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Superdiffusive nonequilibrium motion of an impurity in a Fermi sea
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We treat the nonequilibrium motion of a single-impurity atom in a low-temperature single-species Fermi sea,
interacting via a contact interaction. In the nonequilibrium regime, the impurity does a superdiffusive geometric
random walk where the typical distance traveled grows with time as ∼td/(d+1) for the d-dimensional system
with d � 2. For nonzero temperature T , this crosses over to diffusive motion at long times with diffusivity
D ∼ T −(d−1)/2. These results apply also to a nonzero concentration of impurity atoms as long as they remain
dilute and nondegenerate.
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I. INTRODUCTION

In condensed matter physics, the behavior of a single
impurity immersed in a sea of majority particles has been
one of the simplest many-body problems and has attracted
much attention (see, e.g., Refs. [1,2]). In particular, transport
of an impurity in bosonic [3] and fermionic [4,5] quantum
liquids has been studied since a few decades ago. Recent
realizations of ultracold polarized two-component atomic
Fermi gases [6–12], with their remarkable controllability
over parameters such as interaction strength and individual
populations, have made it possible to directly access this type
of quantum many-body system. Meanwhile, there have been
a number of theoretical works on the single-impurity problem
in an ultracold Fermi gas [13–17], investigating equilibrium
and near-equilibrium properties. Quite naturally, transport
phenomena have also been studied [18]. More recently,
transport experiments of an ultracold mass-balanced polarized
Fermi gas [19] and an ultracold mass-imbalanced mixture
with unequal populations [20] opened new opportunities to
directly investigate nonequilibrium and dynamic properties of
population-imbalanced Fermi systems.

In this paper, we discuss nonequilibrium transport in
the high-polarization and low-temperature regime, without
restricting ourselves within small deviations from equilibrium.
As a limiting case of high polarization and low temperature,
we first consider a single minority atom moving in a zero-
temperature Fermi sea of majority atoms. We find that the
impurity does a superdiffusive geometric random walk, where
the time between collisions grows in proportion to time, and
the impurity loses a fraction of order one of its energy in each
collision. In d dimensions (d � 2) the typical distance traveled
grows as ∼td/(d+1).

As is conventional, we call the majority species “up” ↑ and
the minority (impurity) species “down” ↓. Note that in the
regimes we study in this paper, the statistics of the minority
atoms do not enter, so they may equally well be bosons
or fermions. Assume the minority atom is initially near the
origin in real space, with some probability distribution of
its momentum Q↓ with Q↓ � kF↑, where kF↑ is the Fermi
momentum of the majority Fermi sea. The minority atom is
“dressed” either as a polaron or as a molecule, with effective

mass m∗ and thus energy E↓ ≈ h̄2Q2
↓

2m∗ ; we choose the rest energy
of the dressed minority atom as its zero of energy. We assume
that E↓ is low enough so that no internal excitations of the

polaron or molecule are possible. Note that Fermi polarons
and bosonic molecules in this high-polarization limit were
experimentally studied in Ref. [21].

We will treat the majority atoms as noninteracting, although
the results we obtain appear to remain qualitatively correct
even if the majority atoms do weakly interact with one another,
as long as the majority atoms remain a Fermi liquid. In the latter
case, the minority atom produces quasiparticles and quasiholes
when it scatters from the majority Fermi liquid. We will first
treat the case of a three-dimensional Fermi gas, returning to
general d later.

II. IMPURITY DYNAMICS IN 3 DIMENSIONS

This dressed minority atom can scatter from a majority atom
with momentum q↑ slightly below kF↑ and thus emit a majority
particle-hole pair, which lowers the energy of the minority
atom. Here we are considering such scattering events that
occur “on-shell”; the virtual particle-hole pairs that dress the
polaron or molecule are assumed to have already been included
and have renormalized the rest energy and the effective mass
of the dressed impurity atom. After the scattering event, the
emitted majority particle and hole move away ballistically at
the majority Fermi velocity. In such a scattering event the
dressed minority atom typically loses a fraction of order one
of its energy. The rate of scattering is proportional to E2

↓ for
d = 3, as we derive below. As a result, the typical energy
evolves with time as

1

E↓

dE↓
dt

∼ −E2
↓, (1)

which results in E↓(t) ∼ t−1/2 and typical speed v ∼ Q↓ ∼
t−1/4. Thus the minority atom does a superdiffusive geometric
random walk, where the typical time τ between scattering
events grows as τ ∼ t and the mean-free path � grows as
� ∼ vτ ∼ t3/4. The last step of this walk typically gives the
dominant contribution to the total distance traveled, so the
latter also grows as ∼t3/4. The number of majority particles
and holes produced and the number of steps in this unusual
random walk grow only as ∼ ln t .

In order to understand this behavior more quantitatively,
we consider the time dependence of the momentum distri-
bution f (Q↓,t) of the dressed minority atom. f (Q↓,t) has
a dimension of (length)d and is normalized to unity when
integrated over wave vectors Q↓. We essentially treat the
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minority atom classically. Although its initial state may be
a quantum-coherent wave packet and thus of low entropy,
as it produces particle-hole pairs it becomes more and more
highly entangled with these excitations that it has produced
in the majority Fermi sea. As a result, at long times its
reduced density matrix is a mixed state, any initial coherence
is transferred to the Fermi sea, and the volume occupied by the
minority atom in its position-momentum configuration space
grows as ∼(�Q↓)3 ∼ t3/2, so its entropy grows as ∼ 3

2kB ln t .
A single minority atom in an infinite system does not

disturb the distribution of the majority atoms, which are thus
assumed to remain in a Fermi-Dirac distribution at all times.
We now consider both the case of a zero-temperature majority
Fermi sea, as well as low nonzero temperature T � TF↑,
where the superdiffusive behavior discussed above crosses
over to diffusion at long time as the minority atom thermally
equilibrates with the Fermi sea. The scattering process is a
majority atom with momentum q↑ scattering from the dressed
minority atom with momentum Q↓ into solid angle d� in the
rest frame of the Fermi sea, resulting in momenta k↑ and Q′

↓,
respectively, and the reverse of this process. The resulting time
dependence of the minority atom’s momentum distribution is

df (Q↓,t)

dt
=

∫
d3q↑
(2π )3

vr

dσ

d�
d�{n(εk↑)f (Q′

↓,t)[1 − n(εq↑ )]

−n(εq↑ )f (Q↓,t)[1 − n(εk↑)]}, (2)

where vr is the speed of the relative motion, and n(εk) is
the Fermi-Dirac distribution with εk = h̄2k2

2m
the energy of a

majority atom.
In the low-energy Q↓ � kF↑ and low-temperature kBT �

εF↑ limits, the scattering is all at relative momenta near kF↑
with small momentum transfer |Q′

↓ − Q↓| � kF↑. In these

limits, vr ≈ h̄kF↑
m

and dσ
d�

are essentially constant and may be
taken outside of the integral. The differential cross section is
dependent on the internal structure of the polaron or molecule,
for which there are only approximate results, so we will just
take it as an input parameter to our results. Near unitarity
kF↑|a| > 1 and dσ

d�
∼ k−2

F↑, while away from unitarity kF↑|a| <

1 and dσ
d�

∼ a2, where a is the bare s-wave scattering length.
To scale the dynamics, we assume that the distribution

of Q↓ has a characteristic momentum Q. Near equilibrium
h̄2Q2

2m∗ ∼ kBT , while for a “hot,” nonequilibrium state h̄2Q2

2m∗ 	
kBT . In either case, the energy transfer in the scattering is of
order h̄2Q2

2m∗ � εF↑. Let us put the x axis along q↑, so q↑ =
x̂(kF↑ + q). The momentum transfer is small, so the angle η

between q↑ and k↑ is small η ∼ Q

kF↑
� 1; we define η to be

non-negative. Put the z axis so k↑ = (x̂ cos η + ẑη)(kF↑ + k).
Due to kBT � εF↑ and the small energy transfer, |q| ∼ |k| ∼
mQ2

m∗kF↑
. Using these axes to set up spherical polar angles, Q↓

points along angles θ , φ, where θ is the angle from the z axis.
With these coordinates, to the precision needed in this low-
energy limit, the momentum transfer is (Q↓ − Q′

↓) = ẑηkF↑.
Figure 1 schematically shows the configuration of the four
momenta and the axes. We scale the (small) momentum
transfer, defining γ so γQ = ηkF↑. We also set the zero of
energy for the majority atoms at their Fermi energy and scale
the (small) distances q and k from the Fermi surface, defining

FIG. 1. (Color online) Momentum space configuration of the four
momenta described in the text. The lengths of vectors are not drawn
to scale.

p, so that εq↑ = h̄2kF↑q

m
= h̄2Q2

m∗ p. With all these definitions and
scalings, we obtain

df (Q↓,t)

dt
≈ h̄Q4

(2π )2m∗
dσ

d�

∫
dφd(cos θ )dpγ dγ

×{ n(εk↑)f (Q′
↓,t)[1 − n(εq↑ )]

−n(εq↑ )f (Q↓,t)[1 − n(εk↑)]} (3)

with εk↑ = εq↑ + h̄2Q2

2m∗ (2γ
Q↓
Q

cos θ − γ 2). Now the integration
measures are dimensionless, so the scaling of the scattering
rate ∼Q4 is explicit. Note that the result does not depend
directly on the majority density, although near unitarity there
is a dependence via the differential cross section.

If the distribution is isotropic in momentum space, f (Q↓,t),
then it remains isotropic. If it starts anisotropic, the dynamics
brings it asymptotically to isotropy at long times. Assuming
isotropy, the integral over φ can be done, and the integrals
over θ and γ can be exchanged for an integral over Q′

↓ by
multiplying

∫
dQ′

↓δ(Q′
↓ −√

Q2
↓+γ 2Q2−2Q↓Qγ cos θ ), giving

df (Q↓,t)

dt
≈ h̄Q2

πm∗
dσ

d�

∫
dQ′

↓dp
Q′

↓
Q↓

min{Q↓,Q′
↓}

×{n(εk↑)f (Q′
↓,t)[1 − n(εq↑ )]

− n(εq↑ )f (Q↓,t)[1 − n(εk↑)]}. (4)

At zero temperature, the integral over p is readily done, and
for the loss term also the integral over Q′

↓, giving

df (Q↓,t)

dt
≈ h̄

2πm∗
dσ

d�

×
{[ ∫ ∞

Q↓
dQ′

↓Q′
↓(Q

′2
↓ − Q2

↓)f (Q′
↓,t)

]

− 2

15
Q4

↓f (Q↓,t)

}
. (5)

Thus we see that at zero temperature, the total rate of scattering
of a minority atom with momentum Q↓ by producing a
majority particle-hole pair and going to any lower energy is

h̄
15πm∗

dσ
d�

Q4
↓.

This zero-temperature dynamics has a superdiffusive long-
time scaling form in terms of a scaled momentum

s = (At)1/4Q↓ (6)
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and a scaling function g(s), with

f (Q↓,t) = (At)3/4g(s). (7)

With A = h̄
2πm∗

dσ
d�

, the scaling function satisfies the integro-
differential equation:

3

4
g(s) + s

4

dg(s)

ds
= − 2

15
s4g(s)

+
∫ ∞

s

ds ′s ′(s ′2 − s2)g(s ′). (8)

The resulting g(s) appears to be smooth and of order one at
small s. Its large-s asymptotics are

s

4

dg(s)

ds
≈ − 2

15
s4g(s) ⇒ g(s) ∼ exp

[
− 2

15
s4

]
. (9)

A small “cloud” of minority atoms in a zero-temperature
Fermi sea will also spread in this same superdiffusive fashion
if it is effectively nondegenerate and noninteracting. In order
for the minority atoms to be effectively noninteracting, the
majority particles and holes produced must leave the cloud
without additional scattering, so the majority mean-free path
within the cloud must be larger than the cloud. If the minority
cloud is initially too dense and/or too “hot” for this to be
true, it will rapidly expand and cool and cross over to this
superdiffusive regime of behavior at later times.

If the majority Fermi sea is not at zero temperature, the
superdiffusive behavior will continue until the minority atom
cools down to near equilibrium, where h̄2Q2

m∗ ∼ kBT . After

that it will move diffusively, with typical speed v ∼
√

kBT
m∗

and scattering rate 1/τ↓ ∼ AQ4 ∼ m∗(kBT )2

h̄3
dσ
d�

. The resulting

equilibrium spin diffusivity is Ds ∼ v2τ↓ ∼ h̄3/(m∗2kBT dσ
d�

).
In previous work, the same temperature dependence in terms
of the equilibrium spin-drag relaxation rate was obtained for
a mass-imbalanced system [22]. Again, if there is instead a
“cloud” of minority atoms, this will be their behavior when
they are dilute enough to be nondegenerate.

It should be noted that the “on-shell” condition discussed
in the beginning of the present paper is crucial in the analysis.
As pointed out in Ref. [23] in the context of heavy ion
transport in He3, if the definite effective mass assumption is not
satisfied, the temperature dependence of transport coefficients
can be significantly modified. We can understand this from the
observation that the mass dependence of the scattering time is
τ↓ ∼ m/m∗. Therefore, when m/m∗ � 1, the lifetime of the
impurity can be small and thus its energy uncertainty becomes
large and the assumption of elastic scattering breaks down. As
a result, our analysis may not be applicable if the mass of the
minority atom is much greater than that of the majority atom.

III. IMPURITY DYNAMICS IN d DIMENSIONS

Next we discuss a general d-dimensional Fermi gas for
d � 2. The argument is parallel to that given above for d = 3.
The time evolution of the minority momentum distribution
fd (Q↓,t) is the same as Eq. (2), except for the changes
in dimension: d3q↑ → ddq↑ and (2π )3 → (2π )d . The solid
angle d� now possesses d-dimensional hyperspherical form.
For Q↓ � kF↑ the scattering cross section and relative speed

remain essentially momentum independent and may be taken
outside of the integral. We use the same configuration of
momenta (Fig. 1) and dimensionless parameters p, η, and γ in-
troduced above. Once we fix the direction of q↑, we are free to
perform a rigid body rotation to the system of four momenta in
(d − 2) angular directions. Thus, d� = Sd−2(sin η)d−2dη ≈
Sd−2η

d−2dη = Sd−2(Q/kF↑)d−1γ d−2dγ (η is small). Sd−2

is the surface area of a (d − 2) sphere, given by Sd =
2πd/2/
(d/2), where 
(x) is the γ function. The integration
measure ddq↑ is scaled as (m/m∗)kd−2

F↑ Q2dpd�d , where d�d

is the solid angle element of q↑ on the hypersphere. We set the
domain of both η and θ to be [0,π ] for all d � 2. Although η

and θ may be defined from 0 to 2π for d = 2, the reflection
symmetry ensures us that we may integrate only from 0 to π

and the factor of 2 can be absorbed in S0 = 2. With all these
scalings, we obtain

dfd

dt
= h̄

m∗

(
dσ

d�

)
d

Sd−2

(2π )d
Qd+1

∫
γ d−2dγ d�ddp[...], (10)

where we abbreviated the repeating phase factor
{n(εk↑)fd (Q′

↓,t)[1 − n(εq↑ )] − n(εq↑ )fd (Q↓,t)[1−n(εk↑)]} =
[...]. (dσ/d�)d is the generalized differential scattering
“cross section” in d dimensions. Now we can explicitly
see the scaling of the scattering rate is ∼Qd+1 in a
nonequilibrium regime and thus ∼T (d+1)/2 near thermal
equilibrium. The typical distance traveled l is ∼td/(d+1), and
the volume in position-momentum configuration space that the
minority atom occupies increases as (lQ↓)d ∼ td(d−1)/(d+1).
The growth rate of the number of scattering steps
remains ∼ln t .

Assuming isotropy, we can replace d�d in Eq. (10)
with Sd−2(sin θ )d−2dθ . As we did for d = 3, we multiply∫

dQ′
↓δ(Q′

↓ −√
Q2

↓+γ 2Q2−2Q↓Qγ cos θ ). Then, for an odd d we
do the θ integral first, while for an even d we do the γ integral
first. This gives

dfd (Q↓,t)

dt
= h̄

m∗

(
dσ

d�

)
d

(Sd−2)2

(2π )d

∫
dp[...]

×
∫

Q3Q′
↓dQ′

↓dγ

2d−3Qd−2
↓

[(2Q↓Qγ )2

− (Q2
↓ + γ 2Q2 − Q′2

↓ )2]
d−3

2 (11)

or ∫
Q2Q′

↓dQ′
↓dθ√

Q′2
↓ − Q2

↓ sin2 θ
γ d−2

0 (sin θ )d−2, (12)

where Eq. (11) is for an odd d and Eq. (12) is for an even d.
γ0 is the value of γ (θ ) that satisfies the delta function (it has
two roots, and which root to use depends on the magnitudes
of Q↓, Q′

↓, and θ ). For an odd d, the integration range of γ

is from |Q↓ − Q′
↓|/Q to (Q↓ + Q′

↓)/Q and the integrand is a
polynomial. Therefore, the γ integral is elementary, although
a formula for a general odd d is fairly lengthy so we do not
present here explicitly. On the other hand, the θ integral for
an even d is not elementary so it may have to be evaluated
numerically.

We introduce Ad = h̄
m∗ ( dσ

d�
)d

(Sd−2)2

(2π)d , which has dimensions

of (length(d+1)/time). When d = 3, Ad = A = h̄
2πm∗

dσ
d�

, as
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above. At zero temperature we can do the integral
∫

dp[...]
to obtain

fd (Q↓,t)

dt
= Ad

[ ∫ ∞

Q↓
dQ′

↓hd (Q′
↓,Q↓)fd (Q′

↓,t)

−CdQ
d+1
↓ fd (Q↓,t)

]
. (13)

The function hd (Q′
↓,Q↓) and the constant Cd should be

determined by Eq. (11) or Eq. (12) and the p integral. For
an odd d, Cd can be found exactly, while for an even d, Cd

could be found numerically. As we saw earlier, for d = 3,
C3 = 2/15 and h3(Q′

↓,Q↓) = Q′
↓(Q′2

↓ − Q2
↓).

Before we scale the long time dynamics of Eq. (13), let
us estimate the spin diffusivity in d dimensions. Near thermal
equilibrium, v2 ∼ (h̄Q/m∗)2 ∼ (kBT )/m∗ and the scattering
time τ is ∼1/(AdQ

d+1). Thus, the spin diffusivity in d

dimensions is Ds ∼ v2τ ∼ h̄d

m∗(d+1)/2(kBT )(d−1)/2(dσ/d�)d
when the

minority gas is nondegenerate and the majority gas is an ideal
Fermi sea or a Fermi liquid.

It is straightforward to obtain a scaling form once we
introduce the following scaling of the momentum and the
distribution:

sd = (Adt)
1/(d+1)Q↓ (14)

fd (Q↓,t) = (Adt)
d/(d+1)gd (sd ). (15)

The scaled integro-differential equation is

d

d + 1
gd (sd ) + sd

d + 1

dgd (sd )

dsd

=
∫ ∞

sd

ds ′
dgd (s ′

d )h(s ′
d,sd ) − Cds

d+1
d gd (sd ). (16)

We see that the asymptotic form of gd (sd ) at large sd is ∼
exp[−Cds

d+1
d ].

For d = 2, which is the other experimentally acces-
sible case: A2 = h̄

π2m∗ ( dσ
d�

)2, C2
∼= 0.45 and h2(Q′

↓,Q↓) =∫ π

0 dθ
Q′

↓(Q′2
↓ −Q2)

2
√

Q′2
↓ −Q2

↓ sin2 θ
. The spin diffusivity near thermal equi-

librium in d = 2 is Ds ∼ h̄2

m∗3/2(kBT )1/2(dσ/d�)2
.

So far, our calculation relied heavily upon the phase
space integral. In d = 1, however, the reduced phase space
greatly restricts the scattering process. The scattering of an
impurity from a T = 0 Fermi sea for Q↓ � kF↑ via creating
a single particle-hole pair is forbidden in d = 1 by energy and
momentum conservation unless m∗ � m, which is not true
in our case. Therefore, a low-momentum moving impurity in
d = 1 is stable at zero temperature against scattering at this
order. This is why the results of the present paper only apply for
d � 2. The dynamics of a heavy impurity in a one-dimensional
Luttinger liquid due to other higher-order scattering processes
is discussed in Ref. [24].

IV. DISCUSSION AND CONCLUSION

Finally, we consider an experimental procedure to possibly
observe the expected superdiffusive behavior. Initially, the
majority and impurity atoms are trapped by species-selective
potentials and cooled to very low T . The impurity atoms are
tightly trapped at the center of a majority cloud, and thus they
are initially degenerate, but with a lower Fermi momentum
than the majority atoms. (Here we discuss the case where the
impurity atoms are fermions; if the impurity atoms are bosons,
the specifics of how to set up an appropriate initial condition
will be different.) Then, release the impurity atoms but not
the majority atoms and observe the subsequent expansion
of the minority cloud using in situ imaging. At first, the
impurity cloud should expand ballistically since scattering
is highly restricted by both majority and minority Pauli
blocking. Quickly the impurity cloud expands and becomes
nondegenerate and superheated relative to the majority gas.
At this point the impurities start doing the superdiffusive
motion discussed in this paper, which should be reflected
in a superdiffusive expansion of the minority cloud. This
superdiffusive motion persists until the impurity atoms cool
to near the temperature of the majority Fermi gas. Then the
impurity motion crosses over to standard diffusion. Recently,
the expansion dynamics of initially localized impurities in a
one-dimensional Bose gas has been realized and imaged [25].

In conclusion, we have studied the nonequilibrium and
near-equilibrium motion of nondegenerate impurity atoms in
a low-temperature Fermi sea. In the nonequilibrium regime
we analyzed the unusual superdiffusive random geometric
walk performed by the impurity atom for systems with di-
mensionality d � 2. At nonzero temperature this crosses over
to standard diffusion at long times. We find that the equilibrium
spin diffusivity Ds ∼ T −(d−1)/2 in this regime where the
majority atoms are degenerate, while the minority atoms are
not. This temperature dependence of the spin diffusivity is
something that may be measured soon in experiments on
two- and three-dimensional Fermi gases. The superdiffusive
nonequilibrium behavior will be more of a challenge to explore
experimentally, since it requires a hierarchy of three energy

scales: kBT � h̄2Q2
↓

2m∗ � kBTF↑, and thus a very cold majority
Fermi gas.
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