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Two-body and three-body spin substructures serve as building blocks in small spin-3 condensates
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It is found that stable few-body spin structures, pairs and triplexes in the spin space, may exist as basic
constituents in small spin-3 condensates, and they play the role of building blocks when the parameters of
interaction fall in particular domains. A specific method is designed to find these constituents.
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I. INTRODUCTION

When the structure of a few-body fermion system is very
stable, it may become a basic constituent of many-body
systems. For an example, the structures of light nuclei can
be explained based on the cluster model, where the α particle
is the building block [1,2]. Another famous example is the
Cooper pair in condensed matter [3,4]. This pair is responsible
for superconductivity. For boson systems, the situation is a
little different because all the particles might have the same
spatial wave function. However, the existence of basic spin
substructures in spin space is possible. For Bose-Einstein
condensates of spin-1 and spin-2 atoms, basic few-body
substructures have already been proposed by theorists. For
spin-1 condensates, the interaction can be written as

Vij = δ(r i − r j )
∑

S

gSPS, (1)

where S is the combined spin of i and j and has two possible
values, 0 or 2. PS is the projector of the S channel, and gS

is the strength proportional to the s-wave scattering length of
the S channel. When g2 − g0 is positive, the ground state will
have total spin F = 0 (1) when the particle number N is even
(odd) [5–8]. The ground-state wave function �g is proportional
to the pair state P̃N [(ςς )0]N/2 or P̃Nς [(ςς )0](N−1)/2, where
ς denotes the spin state of a spin-1 atom, a pair of them
are coupled to zero, and P̃N is the symmetrizer (simply a
summation over the N ! permutation terms). For higher states,
say, the one with F = 2, the total spin state is proportional to
P̃N (ςς )2[(ςς )0](N−2)/2. Thus, the singlet pair (ςς )0 appears
as a common building block in the spin space. These pairs,
together with a few other substructures, constitute all the low-
lying states.

For spin-2 condensates, the interaction can also be written
as Eq. (1), but with S = 0, 2, and 4. A detailed classification of
the spin states based on the seniority and the total spin F was
given in Ref. [7]. When N is even and 7

10 (g0 − g4) < (g2 −
g4) < − 7(N+3)

10(N−2) (g0 − g4), �g is also dominated by the singlet

pairs and is proportional to the pair state P̃N [(ηη)0]N/2, where
η denotes the spin state of a spin-2 atom. When N is a multiple
of 3 and (g2 − g4) is negative and smaller than 7

10 (g0 − g4),
�g is nearly proportional to the triplex state P̃N [((ηη)2η)0]N/3.
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Obviously, the triplex ((ηη)2η)0 acts as a building block in the
spin space. Furthermore, when the parameters of interaction
fall inside the indicated domain, the low-lying states are also
dominated by these building blocks, accompanied by a few
other substructures.

It is evident that the existence of building blocks originates
from special features of the interaction. The pairs (ςς )S
and (ηη)S may appear as building blocks whenever gS is
sufficiently negative. For spin-f atoms with f even, instead of
the pairs, a more favorable substructure might be a triplex as
shown above with f = 2. Let ϑ denote the spin state of a spin-
f particle. For the triplex state P̃N ((ϑϑ)f ϑ)λ, the symmetrizer
P̃N is not necessary when λ = 0 because ((ϑϑ)f ϑ)0 itself
is symmetric [i.e., ((ϑ(i)ϑ(j ))f ϑ(k))0 = ((ϑ(j )ϑ(k))f ϑ(i))0

as can be verified by recoupling the spins]. This implies
that every two spins are coupled to f . Thereby the binding
will be maximized if gf is sufficiently negative. Intuitively
speaking, the relative orientations of the three spins in the
λ = 0 triplex are shown in Fig. 1(b), where the angles between
every two spins are 120◦ to assure that they are coupled to f .
Therefore, for spin-f condensates, one can predict that the
λ = 0 triplexes will serve as building blocks in spin space
when gf is sufficiently negative (note that the λ = 0 triplex is
prohibited when f is odd).

The ground-state structure of spin-3 condensates has
already been studied based on the mean-field theory (MFT)
[9–11]. In this theory the spin structure is described by the
phases of spinors. They will have the polar phase (correspond-
ing to the pair state) when g0 is sufficiently negative and have
the cyclic phase (corresponding to the triplex state) when g0

becomes positive. If a magnetic field is applied, a number of
phases will emerge. Instead of using the spinors and going
beyond the MFT, in this paper we attempt to describe the spin
structures based on the basic constituents. From the experience
with spin-1 and -2 condensates, it is expected that pairs and
triplexes might also appear in spin-3 condensates when the
parameters of interaction are appropriate. We are going to
search for these basic constituents. Due to the difficulty in
calculation, only small condensates (N is small) are concerned.
We believe that the knowledge from small systems will
help us to understand better the larger systems. Due to the
prohibition of the λ = 0 triplex, only λ �= 0 triplexes could
emerge in spin-3 systems. Since each λ triplex has 2λ + 1 mag-
netic components, additional complexity will arise as shown
below.
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FIG. 1. Basic constituents of condensates in spin space: the pair
(a) and triplex (b). In these diagrams the spatial locations of the spins
are not meaningful, only their relative orientations.

II. HAMILTONIAN, EIGENSTATES, AND PARTICLE
CORRELATION

Let N spin-3 atoms be confined by an isotropic and
parabolic trap with frequency ω. The interaction between
particles i and j is Vij = δ(r i − r j )

∑
S gSPS + Vdd, where

Vdd is the dipole-dipole interaction. Let the wave function for
the relative motion of i and j be ψlSJ , where l is the relative
orbital angular momentum, and l and S are coupled to J . Then,
for l = 0, the matrix element 〈ψl′S ′J |Vdd|ψ0SJ 〉 is nonzero
only if l′ = 2. This implies that Vdd will play its role only
if accompanied by a d-wave spatial excitation. It is assumed
that ω is so large that 〈ψ2S ′J |Vdd|ψ0SJ 〉 � 2h̄ω. In this case the
effect of Vdd is suppressed so that it can be neglected. Note that,
in general, Vdd will be important in spin evolution where higher
partial waves emerge. However, this is not the case for an
equilibrium state in a strong isotropic trap at very low temper-
ature [10–12]. Furthermore, we consider a small condensate so
that the size of the condensate is smaller than the spin healing
length. In this case the single-spatial-mode approximation
(SMA) is reasonable and is therefore adopted [13].

Let the common spatial wave function be φ(r). Under the
SMA, after integration over the spatial degrees of freedom, we
arrive at a model Hamiltonian

Hmod =
∑
i<j

V ′
ij , (2)

where V ′
ij = ∑

S GSPS , GS = gS

∫ |φ(r)|4d r .
For diagonalizing Hmod, the set of normalized and sym-

metrized Fock states

|α〉 = ∣∣Nα
3 ,Nα

2 ,Nα
1 ,Nα

0 ,Nα
−1,N

α
−2,N

α
−3

〉
≡ 1√

N !Nα
3 ! · · · Nα

−3!

× P̃N

{∏
i3

χ3(i3)
∏
i2

χ2(i2) · · ·
∏
i−3

χ−3(i−3)

}
(3)

are used as basis functions, where χμ(i) is the spin state of the
ith particle in component μ (from 3 to −3), iμ runs from 1 to
Nα

μ , and Nα
μ is the number of particles in μ,

∑
μ Nα

μ = N , and∑
μ μNα

μ = M , where M is the magnetization. Incidentally,
the creation and annihilation operators of bosons are not used
in this paper. Since the |α〉’s as a whole form a complete set,
once the matrix elements 〈α′|Hmod|α〉 have been calculated,
exact eigenenergies and eigenstates of Hmod can be obtained
via diagonalization (the details are referred to [14]). Obviously,
both the total spin F and its Z component M are conserved
when Vdd is neglected.

Let the ith eigenstate be denoted as ψi with total spin F (i)
and magnetization M(i). The state can be expanded as ψi =∑

α cα|α〉. Since one can extract a particle from a Fock state,
one can also extract a particle from ψi via the expansion as

ψi ≡
∑

μ

χμ(1)ψi
μ,

(4)

ψi
μ =

∑
α

cα

√
Nα

μ

N

∣∣ · · · ,Nα
μ − 1, · · · 〉.

With Eq. (4), we know that the probability of a particle being
in μ is just

P i
μ ≡ 〈

ψi
μ

∣∣ψi
μ

〉
. (5)

The probabilities fulfill
∑

μ P i
μ = 1. P i

μ is called the one-body
probability, and NP i

μ is just the average population of the μ

component.
If one more particle is further extracted, in a similar way,

we have

ψi =
∑
μ,ν

χμ(1)χν(2)ϕi
μν. (6)

We define

P i
μν ≡ 〈

ϕi
μν

∣∣ϕi
μν

〉
. (7)

These probabilities fulfill P i
μν = P i

νμ,
∑

μν P i
μν = 1, and∑

ν P i
μν = P i

μ. When two particles are observed simultane-
ously, obviously the probability of one being in μ and the
other one in ν is P i

μν + P i
νμ (if μ �= ν) or P i

μμ (if μ = ν). P i
μν

is called the correlative probability of spin components.
Let Eq. (6) be rewritten as

ψi =
∑
S,mS

[χ (1)χ (2)]S,mS

∑
μ

C
S,mS

3,μ,3,mS−μϕi
μ,mS−μ. (8)

Then, the probability of a pair of particles coupled to S and
mS is

P i
S,mS

=
∑
μ′,μ

C
S,mS

3,μ′,3,mS−μ′C
S,mS

3,μ,3,mS−μ

× 〈
ϕi

μ′,mS−μ′
∣∣ϕi

μ,mS−μ

〉
. (9)

One can prove from symmetry that P i
S,mS

= P i
S,−mS

when
M(i) = 0, and the 2S + 1 magnetic members P i

S,mS
are equal

to each other when F (i) = 0. Furthermore, we define

Pi
S =

∑
mS

P i
S,mS

, (10)

which is the probability that the spins of an arbitrary pair are
coupled to S. In general, Pi

S can provide information on the
possible existence of two-body substructures as shown below.

As an example, let the normalized pair state be denoted as

�polar = γ P̃N [(χχ )0]N/2, (11)

where γ = [N !( 2
7 )N/2(N/2)! (N+5)!!

5!! ]−1/2 is the constant for
normalization (refer to Appendix A). Since

P̃N [(χχ )0]N/2 =
∑
S,mS

[χ (1)χ (2)]S,mS
BS,mS

× P̃N−2(χχ )S,mS
[(χχ )0](N−4)/2, (12)
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TABLE I. P
polar
S , the probability that a pair of particles in the polar

state are coupled to S.

S 0 2 4 6

P
polar
S

9(N+5)
63(N−1)

10(N−2)
63(N−1)

18(N−2)
63(N−1)

26(N−2)
63(N−1)

where

BS,mS
= N [δS,0δmS,0 + (−1)mS 2(N/2 − 1)/7]. (13)

By making use of the formulas in Appendix A, one can
prove that all the P i

S,mS
of the pair state are equal to 2(N−2)

63(N−1)

with the only exception P i
0,0 = 9(N+5)

63(N−1) . From these data, we

obtain the Pi
S of the pair state, denoted as P

polar
S , listed in

Table I.
Note that, if the two particles are completely free (namely,

their spin state is either [χμ(1)χν(2) + χμ(2)χν(1)]/
√

2 (if
μ �= ν) or χμ(1)χν(2) (if μ = ν), and the 28 choices of
combination with μ �= ν and μ = ν are considered as having
equal weight), simply from the geometry, we will have
Pfree

S = (2S + 1)/
∑

S ′ (2S ′ + 1), where S ′ covers 0, 2, 4, and
6. Therefore, Pfree

S = 0.036, 0.179, 0.321, and 0.464 for
S = 0, 2, 4, and 6, respectively, whereas for the pair state,
P

polar
S = 0.143, 0.158, 0.286, and 0.413 when N → ∞. Thus

the ratios P
polar
S /Pfree

S are 4.0, 0.89, 0.89, and 0.89, where the
ratio with S = 0 is remarkably large. Thus the big ratio is a
signal of the importance of the singlet pairs.

The spin-spin correlation cannot be studied perfectly by
MFT. The one-body and correlative probabilities together will
help us to understand better the spin structures. In the fields of
atomic and nuclear physics, it was found that the structures
depend on N sensitively (the properties of an even-even
nucleus are quite different from those of its neighboring
even-odd nuclei). Since N is assumed to be small in this
paper, the N dependence of condensates is also studied in
the following.

III. POPULATIONS OF THE SPIN COMPONENTS OF THE
GROUND STATES

We shall first study 52Cr atoms as representative of
spin-3 species. These atoms have g6 = 59.40 meV Å3, g4 =
0.5178g6, and g2 = −0.0625g6, while g0 is unknown. In
what follows G6 = g6

∫ |φ(r)|4d r is considered as the unit
of energy, and g0 is variable. The one-body probabilities P i

ν

are first studied.
When N is even and g0 → −∞, it has been proved that

the ground state ψ1 is exactly the pair state �polar written in
Eq. (11) [7,14]. Obviously, the pair state has F = 0. It is a
common feature that the P i

ν of all the F = 0 states do not
depend on ν due to the isotropism. Therefore, all of them are
equal to 1/(2f + 1) = 1/7.

When N is odd and g0 → −∞, ψ1 is just the odd pair state
written as

�odd polar,μ = γ ′P̃Nχμ[(χχ )0](N−1)/2, (14)

where γ ′ = [N !( 2
7 )(N−1)/2(N−1

2 )! (N+6)!!
7!! ]−1/2 is the constant of

normalization (refer to Appendix A). Obviously, this state has

TABLE II. One-body probability P odd polar,μ
ν , where μ is the spin

component of the single (unpaired) particle in the odd polar state, and
ν denotes the component of the particle under observation.

μ �= 0 μ �= 0 μ �= 0 μ = 0 μ = 0
ν = μ ν = −μ ν �= |μ| ν = 0 ν �= 0

2N+7
9N

2(N−1)
9N

N−1
9N

3(N+2)
9N

N−1
9N

F = 3. The associated one-body probability P
odd polar,μ
ν has

the analytical form given in Table II (the derivation is given in
Appendix B). For the case with a large N , it is shown in this
table that P

odd polar,μ
ν depend on N very weakly. When the spin

of the unpaired particle has μ = 0, we know from Table II that
the average population with ν = 0 is the largest and is nearly
three times as large as those with ν �= 0. When μ �= 0, the
populations with ν = μ and −μ are the largest two and they
are nearly twice as large as those with ν �= |μ|. On the other
hand, it is recalled that P

polar
ν = 1/7 which is greatly different

from P
odd polar,μ
ν . Thus, the populations of the spin components

of a pair state will undergo a great change when a particle with
a given μ is added into the state. This will happen even when
N is very large. Such special even-odd dependence could be
revealed by measuring the one-body probabilities if the polar
state can be prepared.

When g0 increases from −∞ but is still negative, ψ1

with even N will still be more or less close to �polar. If the
magnitudes of g2, g4, and g6 were small, then ψ1 would be
closer. However, for realistic 52Cr, g4 and g6 are not small.
To see how much ψ1 deviates from the pair state, 〈�polar|ψ1〉
has been calculated. If g0/g6 = −1, −2, and −4, respectively,
〈�polar|ψ1〉 = 0.838, 0.936, and 0.981 when N = 12. This set
of values will become 0.706, 0.841, and 0.937 when N = 18.
Thus the deviation is not small unless g0 is very negative.

For 52Cr, the one-body probabilities P 1
3 of ψ1 with M = 0

are plotted against g0/g6 in Fig. 2. The curves at the left side
of Fig. 2(b) with even N are horizontal lines. They have the
same value 1/7, implying that ψ1 retains F = 0. The curves
at the left side of Fig. 2(a) with odd N are close to each other,
implying a weak dependence on N when N retains being odd.
They are flat and have their values ≈0.038, which deviates
explicitly from P

odd polar,0
3 ≈ 0.103 given in Table II. It implies

that the deviation between ψ1 and �odd polar,0 is not small when
g0 is close to − 0.1.

By comparison of the right side of Fig. 2(a) with that
of Fig. 2(b), the even-odd dependence is clearly shown. In
addition, the curves with N = 15 and 18 are distinct. This
implies that N = 3K (K is an integer) is special. It is recalled
that, for spin-2 condensates with a sufficiently negative g2, the
ground state is formed by the triplex [(ηη)2η]0 [7,15,16]. The
finding of the 3K dependence in spin-3 condensates is a hint
that three-body substructures might exist as well.

In Fig. 2 the domain of g0 is roughly divided into three
regions. At the left side (region I) the curves depend on g0

mildly, and the singlet pairs play an important role. At the right
side (region III) the curves depend on g0 also mildly, where
three-body substructures might exist. In between (region II,
roughly from g0/g6 = 0 to 0.1) the curves vary with g0 very
swiftly, implying a swift change in spin structure. In addition,
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FIG. 2. (Color online) P 1
3 of the ground state ψ1 with M = 0

against g0/g6. g2, g4, and g6 are given at the experimental values of
52Cr. The values of N are marked by the curves. The total spin F of
ψ1 is given inside the parentheses; it will jump whenever g0 crosses
a critical point. Note that NP i

ν is the average population of the ν

component of the ψi state.

a critical point may appear in this region (e.g., g0/g6 = 0.079
is a critical point when N = 18 and M = 0), where P 1

3 varies
abruptly. Once g0 crosses a critical point F might change
suddenly, implying a transition of spin structure.

Incidentally, according to the MFT, there are also three
regions. The phases of the ground state in these regions
are named maximum polar (A), collinear polar (B), and
biaxial nematic (C) in Ref. [9] when g0 varies from nega-
tive to positive, The associated spinors are (1,0,0,0,0,0,1),
(a,0,beiδ,0,beiδ,0,a), and (a,0,b,0,c,0,d). The critical point
between A and B is g0/g6 = 0.079. In Ref. [10], the
three phases are named the polar phase, the mixed
phase, and the cyclic phase. The associated spinors are
(cos θ,0,0,0,0,0, sin θ ), (0,a,0,b,0,a,0), and (a,0,b,0,b,0,a),
respectively (the third spinor may mix with the second spinor
in the mixed phase). In this paper a different language is used
so that the structures can be understood via a different path.

IV. CORRELATIVE PROBABILITIES OF THE GROUND
STATES

The curves at the left side of Fig. 2(b) are horizontal until
the critical point. However, the spin structures are in fact
changing in this broad region. This example demonstrates that
the information provided by the one-body probabilities is not
sufficient. Therefore, the correlative probabilities are further

TABLE III. P polar
μν , the correlative probabilities of the polar state.

(μ,ν) (0,0) (μ �= 0, −μ) (μ �= 0,μ) Otherwise

P polar
μν

3(N+1)
63(N−1)

2N+5
63(N−1)

2(N−2)
63(N−1)

N−2
63(N−1)

studied. First, for the pair state, the probabilities P
polar
μν are

given in Table III (the derivation is referred to Appendix C).
It is shown that P polar

μν are all nearly independent of N unless
N is small. The largest component is P

polar
0,0 . The probabilities

of being spin parallel and spin antiparallel, i.e., P
polar
μ,μ and

P
polar
μ,−μ, are equal when N → ∞.

Examples of P 1
μν of ψ1 with even N are given in Fig. 3. The

curves with N = 18 are also distinct and jump up suddenly
at the critical point. The jump is accompanied by a change of
the total spin F from 0 to 2, implying a transition. Since the
curves vary rapidly in the neighborhood of the critical point,
strong adjustment in structure happens right before and after
the transition. The strong adjustment in the neighborhood of
the critical point is a notable phenomenon. The curves with
N = 16 and 20 are similar to each other. In particular, they
retain their F = 0 and accordingly they do not have the sudden
jump. The critical point will appear whenever N is a multiple of
3 and will shift a little to the left when N becomes larger (e.g.,
they appear at g0/g6 = 0.252, 0.079, and 0.075, respectively,
when N = 12, 18, and 24). The shift will be very small if
�N/N is small.

The curves of P 1
μν with odd N are in general very different

from those with even N . They also exhibit the 3K dependence
and contain critical points in region II. For an example, there

FIG. 3. (Color online) P 1
μν of the ground state ψ1 of 52Cr against

g0/g6. N is even and is marked by the side of each curve, and M = 0.
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TABLE IV. P1
S/P

free
S of the ground states of 52Cr with N = 18,

M = 0, and g0 at five presumed values.

P1
S/P

free
S S = 0 S = 2 S = 4 S = 6

g0/g6 = −0.2 4.58 1.78 0.14 1.02
g0/g6 = 0.07 2.44 1.90 0.50 0.89
g0/g6 = 0.09 0.75 1.92 0.83 0.78
g0/g6 = 0.5 0.04 1.88 1.02 0.72
g0/g6 = 1 0.01 1.87 1.04 0.72

are two critical points appearing at g0/g6 = 0.058 and 0.067
when N = 15 and M = 0. Accordingly, F jumps from 3 to 1
and then to 2 when g0 increases.

V. MIXING OF S = 0 AND 2 PAIRS

Let us study Pi
S , the probabilities of the spins of two

particles being coupled to S. P1
S of ψ1 is close to P

polar
S when

N is even and g0 → −∞. When g0 is not so negative, examples
of P1

S/P
free
S are listed in Table IV, where g0/g6 = −0.2 is in

region I, 0.07 and 0.09 are in region II and lying by the left
and right sides of the critical point (at 0.079), and 0.5 and 1
are in region III.

We found that P1
0/P

free
0 is quite large when g0/g6 = −0.2.

This implies a preference for the singlet pairs. However,
the four ratios P1

S/P
free
S as a whole deviate explicitly from

P
polar
S /Pfree

S . Therefore ψ1 is quite different from that of the
pair state. When g0 increases further, the ratio with S = 0
keeps on decreasing. In particular, it decreases very rapidly
when g0 is passing through the critical point. On the other
hand, the probability of the S = 2 pair remains larger. In
particular, it becomes the largest when g0 is larger than the
critical value. Therefore, the dominance of the singlet pairs is
gradually replaced by dominance of the S = 2 pairs. Hence,
for N even, we define a set of basis functions formed by the
two kinds of pairs as

�
pairs
j = βj P̃N {[(χχ )0]Kp [(χχ )2,2]K2

· · · [(χχ )2,−2]K−2}, (15)

where j denotes the set (Kp,K2, . . . ,K−2) of non-negative
integers, and their sum is N/2. βj provides the normalization.
The space expanded by �

pairs
j is much smaller than that

expanded by the Fock state. For example, if N = 18 and
M = 0, the numbers of Fock states and �

pairs
j are 3486 and 148,

respectively. The eigenstates can be approximately expanded
as

ψi ≈
∑

j

bj�
pairs
j ≡ ψ̃i, (16)

where bj can be obtained via a diagonalization of Hmod in the
much smaller space (note that �pairs

j are not exactly orthogonal
to each other).

The overlap |〈ψ̃1|ψ1〉| of the approximate and exact ground
states against g0 is plotted in Fig. 4. The solid curve (N = 18)
is extremely close to 1 when g0 is below the critical point. This
confirms the physical picture that both the S = 0 and 2 pairs
are building blocks. However, the solid curve has a sudden
fall at the critical point. Thus the picture is spoiled when g0

FIG. 4. (Color online) The overlap |〈ψ̃1|ψ1〉| of the exact ground
state ψ1 of 52Cr (the one expanded in Fock states) and the
corresponding approximate state ψ̃1 (using the S = 0 and 2 pairs
as building blocks) against g0. N = 18 (solid) and 16 (dashed), and
M = 0.

is larger, and we have to look for other structures. The dashed
curve (N = 16) represents the case without a transition, where
a swift descent replaces the sudden fall.

VI. CANDIDATES FOR THREE-BODY SUBSTRUCTURES
AND THE TRIPLEX STATES

In order to see whether three-body substructures exist in
region III, let us first analyze a three-body spin-3 system. Let

ξσλmλ
= βσλP̃3((χχ )σχ )λmλ

(17)

be a spin state of the three-boson system, where two spins are
first coupled to σ . Then they are coupled to λ and mλ, the total
spin and its Z component. βσλ provides the normalization. In
total there are eight independent ξσλ (the subscript mλ can be
neglected) given in the top row of Table V. Those not listed
in the table are linear combinations of them (e.g., ξ2,1 ≡ ξ4,1).
Each of them represents a specific three-body spin structure.
Incidentally, these eight ξσλ are exactly orthogonal to each
other except for ξ2,3 and ξ4,3.

By extracting two particles from ξσλ, one can define and
calculate the probabilities pσλ

S that the two spins are coupled
to S. They are given in Table V. If a three-body substructure
is a basic constituent, it must be very stable. Since pσλ

6 of
ξ2,1 and ξ4,3 are zero or extremely small, the repulsion arising
from g6 can be avoided in them. Therefore ξ2,1 and ξ4,3 will be
relatively more stable when g6 is more positive than the others.
In a further competition between ξ2,1 and ξ4,3, if g4 is negative
and g2 is positive, ξ4,3 will be more stable due to having a large
pσλ

4 . On the contrary, if g4 is positive and g2 is negative, ξ2,1

will be more stable.
To evaluate the importance of a substructure quantitatively,

from an N -body spin state ψi , we define �i
σλmλ

≡ 〈ξσλmλ
|ψi〉,

which is an (N − 3)-body spin state. Then, for three arbitrary
particles in ψi , the probability that they form the ξσλ substruc-
ture is Qi

σλ ≡ ∑
mλ

〈�i
σλmλ

|�i
σλmλ

〉. Note that Qi
σλ depends

on the total spin of ψi , F (i), but not on M(i) because of the
summation over mλ. If the particle correlation is removed, the

043616-5



C. G. BAO PHYSICAL REVIEW A 85, 043616 (2012)

TABLE V. The probabilities pσλ
S that a pair of particles are coupled to S in the three-body states ξσλ.

σ,λ 2,1 2,3 4,3 2,4 2,5 4,6 4,7 6,9

pσλ
0 0 0.094 0.108 0 0 0 0 0

pσλ
2 0.524 0.484 0.135 0.611 0.413 0 0 0

pσλ
4 0.476 0.211 0.753 0.061 0.234 0.727 0.515 0

pσλ
6 0 0.211 0.003 0.328 0.353 0.273 0.485 1

corresponding probability will be Qfree
σλ ≡ 2λ+1∑

λ′ (2λ′+1) where the
summation over λ′ covers the eight states listed in Table V
(i.e., λ′ = 1, 3, 3, 4, 5, 6, 7, and 9, where λ′ = 3 should be
counted twice). Then, we define the ratio ρi

σλ ≡ Qi
σλ/Q

free
σλ .

If this quantity is much larger than 1, the substructure ξσλ is
much preferred.

As an example, we leave 52Cr for a while and assume that
g6 = 1, g4 = −1, g2 = 0.2, and g0 = −0.2. Since g4 has been
chosen to be rather negative, ξ4,3 is expected to be important.
To verify, the ratios denoted as ρ1

σλ(A) for the ground state
with N = 18 are listed in Table VI.

It is shown that ρ1
4,3(A) is particularly large. Therefore ξ4,3

is highly preferred by the ground state as expected, and one
might further expect that the triplex ξ4,3 might play a role as a
building block. To clarify, we introduce a set of basis functions
for the case with N = 3K as

�
triplex
j = β ′

j P̃N {[ξ4,3,3]K3 [ξ4,3,2]K2 · · · [ξ4,3,−3]K−3}, (18)

in which
∑

μ Kμ = N/3 and
∑

μ μKμ = M . For N = 18 and
M = 0, there are totally 58 basis functions, much smaller than
the number 3486 of the Fock-states. After a diagonalization of
Hmod in the 58-dimensional space, we obtain the approximate
eigenstates ψ

triplex
i = ∑

j dj�
triplex
j to be compared with the

exact eigenstates ψi . It turns out that |〈ψ triplex
i |ψi〉| = 0.999,

0.996, and 0.990 for i = 1, 2, and 3, respectively [they are the
three lowest states having F (i) = 0, 4, and 6, respectively].
Such a great overlap confirms that, as in the spin-2 condensates,
the triplex structure exists also in spin-3 condensates. However,
the triplex of spin-2 condensates has λ = 0; thus there is only
one kind of building block, whereas the triplex now has λ = 3
and therefore has 2λ + 1 = 7 kinds of building block. This
leads to complexity.

We go back to the case of 52Cr atoms. Let g2, g4, and g6

be set at the experimental values and g0/g6 at some presumed
positive values (i.e., only g2 is negative). Since ξ4,3 has a large
P σλ

4 , it is no longer superior. Instead, ξ2,4 might be important
due to having a very small P σλ

4 . When g0/g6 = 0.5, the ratios
denoted as ρ1

σλ(B) have been calculated and they are listed in
the bottom row of Table VI, where both ρi

2,1 and ρi
2,4 are large

due to having a larger P σλ
2 . Therefore, in total the 12 ξ2,1,mλ

and ξ2,4,mλ
are used as building blocks, and we define another

set of basis functions as

�
tri,tri
j = β ′′

j P̃N

{(∏
ma

[ξ2,1,ma
]Ka,ma

)

×
(∏

mb

[ξ2,4,mb
]Kb,mb

)}
, (19)

where ma runs from −1 to 1, mb from −4 to 4,
∑

ma
Ka,ma

+∑
mb

Kb,mb
= N/3, and

∑
ma

maKa,ma
+ ∑

mb
mbKb,mb

= M .
The number of �

tri,tri
j is 758 when N = 18 and M = 0.

However, only 615 of them are linearly independent. With
�

tri,tri
j , we have calculated the approximate eigenstate ψ

tri,tri
i ′ at

five values of g0/g6 (where two negative values are included
for a comparison), and the overlaps |〈ψ tri,tri

i ′ |ψi〉| are listed
in Table VII. Recall that g0/g6 = 0.079 is a critical point.
Once g0/g6 is larger than the critical point, the overlaps are
very close to 1. Thus the picture of triplexes is theoretically
confirmed, whereas this picture is not well established when
g0 is smaller than the critical point, where the S = 0 and 2
pairs are dominant.

VII. FINAL REMARKS

Instead of using the MFT, a language from few-body
theory is used in this paper. We have shown theoretically the
existence of stable two- and three-body structures as building
blocks in small spin-3 condensates. The ratios Pi

S/P
free
S and

Qi
σλ/Q

free
σλ ≡ ρi

σλ defined in this paper are important in the
search for these basic constituents. The reason leading to
the appearance of these constituents is explained based on the
features of the interaction, whereas, in the MFT, the physics
underlying the appearance of a specific spinor is not easy to
clarify.

The calculation in this paper concerns only small spin-3
condensates (N � 24). For spin-2 condensates, it has been
proved theoretically that the fact that pairs and triplexes appear
as building blocks does not depend on N (In fact, the picture of
the triplexes would become even clearer when N → ∞ [7]).
It has also been proved that the existence of the pairs in spin-3
condensates does not depend on N [7,14]. Thus the existence
of triplexes as building blocks in large spin-3 condensates is
very probable; nonetheless it deserves further study.

TABLE VI. ρ1
σλ of the ground state with N = 18. The parameters of interaction associated with the cases A and B are given in the text.

σ,λ 2,1 2,3 4,3 2,4 2,5 4,6 4,7 6,9

ρ1
σλ(A) 0.099 0.119 4.425 0.032 0.069 1.813 0.967 0.204

ρ1
σλ(B) 3.485 1.180 1.011 2.399 1.231 0.728 0.752 0.390
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TABLE VII. The overlap |〈ψ tri,tri
i′ |ψi〉|, where ψ

tri,tri
i′ is the triplex state formed by using ξ2,1,mλ

and ξ2,4,mλ
as building blocks. N = 18 and

12 and M = 0 are given. The parameters g2, g4, and g6 are from the experimental data of 52Cr, while g0/g6 is denoted as g′ and given at five
values. i ′ is so chosen that, if ψi is the kth eigenstate of the series with F = F (i), then ψ

tri,tri
i′ is also the kth state of the series of triplex states

with F (i ′) = F (i). F (i) are given in parentheses following the overlaps.

g′ = −1 g′ = −0.5 g′ = 0.1 g′ = 0.5 g′ = 1

|〈ψ tri,tri
i′1

|ψ1〉|N=18 0.908 (0) 0.958 (0) 1.000 (2) 0.998 (2) 0.983 (2)

|〈ψ tri,tri
i′2

|ψ2〉|N=18 0.859 (2) 0.935 (2) 1.000 (0) 0.998 (2) 0.998 (4)

|〈ψ tri,tri
i′3

|ψ3〉|N=18 0.915 (4) 0.959 (4) 1.000 (2) 0.999 (0) 0.981 (2)

|〈ψ tri,tri
i′1

|ψ1〉|N=12 0.861 (0) 0.934 (0) 1.000 (0) 0.997 (2) 0.988 (2)

|〈ψ tri,tri
i′2

|ψ2〉|N=12 0.756 (2) 0.869 (2) 1.000 (2) 0.999 (0) 0.998 (0)

|〈ψ tri,tri
i′3

|ψ3〉|N=12 0.813 (4) 0.905 (4) 1.000 (3) 0.999 (1) 0.998 (1)
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APPENDIX A: ITERATION RELATIONS

For the pair state and odd-pair state the following equations
relating an N -body and an (N − 2)-body systems are very
useful:

N (N)
0 ≡ 〈P̃N [(χχ )0]N/2|P̃N [(χχ )0]N/2〉,

= 1
7N2(N − 1)(N + 5)N (N−2)

0 , (A1)

N (N)
odd ≡ 〈P̃Nχμ[(χχ )0](N−1)/2|P̃Nχμ[(χχ )0](N−1)/2〉

= 1
7N (N − 1)2(N + 6)N (N−2)

odd , (A2)

N (N)
S,mS

≡ 〈P̃N (χχ )SmS
[(χχ )0](N−2)/2|P̃N (χχ )SmS

× [(χχ )0](N−2)/2〉
= 1

7N (N − 1)(N − 2)(N + 7)N (N−2)
S,mS

, (A3)

where P̃N denotes a summation over the N ! permutation terms.
Equation (A3) holds only if S �= 0 [if S = 0, then Eq. (A1)
should be used]. By making use of these equations, related
matrix elements can be derived via iteration. For example, the
constant of normalization γ can be obtained from Eq. (A1)
and γ ′ from Eq. (A2).

APPENDIX B: THE ONE-BODY PROBABILITIES
OF ODD-PAIR-STATES

One can extract a particle (say, particle 1) from an odd-pair
state as

P̃Nχμ[(χχ )0]K =
∑

ν

χν(1)

{
δμ,νP̃N−1[(χχ )0]K

− (N − 1)
(−1)ν√

7

∑
S

C
S,μ−ν

3μ,3,−ν

× P̃N−1(χχ )S,μ−ν[(χχ )0]K−1

}
, (B1)

where K = (N − 1)/2, the Clebsch-Gordan coefficients have
been introduced, and only even S are included in the summa-
tion. Then, from the definition of the one-body probability, we

have

P odd polar
ν = δμ,ν

4K + 7

7

N (N−1)
0

N (N)
odd

+ 4K2

7

∑
S

(
C

S,μ−ν

3μ,3,−ν

)2 N
(N−1)
S,μ−ν

N (N)
odd

. (B2)

We mention that the expression of N (N−1)
S,μ−ν depends on

whether S is zero or nonzero. With this in mind, after a
simplification, Eq. (B2) leads to the expressions given in the
text.

APPENDIX C: THE CORRELATIVE PROBABILITIES
OF PAIR STATES

One can extract two particles (say, 1 and 2) from a pair state
as

P̃N [(χχ )0]N/2

= N
∑
μν

χμ(1)χν(2)

{
δμ,−νC

0,0
3μ,3νP̃N−2[(χχ )0](N−2)/2

+ (N − 2)
∑

S

(2S + 1)U

⎛
⎜⎝

3 3 0

3 3 0

S S 0

⎞
⎟⎠ C

0,0
S,μ+ν,S,−μ−ν

×C
S,μ+ν

3μ,3ν P̃N−2(χχ )S,−μ−ν[(χχ )0](N−4)/2

}
, (C1)

where the Clebsch-Gordan and 9j coefficients have been
introduced, and only even S are included in the summation.
Then, from the definition of the correlative probability, we
have

P polar
μν =

(
N

7

)2
[
δμ,−ν(2N + 3)

N (N−2)
0

N (N)
0

+ (N − 2)2
∑

S

(
C

S,μ+ν

3μ,3ν

)2 N
(N−2)
S,μ+ν

N (N)
0

]
. (C2)

After a simplification, Eq. (C2) leads to the expressions
given in the text.
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