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Berezinskii-Kosterlitz-Thouless transition of two-dimensional Bose gases in a synthetic
magnetic field
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We study the field dependency of the Berezinskii-Kosterlitz-Thouless transition temperature Tc(H ) of Bose
gases in a two-dimensional optical lattice in the synthetic magnetic field using the Metropolis Monte Carlo
method. The system is described by the frustrated XY model and the critical temperature is determined through
observing the disappearance of the central peak of the momentum distribution of the gas, which can be directly
measured by the time-of-flight absorbing imaging in cold-atom experiments. Tc(H ) is found to exhibit a largest
peak at the fraction of a flux quantum f = φ/φ0 = 1/2 and a second-largest one at f = 1/3, in agreement
with former studies on superconducting Josephson arrays. We also indicate that the synthetic magnetic field
experiment can produce strong enough frustration for exploring the physics of the frustrated XY model.
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I. INTRODUCTION

It is well known that in two-dimensional (2D) systems
with a continuous symmetry the conventional long-range order
is prevented by thermal fluctuations at finite temperatures
in the thermodynamic limit, and as a result no spontaneous
continuous symmetry breaking takes place. However, these
systems can undergo a transition through binding of vortex
pairs to form a quasi-long-range order. This is the celebrated
Berezinskii-Kosterlitz-Thouless (BKT) transition [1,2]. The
2D XY model is the prototype to elaborate on the BKT
transition in theory. Experimentally, the BKT transition
has been examined in various physical systems, including
4He films [3], 2D superconductors [4] and superconducting
Josephson-junction arrays (JJAs) [5,6], and observations agree
well with theoretical predictions.

The study of JJAs greatly enriched the research
of the BKT transition [6–9]. Experiments provided evidence
that the BKT transition point Tc becomes a periodic function of
the transverse magnetic field H once the field is introduced to
JJAs [6]. Such a system can be described by the frustrated
2D XY model [7–9], and the physics of this model in
JJAs has been the subject of intense research [10]. Theories
also suggested that Tc(H ) is periodic in H , and one period
corresponds to one flux quantum per unit cell of the array.
Moreover, Tc(H ) exhibits complex structures at fractions of
a flux quantum within a period. These abundant phenomena
reflect the nontrivial energy spectrum of the model, known as
the “Hofstadter butterfly” [11].

So far cold atoms have been regarded as ideal test beds
for fundamental models of condensed-matter physics. It is
of great interest to reexamine the BKT transition since the
quasi-2D Bose gas has already been produced either in a single
pancake traps or at the nodes of 1D optical lattice potentials
[12]. Trombettoni et al. has raised a proposal to investigate
the occurrence of BKT transitions in a 2D Bose-Einstein
condensate [13]. In 2006, Hadzibabic et al. observed the
BKT transition in atomic Bose gases experimentally [14].
They added the optical lattice in the z direction to construct a
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quasi-2D configuration, and the transition point was detected
though the dislocations of interference patterns. Later new
experiments identified this transition by the proliferation of
vortex pairs [15] and a bimodal density distribution or coherent
length [16].

The frustrated 2D XY model has been proposed in the
rotating Bose-Einstein condensates with a corotating deep
optical lattice by Kasamatsu [17]. However, experiments with
rotating gases are usually difficult to add optical lattices and
the rotating rate is limited. More recently, the technique of
“synthetic” magnetic field has been developed to produce an
effective “magnetic” field in cold atoms [18]. The effective
Hamiltonian for a neutral atom in the synthetic field is like that
of charged particles in the magnetic field. Thus, it stimulates
us to investigate the behavior of BKT transition in the cold
atomic Bose gases subject to the synthetic magnetic field.
Comparing with former 2D experimental systems concerning
on the superfluid density or sheet resistance to detect the
superfluid transition, cold atoms can be manipulated more
easily and precisely and thus it benefits the further investigation
of the BKT transition.

In this paper, we start with the Bose-Hubbard model which
describes a 2D Bose gas in a uniform magnetic field in a square
optical lattice. This model can be mapped to the frustrated XY

model. Then we study the BKT transition using the standard
Metropolis Monte Carlo method. This method has been used
by Trombettoni et al. to investigate the BKT transition in
atomic Bose gases in a 2D optical lattice without magnetic field
[13]. The transition point is determined through detecting the
central peak of the expansion condensates after time-of-flight
(TOF) expansion.

II. THE MODEL

We consider a 2D Bose gas on a square optical lattice
immersed in the synthetic magnetic field. The Hamiltonian is
described by the frustrated Bose-Hubbard model [19],

Ĥ = −K
∑
〈i,j〉

(ψ̂†
i ψ̂j e

iAij + H.c.) + U

2
N̂i(N̂i − 1), (1)
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where the first term on the right side denotes the hopping
energy and the summation is taken over all the nearest
neighbors with K the hopping matrix element. ψ̂i (ψ̂†

i ) is
the field operator of bosons which annihilates (creates) a
boson at site i. Aij is the bond angle which can be calculated
from the gauge potential of the synthetic magnetic field A(r),
Aij = 2π

φ0

∫ j

i
A(r)dr, with φ0 representing the flux quantum.

So the number of fluxes through each plaquette is given by

f = 1

2π
(Aab + Abc + Acd + Ade). (2)

Apparently, f is proportional to the magnetic field H , f =
Ha2/φ0. a is the lattice constant and it is chosen to be unit
hereinafter, a = 1. The second term of Eq. (1) refers to the
on-site interaction with U being the interacting strength, and
N̂i is the particle number operator on site i.

Using the same procedure for reducing the Bose-Hubbard
model to the quantum phase model [13], the frustrated Bose-
Hubbard model in Eq. (1) can be mapped into the “frustrated”
quantum phase model,

Ĥ = ĤFXY − U

2

∑
j

∂2

∂θ2
j

, (3)

where HFXY denotes the frustrated XY model,

ĤFXY = −J
∑
〈i,j〉

cos(θi − θj − Aij ), (4)

with J = 2KN0. To fulfill this procedure, one can simply
replace the field operator by the c-number wave function,
ψ̂i → ψi = √

N0e
iθi , where N0 is the average particle number

of each site and θi is the corresponding phase on site i.
This is reasonable since the system under consideration is
a uniform system at sufficient low temperatures and thus it is
in a quasicoherent state. The frustrated XY model was used to
describe the superconducting Josephson arrays in transverse
magnetic field by Teitel and Jayaprakash [7]. It can describe
the thermodynamic behavior of the BECs stored in an optical
lattice when J � U and at temperatures T � U/kB . On the
other hand, since the mechanism of BKT transition, that is, the
pairing of vortices, is due to topological long-range correlation,
we can safely ignore the on-site interaction term at sufficient
low temperatures.

We choose the Landau gauge for the synthetic magnetic
field, which reads

A(r) = (0,φ0f x); (5)

therefore, Aij = 0 for ix = jx ± 1,iy = jy and Aij = ∓2πf x

for ix = jx,iy = jy ± 1. Obviously, the Hamiltonian in Eq. (4)
is periodic in f with the period 1, so we just need to study the
properties of the system in the interval f ∈ [0,1]. Here f = 0
corresponds to the unfrustrated case and f = 1/2 is the fully
frustration condition.

To proceed, we investigate the BKT transition of the
frustrated XY model in the context of cold atoms. After
the system undergos the BKT transition at low temperatures,
a peak appears in the center (k = 0) of the lattice Fourier

transform of ψj ,

ψ̃k = 1

Ns

∑
j

ψj e
−ik·rj , (6)

where Ns is the number of sites of the square lattice. The central
peak in the momentum space describes the “quasicondensate”
and it is analogous to the magnetization for a spin XY model;
that is,

M = 〈 ˜|ψ0|〉. (7)

The ferromagnetic state of spin systems has the maximum
magnetization with all spins pointing in the same direction.
This corresponds to a global coherent phase of the Bose
gas, which implies the true condensation (Bose-Einstein
condensation) of the gas. However, the BKT superfluid state
here is just the quasicondensed state with nonglobal coherent
phases (the vortex pairs of coherent phases), which is the
reason for the emergence of the central peak of momentum
space [13].

In cold-atom experiments, the momentum distribution can
be observed by the sudden release of the optical lattice. The
absorption imaging is then taken after a TOF period t . The
density profile of the image can be written as [12]

n(r) = (M/h̄t)3|ω̃(k)|2G(k). (8)

Here momentum k is related to position r by k = Mr/h̄t

under the assumption of ballistic expansion. ω̃(k) is the Fourier
transform of the Wannier function and G(k) is the Fourier
transform of the single-particle density matrix defined by

G(k) = 1

Ns

∑
i,j

eik·(ri−rj )〈ψ̂†
i ψ̂j 〉. (9)

For the quasicondensate state at low temperatures, there is
a small condensate on each site of the optical lattice; thus, we
can have 〈ψ̂†

i ψ̂j 〉 ≈ ψ∗
i ψj . Then the momentum space density

matrix G(k) can be written as

G(k) ≈ 1

Ns

∑
i,j

eik·(ri−rj )ψ∗
i ψj

= Ns |ψ̃k|2. (10)

G(k) is closely related to momentum distribution, which
can be observed experimentally using the TOF imaging. The
disappearance of central peak in G(k) (k = 0) can be regarded
as a criterion of the occurrence of BKT transition. Next, our
Monte Carlo simulation will focus on the density profile of the
density matrix and we will investigate the transition behavior
under different frustration f , which is hopefully realized in
cold-atom experiments.

Here we note that the frustrated XY model is U(1) gauge
symmetry breaking in the superfluid state as the hopping
term breaks the conservation of “charge.” It means that
physical quantities of a system described by the frustrated XY

model can be gauge dependent, although observable quantities
are usually gauge invariant in conventional systems. That
is why the vector gauge potentials can be detected in the
momentum distribution of the density matrix. Furthermore, the
imaging of density of the expanding condensates in cold-atom
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experiments in fact measures the canonical momentum of the
original model [19].

III. RESULTS AND DISCUSSIONS

We now employ the standard Metropolis Monte Carlo
method with periodical boundary conditions to simulate the
frustrated XY model. It has been used to investigate the
BKT transition in Josephson arrays by Teitel and Jayaprakash
[7]. This method is proved to always get believable results.
The lattice sites are chosen as L × L = 40 × 40. For each
temperature and frustration of the system we use 107 Monte
Carlo steps.

Figure 1 illustrates the evolution of expansion image from
the phase-coherent ground state to the noncoherent state. At
sufficiently low temperatures the system is in a superfluid
state and the density profile reveals regular sharp peaks at the
momentum space lattices. That is due to the pairing of vortices.
As the temperature increases the peaks begin to decay and at
the transition point at about T c ≈ 0.5J/kB the sharp peaks
go to zero [see Fig. 2(a) for the absolute value]. That is the
signature of the BKT transition of 2D Bose gases. We can
see that above the critical temperature there is disorder in the
density profile of the momentum space and the system loses
its coherent phase.

Figure 2 shows the central peak G0 [G(kx = 0,ky = 0)/Ns]
of the expansion image as a function of temperature T for four
different fractional frustration f = 1/2, 2/5, 1/3, 1/5, and
the expansion image close to the ground state is illustrated in

FIG. 1. (Color online) Illustration of the expansion image of the
system at different temperatures T for the fully frustrated case (f =
1/2). The lattice constant is chosen to be a = 1. The BKT transition
takes place at about T = 0.5J/kB , where the peaks decay to nearly
zero in (b). The color represents the relative magnitude of the density
which increases from purple to white.

the insert. At T = 0 the peaks have maximal values where the
system is in a superfluid state with paired vortices and nonzero
M . As the temperature is rising, the peaks are reduced and
the vortices begin to unpair. The central peak drops to zero
at the critical point, as guided by the circle in the figure.
For the fully frustrated case in Fig. 2(a), we can see the
curve reveals different tendency as in Fig. 2(b) and Fig. 2(c)
away from the transition temperature. The change of the
bending direction approaching the transition point in the latter
case comes from the relation: M(T → T ∗) ∼ (T − Tc)0.23

[20], where M ∝ √
G(0) is the magnetization and T ∗ is a

temperature near Tc where the power-law behavior holds best.
The expansion images in Fig. 2(b) and Fig. 2(c) are the same
as the unfrustrated system. We note that the ground state of the
system is degenerate, while this cannot be directly revealed
from the expansion image. However, we expect that it can be
recognized using printing phase technology [19].

The critical temperatures Tc at different fractional frustra-
tion f are demonstrated in Fig. 3. There exist some peaks at
some fractional magnetic fields. The largest peak is the fully
frustrated case with f = 1/2, while the second largest is at
f = 1/3. These results agree with former experimental and
theoretical work on superconducting Josephson arrays [7]. We
note that the structure of the diagram depends on the geometry
of the lattice. For example, the second peak of the transition
temperature for the triangular-lattice systems is at f = 1/4
instead [8,9].

Finally, we discuss the experimental realization of the
system. The experiment on 87Rb gas by Lin et al. produces
a position-dependent vector potential with the slope kq =
∂(qAy/h̄kL)/∂(h̄δ/EL) ≈ 0.4 in the interval h̄δ/EL ∈ [−5,5]
for Raman coupling strength h̄	R = 8.20EL [18]. Here h̄kL =
h/(

√
2λ) and EL = h̄2k2

L/2m are the units of momentum and
energy, respectively, with λ = 801.7 nm being the wavelength
of the Raman beams and m the mass of a single 87Rb atom.
Thus, an approximately uniform synthetic field is generated,
H = ∂Ay/∂x = δ′∂Ay/∂δ, where δ is the Raman detuning
and δ′ the gradient of it. To add an optical lattice with lattice
constant a to the system, the Raman detuning gradient can
then be expressed as a function of the frustration f ,

δ′

2π
= ELf

h̄kLkqa2
. (11)

Then we can get the Raman detuning gradient δ′/2π ≈
5.07f/a2 kHz μm. If the lattice constant is chosen to be
a = 0.5, 2.0, or 4.0 μm, the corresponding values of Raman
detuning gradient for frustrations f = 1/3, 1/2, 1 are δ′/2π ≈
6.8, 10, 20 kHz μm−1; 0.42, 0.63, 1.3 kHz μm−1; or 0.11,
0.16, 0.32kHz μm−1, respectively. The experiment by Lin
et al. can generate a detuning gradient up to 0.40 kHz μm−1;
therefore, the lattice constant a ∼ 4 μm is most appropriate
for generating strong-enough frustration. For smaller a, it is
necessary to increase the Raman detuning gradient.

Then we estimate the magnitude of the transition temper-
ature Tc ∼ J/kB = 2KN0/kB . According to the variational
estimate [13], the hopping matrix element K is relevant to the
depth of the potential at each cite, V0, which reads

K = e− π2√
s

4

[
π2s

(
1

4
− 1

π2
√

s

)
− s

]
Er, (12)
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FIG. 2. (Color online) The central peak G0 [G(kx = 0,ky = 0)/Ns] of expansion image as a function of temperature T for four different
fractional frustrations f =1/2, 2/5, 1/3, 1/5. The square points are numerical results with the error bar obtained using the standard deviation.
The circle in each figure guides the estimated critical transition temperature. The insert shows the corresponding expansion image close to the
ground state.

where s = V0/Er and Er = h̄2π2/2ma2 is the recoil energy.
If we choose s = 18 and N0 = 170, as suggested in Ref. [13],
we have K/Er ≈ 0.0006 and then J = 2KN0 ≈ 3.2 × 10−24,
2.0 × 10−25, and 5.0 × 10−26 erg for a = 0.5, 2.0, and 4.0 μm,
respectively, and the critical temperatures are Tc ∼ 23, 1.5, and
0.4 nK, correspondingly. The critical temperatures are quite

FIG. 3. Transition temperature Tc of 2D BKT transition for
different fractional frustration f . The critical point corresponds to
the absence of the central as illustrated in Fig. 2. There is a peak for
the fully frustrated case (f = 1/2) and a second peak at f = 1/3.

low and hard to attain. However, one can obtain higher critical
temperatures by increasing the average particle number at each
site N0 or reducing depth of the lattice potential in the real
experiment at a given lattice constant.

IV. CONCLUSIONS

In conclusion, we have studied the BKT transition of 2D
Bose gases in the synthetic magnetic field using the standard
Metropolis Monte Carlo method. The critical transition tem-
perature is decided by the absence of the central peak of the
density matrix in momentum space, which can be detected
in cold atoms by TOF expansion imaging. We have obtained
the transition temperature as a function of the field which is
represented by the fraction of a flux quantum per plaquette
f . We have observed the largest peak of the temperature
in the fully frustrated case, f = 1/2, and the second-largest
one at f = 1/3. These results agree with former studies on
superconducting Josephson arrays. We have also estimated
that the frustrations f = 1/3, 1/2, and 1 are attainable in the
present synthetic magnetic field experiment.

Note added. Recently, two preprints appeared on the
arXiv.org. One preprint by Y. Nakano, K. Kasamatsu, and
T. Matsui studied the finite-temperature phase structures of
hard-core bosons in a 2D optical lattice subject to effective
magnetic field based on the extensive Monte Carlo simulations
[21]. The ground-state energy per site as a function of
the field is studied. The second preprint by Allard et al.
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reported experimentally study the disorder effect on trapped
quasi-2D 87Rb clouds in the vicinity of the BKT transition
through measurements of momentum distributions [22]. This
implies that our proposal of investigating the BKT transition
of cold atoms in synthetic magnetic field is realizable in
experiments.
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