κ (crosses in green). The lines represent exponential waiting-time
distributions with time constants 1/kA (solid red line) and 1/kI (dashed blue line). (c) Qτ parameter as a function of the transverse magnetic
field for V = 100κ extracted from the waiting-time distribution. The insets show samples of typical trajectories in each parameter regime. The
maximum of Qτ coincides with highly intermittent dynamics.
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(note that the results for both cases are consistent). For small
(large) values of � the activity is mostly on the inactive
(active) side, as expected from the mean-field analysis. These
distributions show bimodality at intermediate values of �/κ:
One peak corresponds to active and the other one to inactive
dynamics. When this occurs, the corresponding trajectories are
highly intermittent, showing prolonged periods of activity and
prolonged periods of inactivity, delimited by sharp temporal
interfaces as expected from a first-order transition scenario.

Further evidence of this behavior is provided by the
waiting-time distribution p(τ ) of the emission events [see
Fig. 5(b)], which shows the existence of two distinct time
scales corresponding to the typical waiting times within each
phase that govern the dynamics of the system. These two time
scales are 1/kI and 1/kA, which directly relate to the activities
of the coexisting inactive and active phases, which are given
by kI and kA, respectively.

The results shown in Figs. 5(a) and 5(b) suggest that at
the coexistence region the dynamical fluctuations of the open
Ising model are dominated by the switching between active
and inactive behavior rather than fluctuations within each of
these phases. Disregarding intraphase fluctuations completely,
we can approximate the waiting-time distribution by the sum
of two exponentials

p(τ ) = αk2
I e

−kI τ + (1 − α)k2
Ae−kAτ

αkI + (1 − α)kA

,

i.e., we assume that the active (inactive) dynamics is Pois-
sonian with an average number of events per unit time kA

(kI ). The lines in Fig. 5(b) represent these two contributions,
where kI and kA are extracted from the numerical simulation.
The mixing of the two dynamical phases is described by
the parameter α = 0, . . . ,1, which determines the point at
which the two lines in Fig. 5(b) cross (in the particular case
shown α ≈ 0.5). The dynamical behavior in the intermediate
region is strongly mixed and highly non-Poissonian due to the
coexistence between two very distinct (close to) Poissonian
phases.

Intermittency in the dynamical trajectories corresponds
to large fluctuations of the times between quantum jumps.

In order to quantify these fluctuations we use the function
Qτ = 〈τ 2〉/〈τ 〉2 − 2 [37], where 〈τλ〉 = ∫ ∞

0 dτ τλp(τ ) stands
for the λth moment of p(τ ). This function reaches its minimum
Qτ = −1 if the waiting-time distribution gives rise to a
completely regular distribution of the quantum jumps without
statistical fluctuations. It assumes the value Qτ = 0 when
p(τ ) is an exponential distribution, that is, if the distribution
of quantum jumps is Poissonian. When the fluctuations of
times between jumps are large, it assumes a positive value
Qτ > 0. The behavior of Qτ as a function of �/κ is shown in
Fig. 5(c). It does indeed peak for values of the parameters for
which the activity is bimodal and the trajectories intermittent.
Far from the coexistence region Qτ drops to values close to
zero, suggesting that fluctuations within each phase are well
approximated by a Poisson process, at least for the long time
scales relevant for the discussion here.

IV. CONCLUSION

We have shown that the concept of a dynamical activity
order parameter can be successfully applied to characterize
and understand complex dynamical behavior of a many-body
quantum system. We have established a general connection
between static observables and the dynamical order parameter.
For the dissipative Ising model studied here we have identified
a first-order dynamical phase transition and showed that
coexistence of two dynamical phases gives rise to pronounced
intermittency of the bath quanta emission.
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