
PHYSICAL REVIEW A 85, 043601 (2012)

Criteria of off-diagonal long-range order in Bose and Fermi systems based
on the Lee-Yang cluster expansion method

Naoyuki Sakumichi,1 Norio Kawakami,1 and Masahito Ueda2,3

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

3ERATO Macroscopic Quantum Project, JST, Tokyo 113-0033, Japan
(Received 25 December 2011; published 2 April 2012)

The quantum-statistical cluster expansion method of Lee and Yang is extended to investigate off-diagonal long-
range order (ODLRO) in one-component and multicomponent mixtures of bosons or fermions. Our formulation
is applicable to both a uniform system and a trapped system without local-density approximation and allows
systematic expansions of one-particle and multiparticle reduced density matrices in terms of cluster functions,
which are defined for the same system with Boltzmann statistics. Each term in this expansion can be associated
with a Lee-Yang graph. We elucidate a physical meaning of each Lee-Yang graph; in particular, for a mixture
of ultracold atoms and bound dimers, an infinite sum of the ladder-type Lee-Yang 0-graphs is shown to lead to
Bose-Einstein condensation of dimers below the critical temperature. In the case of Bose statistics, an infinite
series of Lee-Yang 1-graphs is shown to converge and gives the criteria of ODLRO at the one-particle level.
Applications to a dilute Bose system of hard spheres are also made. In the case of Fermi statistics, an infinite
series of Lee-Yang 2-graphs is shown to converge and gives the criteria of ODLRO at the two-particle level.
Applications to a two-component Fermi gas in the tightly bound limit are also made.
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I. INTRODUCTION

In 1957, Lee and Yang showed that the thermodynamic
functions for quantum-mechanical systems of particles obey-
ing Bose-Einstein or Fermi-Dirac statistics can be expressed
in terms of cluster functions for the same systems obey-
ing Boltzmann statistics [1–4]. This method is based on
a cumulant expansion of the grand partition function, and
hence referred to as the Lee-Yang cluster expansion method.
They subsequently applied this method to a dilute system
of hard-sphere bosons and discussed the λ transition of
liquid helium-4 [3,4]. However, since a cluster expansion
is equivalent to a virial expansion, it is more suitable for
dilute quantum many-body systems than dense systems such
as liquid helium-4. Unfortunately, back in those days, there
was no such dilute quantum many-body system. Since then,
the Lee-Yang cluster expansion method has been almost
completely forgotten, with only a few exceptions [5–10]. Now,
however, it seems that the method is best suited to describe
ultracold dilute atomic gases. In this paper, we extend the
Lee-Yang cluster expansion method, which was originally
developed to describe a system of hard-core bosons and
fermions with small scattering lengths, to describe ultracold
atomic gases of bosons and fermions with large scattering
lengths.

The Lee-Yang cluster expansion method is a cumulant
expansion of the grand partition function in terms of fugacity
z := exp(βμ), and enables us to treat a quantum many-body
problem systematically, where μ is the chemical potential and
β := 1/(kBT ) is the inverse temperature with the Boltzmann
constant kB. Although we usually apply the Matsubara Green’s
function method or the Feynman graphs to tackle quantum
many-body problems, the ranges of validity of these approxi-
mations are often not well controlled. On the other hand, the

Lee-Yang method allows us to make a perturbation expansion
in terms of the number of the interacting atoms, and utilize
the fugacity expansion of the grand potential density, which is
equivalent to a virial expansion. Moreover, the cluster expan-
sion (or virial expansion) for the unitary Fermi gas is currently
of great interest [11–14] because the cluster integrals (or virial
coefficients) b(3) and b(4) have recently been measured using
a mixture of 6Li in the two lowest hyperfine states [15,16].
Here, the virial expansion is βpλ3 = 2z + 3

√
2

4 z2 + b(3)z3 +
b(4)z4 + · · ·, with the pressure p and the thermal de Broglie
length λ := (2πh̄2β/m)1/2. The primary purpose of this paper
is to identify the criteria of the off-diagonal long-range order
(ODLRO) of the reduced density matrices in Bose and Fermi
systems [17,18] based on the Lee-Yang cluster expansion
method.

This paper is organized as follows. In Sec. II, the quantum
cluster expansion method is extended for the case of a
two-component Bose or Fermi system of interacting particles.
We represent the grand partition function and the one- and
two-particle reduced density matrices in terms of cluster
functions obeying Bose-Einstein or Fermi-Dirac statistics. Our
extension is formally applicable to a uniform system and
a trapped system without local-density approximation. The
derivation and mathematical justification of our method is
given in Appendix A. In Sec. III, we review the rules by which
quantum-statistical cluster functions can be computed from the
knowledge of quantum cluster functions obeying Boltzmann
(i.e., distinguishable) statistics. This formulation was first
developed by Lee and Yang for the case of a one-component
system [2] and it was extended by Pathria and Kawatra for
a multicomponent system [7]. In Sec. IV, we show that the
logarithm of the grand partition function as well as the one-
and two-particle reduced density matrices can be expressed
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as a sum over a particular set of Lee-Yang graphs. For the
case of a one-component uniform system, the expressions
of the grand partition function and the one-particle reduced
density matrix were obtained by Lee and Yang [3], and the
two-particle density matrix was obtained by de Dominicis [6].
We generalize these results to the case of multicomponent
uniform and trapped systems. In Sec. V, we elucidate a
physical meaning of Lee-Yang primary graphs, in particular,
that of an infinite series of the ladder-type Lee-Yang primary
graphs, the sum of which leads to Bose-Einstein condensation
(BEC) of tightly bound diatomic molecules below a critical
temperature [9]. In Sec. VI, we give the criteria of ODLRO
based on the Lee-Yang cluster expansion method for the case
of Bose-Einstein statistics. Applications to a Bose gas of
hard spheres are also made. In Sec. VII, the corresponding
criteria for Fermi-Dirac statistics are given. Applications to a
two-component Fermi gas in the tightly bound limit are also
made. In Sec. VIII, we summarize the main results of this
paper. The detailed proofs of several formulas are relegated to
the Appendices to avoid digressing from the main subject. The
relations between the Lee-Yang and our notations are listed in
Appendix C.

II. FORMULATION FOR A TWO-COMPONENT
QUANTUM SYSTEM

A. Grand partition function

We consider a two-component gas of bosons or fermions,
the components of which are either internal states or different
atomic species, and distinguished by indices σ = ↑,↓. A
generalization to a general multicomponent system is straight-
forward [see, for example, Ref. [7]]. To make the wave function
square integrable, a system is considered to be in a uniform
finite volume V = L3 or in a trap with an effective volume

vtrap. In the case of a uniform system, the Hamiltonian is given
by

H (N↑,N↓) = −
∑

σ=↑,↓

1

2mσ

Nσ∑
iσ =1

∇2
iσ

+
∑

σ=↑,↓

∑
σ ′=↑,↓

∑
iσ ,jσ ′

vσσ ′
(∣∣riσ − rjσ ′

∣∣), (1)

where mσ and Nσ are the atomic mass and the particle number
in state σ . Here, we set h̄ = 1. In the case of a trapped
system, the Hamiltonian should include additional terms∑

i↑ vtrap(ri↑ ) + ∑
i↓ vtrap(ri↓). We assume that the system is

kept at constant inverse temperature β = (kBT )−1, and that
the system is allowed to exchange two kinds of atoms with a
reservoir at given fugacities z↑ and z↓, where the fugacity zσ

(σ = ↑,↓) is related to the chemical potential per atom μσ by
zσ = exp(βμσ ).

We introduce the function

〈1′
↑, . . . ,N ′

↑; 1′
↓, . . . ,N ′

↓|W (N↑,N↓)
α |1↑, . . . ,N↑; 1↓, . . . ,N↓〉

:= (N↑!)(N↓!)
∑

ψi∈H(N↑ )
α↑ ⊗H(N↓ )

α↓

ψi(1
′
↑, . . . ,N ′

↑; 1′
↓, . . . ,N ′

↓)

×ψi(1↑, . . . ,N↑; 1↓, . . . ,N↓)e−βEi , (2)

where α := (α↑,α↓), 1↑ := r1↑ := (r1↑,x,r1↑,y,r1↑,z), and
1′

↑ := r1′↑ := (r1′↑,x,r1′↑,y,r1′↑,z), etc., and ψi and Ei are the
normalized eigenfunction and the corresponding eigenvalue of
H (N↑,N↓), respectively. The summation in Eq. (2) extends over
all eigenfunctions ψi ∈ H(N↑)

α↑ ⊗ H(N↓)
α↓ , where the subscript

ασ = S or A indicates that the Nσ -particle Hilbert space H(Nσ )
ασ

is symmetrized or antisymmetrized.
To obtain the logarithm of the grand partition function, we

define the matrix elements of cluster functions U
(N↑,N↓)
α in

coordinate representation as follows [19]:

〈1′
↑|W (1,0)

α |1↑〉 ≡ 〈1′
↑|U (1,0)

α |1↑〉,
〈1′

↓|W (0,1)
α |1↓〉 ≡ 〈1′

↓|U (0,1)
α |1↓〉,

〈1′
↑,2′

↑|W (2,0)
α |1↑,2↑〉 ≡ 〈1′

↑,2′
↑|U (2,0)

α |1↑,2↑〉 + 〈1′
↑|U (1,0)

α |1↑〉 〈2′
↑|U (1,0)

α |2↑〉,
〈1′

↑; 1′
↓|W (1,1)

α |1↑; 1↓〉 ≡ 〈1′
↑; 1′

↓|U (1,1)
α |1↑; 1↓〉 + 〈1′

↑|U (1,0)
α |1↑〉 〈1′

↓|U (0,1)
α |1↓〉,

〈1′
↓,2′

↓|W (0,2)
α |1↓,2↓〉 ≡ 〈1′

↓,2′
↓|U (0,2)

α |1↓,2↓〉 + 〈1′
↓|U (0,1)

α |1↓〉 〈2′
↓|U (0,1)

α |2↓〉, (3)

〈1′
↑,2′

↑,3′
↑|W (3,0)

α |1↑,2↑,3↑〉 ≡ 〈1′
↑,2′

↑,3′
↑|U (3,0)

α |1↑,2↑,3↑〉 + 〈1′
↑|U (1,0)

α |1↑〉〈2′
↑,3′

↑|U (2,0)
α |2↑,3↑〉

+ 〈2′
↑|U (1,0)

α |2↑〉〈3′
↑,1′

↑|U (2,0)
α |3↑,1↑〉 + 〈3′

↑|U (1,0)
α |3↑〉〈1′

↑,2′
↑|U (2,0)

α |1↑,2↑〉
+ 〈1′

↑|U (1,0)
α |1↑〉〈2′

↑|U (1,0)
α |2↑〉〈3′

↑|U (1,0)
α |3↑〉,etc.

The grand partition function is given by

� =
∞∑

N↑=0

∞∑
N↓=0

z
N↑
↑

N↑!

z
N↓
↓

N↓!

∫
d3N↑r↑

∫
d3N↓r↓

×〈1↑, . . . ,N↑; 1↓, . . . ,N↓|
×W

(N↑,N↓)
α |1↑, . . . ,N↑; 1↓, . . . ,N↓〉, (4)

where
∫

d3N↑r↑ := ∫
d3r1↑ . . .

∫
d3rN↑ and

∫
d3N r↓ :=∫

d3r1↓ . . .
∫

d3rN↓.
We can show that

ln � =
∞∑

l↑=0

∞∑
l↓=0

z
l↑
↑ z

l↓
↓ B(l↑,l↓), (5)
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where cluster integrals are

B(0,0) := 0,

B(l↑,l↓) := 1

(l↑!)(l↓!)

∫
d3l↑r↑

∫
d3l↓r↓〈1↑, . . . ,l↑; 1↓, . . . ,l↓|

×U
(l↑,l↓)
α |1↑, . . . ,l↑; 1↓, . . . ,l↓〉. (6)

The proof of Eq. (5) is given in Appendix A 1.
Once the cluster integrals are obtained, we can evaluate

thermodynamic quantities. For the case of a uniform system
in a finite volume V = L3, the equilibrium pressure p and the
particle-number density ρσ := 〈n̂σ 〉 of the system are given by

p = 1

β
lim

V →∞
1

V

∞∑
l↑=0

∞∑
l↓=0

z
l↑
↑ z

l↓
↓ B(l↑,l↓) (7)

and

ρσ = lim
V →∞

1

V

∞∑
l↑=0

∞∑
l↓=0

lσ z
l↑
↑ z

l↓
↓ B(l↑,l↓). (8)

Similarly, for the case of a trapped system, the particle number
Nσ of the system is given by

Nσ =
∞∑

l↑=0

∞∑
l↓=0

lσ z
l↑
↑ z

l↓
↓ B(l↑,l↓). (9)

B. One- and two-particle reduced density matrices

In terms of second-quantized field operators, the one- and
two-particle reduced density matrices can be expressed as

〈rσ |ρ(1)|r′σ ′〉 := 〈
̂†
σ (r) 
̂σ ′(r′)〉, (10)

〈r1σ1,r2σ2|ρ(2)|r′
1σ

′
1,r

′
2σ

′
2〉

:= 〈

̂†

σ1
(r1)
̂†

σ2
(r2)
̂σ ′

2
(r′

2)
̂σ ′
1
(r′

1)
〉
, (11)

where 〈Ô〉 is the expectation value of Ô over the grand
canonical ensemble defined by

〈Ô〉 := �−1TrHα

[
z
N̂↑
↑ z

N̂↓
↓ e−βĤ Ô

]
, (12)

and 
̂†
σ (r) and 
̂σ (r) are the creation and annihilation opera-

tors. Here, Ĥ and N̂σ := ∫
d3r 
̂†

σ (r) 
̂σ (r) are, respectively,
the second-quantized operators for the Hamiltonian and the
total number of particles with spin σ . [See, for example,
Ref. [20], in particular, Eqs. (2.1.6) and (2.4.2).]

The one-particle reduced density matrix can be shown to
be related to U

(l↑,l↓)
α by

〈x↑|ρ(1)|y↑〉

=
∞∑

l↑=1

∞∑
l↓=0

z
l↑
↑

(l↑ − 1)!

z
l↓
↓

l↓!

∫
d3(l↑−1)r↑

∫
d3l↓r↓

× 〈y,1↑, . . . ,l↑ − 1; 1↓, . . . ,l↓|
×U

(l↑,l↓)
α |x,1↑, . . . ,l↑ − 1; 1↓, . . . ,l↓〉 (13)

and

〈x↓|ρ(1)|y↓〉

=
∞∑

l↑=0

∞∑
l↓=1

z
l↑
↑

l↑!

z
l↓
↓

(l↓ − 1)!

∫
d3l↑r↑

∫
d3(l↓−1)r↓

×〈1↑, . . . ,l↑; y,1↓, . . . ,l↓ − 1|
×U

(l↑,l↓)
α |1↑, . . . ,l↑; x,1↓, . . . ,l↓ − 1〉. (14)

The proofs of Eqs. (13) and (14) are given in Appendix A 2.
Clearly, 〈x↑|ρ(1)|y↓〉 = 〈x↓|ρ(1)|y↑〉 = 0.

The two-particle reduced density matrix can also be shown
to be related to U

(l↑,l↓)
α by

〈x1↑,x2↑|ρ(2)|y1↑,y2↑〉
= 〈x1↑|ρ(1)|y1↑〉〈x2↑|ρ(1)|y2↑〉

+
∞∑

l↑=2

∞∑
l↓=0

z
l↑
↑

(l↑ − 2)!

z
l↓
↓

l↓!

∫
d3(l↑−2)r↑

∫
d3l↓r↓

× 〈y1,y2,1↑, . . . ,l↑ − 2; 1↓, . . . ,l↓|
×U

(l↑,l↓)
α |x1,x2,1↑, . . . ,l↑ − 2; 1↓, . . . ,l↓〉, (15)

〈x1↓,x2↓|ρ(2)|y1↓,y2↓〉
= 〈x1↓|ρ(1)|y1↓〉〈x2↓|ρ(1)|y2↓〉

+
∞∑

l↑=0

∞∑
l↓=2

z
l↑
↑

l↑!

z
l↓
↓

(l↓ − 2)!

∫
d3l↑r↑

∫
d3(l↓−2)r↓

× 〈1↑, . . . ,l↑; y1,y2,1↓, . . . ,l↓ − 2|
×U

(l↑,l↓)
α |1↑, . . . ,l↑; x1,x2,1↓, . . . ,l↓ − 2〉, (16)

and

〈x1↑,x2↓|ρ(2)|y1↑,y2↓〉
= ε〈x1↑,x2↓|ρ(2)|y2↓,y1↑〉
= ε〈x2↓,x1↑|ρ(2)|y1↑,y2↓〉
= 〈x2↓,x1↑|ρ(2)|y2↓,y1↑〉
= 〈x1↑|ρ(1)|y1↑〉〈x2↓|ρ(1)|y2↓〉

+
∞∑

l↑=1

∞∑
l↓=1

z
l↑
↑

(l↑ − 1)!

z
l↓
↓

(l↓ − 1)!

∫
d3(l↑−1)r↑

∫
d3(l↓−1)r↓

× 〈y1,1↑, . . . ,l↑ − 1; y2,1↓, . . . ,l↓ − 1|
×U

(l↑,l↓)
α |x1,1↑, . . . ,l↑ − 1; x2,1↓, . . . ,l↓ − 1〉, (17)

where ε = +1 for α = S (Bose-Einstein statistics) and
ε = −1 for α = A (Fermi-Dirac statistics). The proofs of
Eqs. (15)–(17) are given in Appendix A 3. Clearly, the other
components such as 〈x1↑,x2↓|ρ(2)|y1↓,y2↓〉 vanish.

A generalization to an N -particle reduced density matrix
is straightforward. For example, the three-particle reduced
density matrix is

〈x1↑,x2↑,x3↓|ρ(3)|y1↑,y2↑,y3↓〉
= 〈x1↑|ρ(1)|y1↑〉〈x2↑|ρ(1)|y2↑〉〈x3↓|ρ(1)|y3↓〉

+ 〈x1↑|ρ(1)|y1↑〉〈x2↑,x3↓|ρ(2)|y2↑,y3↓〉
+ 〈x2↑|ρ(1)|y2↑〉〈x1↑,x3↓|ρ(2)|y1↑,y3↓〉
+ 〈x3↓|ρ(1)|y3↓〉〈x1↑,x2↑|ρ(2)|y1↑,y2↑〉
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+
∞∑

l↑=2

∞∑
l↓=1

z
l↑
↑

(l↑ − 2)!

z
l↓
↓

(l↓ − 1)!

∫
d3(l↑−2)r↑

∫
d3(l↓−1)r↓

×〈y1,y2,1↑, . . . ,l↑ − 2; y3,1↓, . . . ,l↓ − 1|
×U

(l↑,l↓)
α |x1,x2,1↑, . . . ,l↑ − 2; x3,1↓, . . . ,l↓ − 1〉.

(18)

The formulation given in this section is expressed in
the form of an infinite series. Thus, one might question
the mathematical rigor of the formulation. Actually, the
derivations of the formulation can be mathematically justified,
as shown in Appendix A 4.

III. U
(l↑,l↓)
α IN TERMS OF U (l↑,l↓)

In the preceding section, we derived the formulas of
the grand partition function and the one- and two-particle
reduced density matrices. To evaluate these quantities, we must
calculate U

(l↑,l↓)
α . In this section, we review the rules by which

U
(l↑,l↓)
α can be computed from the knowledge of certain U (l↑,l↓)

functions for the same system obeying Boltzmann statistics.
These rules were first established by Lee and Yang for the case
of a one-component system [2] and were extended by Pathria
and Kawatra for a multicomponent system [7].

A. Boltzmann statistics

For Boltzmann statistics, we introduce the function

〈1′
↑, . . . ,N ′

↑; 1′
↓, . . . ,N ′

↓|W (N↑,N↓)|1↑, . . . ,N↑; 1↓, . . . ,N↓〉
:=

∑
ψi∈H(N↑ )⊗H(N↓ )

ψi(1
′
↑, . . . ,N ′

↑; 1′
↓, . . . ,N ′

↓)

×ψi(1↑, . . . ,N↑; 1↓, . . . ,N↓)e−βEi . (19)

The summation on the right-hand side of Eq. (19) runs over
all eigenfunctions ψi ∈ H(N↑) ⊗ H(N↓), whereH(Nσ ) is the Nσ -
particle Hilbert space.

Similarly to Eq. (3), we define the matrix elements of cluster
functions U (N↑,N↓) in the coordinate representation as

〈1′
↑|W (1,0)|1↑〉 = 〈1′

↑|U (1,0)|1↑〉,
〈1′

↓|W (0,1)|1↓〉 = 〈1′
↓|U (0,1)|1↓〉,

〈1′
↑,2′

↑|W (2,0)|1↑,2↑〉 = 〈1′
↑,2′

↑|U (2,0)|1↑,2↑〉 + 〈1′
↑|U (1,0)|1↑〉 〈2′

↑|U (1,0)|2↑〉,
〈1′

↑; 1′
↓|W (1,1)|1↑; 1↓〉 = 〈1′

↑; 1′
↓|U (1,1)|1↑; 1↓〉 + 〈1′

↑|U (1,0)|1↑〉 〈1′
↓|U (0,1)|1↓〉,

〈1′
↓,2′

↓|W (0,2)|1↓,2↓〉 = 〈1′
↓,2′

↓|U (0,2)|1↓,2↓〉 + 〈1′
↓|U (0,1)|1↓〉 〈2′

↓|U (0,1)|2↓〉,
〈1′

↑,2′
↑,3′

↑|W (3,0)|1↑,2↑,3↑〉 = 〈1′
↑,2′

↑,3′
↑|U (3,0)|1↑,2↑,3↑〉 + 〈1′

↑|U (1,0)|1↑〉〈2′
↑,3′

↑|U (2,0)|2↑,3↑〉
+ 〈2′

↑|U (1,0)|2↑〉〈3′
↑,1′

↑|U (2,0)|3↑,1↑〉 + 〈3′
↑|U (1,0)|3↑〉〈1′

↑,2′
↑|U (2,0)|1↑,2↑〉

+ 〈1′
↑|U (1,0)|1↑〉〈2′

↑|U (1,0)|2↑〉〈3′
↑|U (1,0)|3↑〉,etc. (20)

B. U
(l↑,l↓)
α in terms of U (l↑,l↓)

We now formulate the rules by which U
(l↑,l↓)
α can be

computed from the knowledge of U (l↑,l↓). Such rules result
from the fact that U

(l↑,l↓)
α and U (l↑,l↓) are defined in terms of

W
(l↑,l↓)
α and W (l↑,l↓), respectively, which, in turn, are related to

each other through

〈1′
↑, . . . ,N ′

↑; 1′
↓, . . . ,N ′

↓|W (N↑,N↓)
α |1↑, . . . ,N↑; 1↓, . . . ,N↓〉

=
∑

P∈SN↑

∑
Q∈SN↓

εP εQ〈P (1′
↑), . . . ,P (N ′

↑); Q(1′
↓), . . . ,Q(N ′

↓)|

×W (N↑,N↓)| 1↑, . . . ,N↑; 1↓, . . . ,N↓〉, (21)

where ε = +1 for α = S (Bose-Einstein statistics) and ε = −1
for α = A (Fermi-Dirac statistics). Here, P and Q denote
permutations, and (−1)P and (−1)Q take on 1 or −1 for even
or odd permutations. Equation (21) is proved in Appendix B.
It can be seen from the structure of Eqs. (20) and (21) that
U

(l↑,l↓)
α may, in general, be expressed in terms of the sum over

connected products of ϒ
(l↑,l↓)
α functions, where

〈1′
↑, . . . ,l′↑; 1′

↓, . . . ,l′↓|ϒ (l↑,l↓)
α |1↑, . . . ,l↑; 1↓, . . . ,l↓〉

:=
∑

P∈Sl↑

∑
Q∈Sl↓

εP εQ〈P (1′
↑), . . . ,P (l′↑); Q(1′

↓), . . . ,Q(l′↓)|

×U (l↑,l↓)| 1↑, . . . ,l↑; 1↓, . . . ,l↓〉. (22)

Here, we only show the results:
Rule. To calculate 〈r′

1↑, . . . ,r′
l↑; r′

1↓, . . . ,r′
l↓|U (l↑,l↓)

α

|r1↑, . . . ,rl↑; r1↓, . . . ,rl↓〉, we first consider a grouping of the
l↑ + l↓ integers 1↑, . . . ,l↑,1↓, . . . ,l↓:

{(a↑)(b↑) . . .}{(c↑d↑)(e↑f↑) . . .}{(g↑h↑i↑) . . .} . . . ,

{(j↑k↓)(l↑m↓) . . .}{(n↑o↑p↓) . . .}{(q↑r↓s↓) . . .} . . . ,

{(t↓)(u↓) . . .}{(v↓w↓)(x↓y↓) . . .} . . . , (23)

where a↑,b↑, . . . ,q↑, . . . and k↓,m↓, . . . ,y↓, . . . are permuta-
tions of these l↑ and l↓ integers, respectively. In each pair of
the curly brackets, there are mn↑,n↓ (=0,1,2, . . .) round brackets
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with n↑ up-spin integers and n↓ down-spin integers, which are
subject to

l↑∑
n↑=0

l↓∑
n↓=0

n↑mn↑,n↓ = l↑,

(24)
l↑∑

n↑=0

l↓∑
n↓=0

n↓mn↑,n↓ = l↓.

Within each pair of the round brackets in Eq. (23), the integers
for the same spin are arranged in ascending order, i.e., c < d,
e < f , g < h < i, o < p, etc., and within each pair of the curly
brackets, the round brackets are arranged in such a manner that
their first entries are placed in ascending order. We then form
the sum ∑

({〈r′
A↑|ϒ (1,0)

α |ra↑〉〈r′
B↑|ϒ (1,0)

α |rb↑〉 . . .}
× {〈r′

C↑,r′
D↑|ϒ (2,0)

α |rc↑,rd↑〉 . . .} . . .

×{〈r′
J↑; r′

K↓|ϒ (1,1)
α |rj↑; rk↓〉 . . .} . . .

×{〈r′
T ↓|ϒ (0,1)

α |rt↓〉〈r′
U↓|ϒ (0,1)

α |ru↓〉 . . .} . . .), (25)

where A,B, . . . ,J, . . . and K, . . . ,T ,U, . . . are permutations
of 1,2, . . . ,l↑ and 1,2, . . . ,l↓, respectively. Because we use

ϒ
(l↑,l↓)
α in Eq. (22), only one permutation will be included in the

sum in Eq. (25) among all the permutations A,B, . . . ,J, . . . ,

which differ from each other only in the relative positions of
numbers within the same bra (e.g., 〈r′

C↑,r′
D↑| and 〈r′

D↑,r′
C↑|).

The sum in Eq. (25) then runs over all permutations, provided
that upon setting r′

i↑ = ri↑ and r′
i↓ = ri↓ for all i, the summand

in Eq. (25) cannot be written as a product of two factors, one
of which depends only on some, but not all, of the coordinates
r1↑, . . . ,rl↑ and r1↓, . . . ,rl↓, while the other depends only
on the rest of these coordinates. The sum of all expressions
in Eq. (25) over the different groupings in Eq. (22) then
gives U

(l↑,l↓)
α .

We give some examples.
Example 1:

〈1′
↑|U (1,0)

α |1↑〉 = 〈1′
↑|ϒ (1,0)

α |1↑〉. (26)

Example 2:

〈1′
↑,2′

↑|U (2,0)
α |1↑,2↑〉

= 〈1′
↑,2′

↑|ϒ (2,0)
α |1↑,2↑〉 + ε〈2′

↑|ϒ (1,0)
α |1↑〉 〈1′

↑|ϒ (1,0)
α |2↑〉.

(27)

Example 3:

〈1′
↑; 1′

↓|U (1,1)
α |1↑; 1↓〉 = 〈1′

↑; 1′
↓|ϒ (1,1)

α |1↑; 1↓〉. (28)

Example 4:

〈1′
↑,2′

↑; 3′
↓|U (2,1)

α |1↑,2↑; 3↓〉
= 〈1′

↑,2′
↑; 3′

↓|ϒ (2,1)
α |1↑,2↑; 3↓〉

+ 〈2′
↑|ϒ (1,0)

α |1↑〉〈1′
↑,3′

↓|ϒ (1,1)
α |2↑,3↓〉

+ 〈1′
↑|ϒ (1,0)

α |2↑〉〈2′
↓,3′

↑|ϒ (1,1)
α |1↓,3↑〉. (29)

For reasons which will become clear later, it is useful to
define a function ϒ (l)

α related to ϒ
(l↑,l↓)
α as follows. First, we de-

fine (r̃1, . . . ,r̃l) := (r1↑, . . . ,rl↑,r1↓, . . . ,rl↓), (r̃′
1, . . . ,r̃

′
l) :=

(r′
1↑, . . . ,r′

l↑,r′
1↓, . . . ,r′

l↓), σ1 = . . . = σl↑ = ↑, and σl↑+1 =
. . . = σl = ↓, where l := l↑ + l↓. Then, we define a function
ϒ (l)

α as

〈r̃′
Q(1),σQ(1); . . . ; r̃′

Q(l),σQ(l)|ϒ (l)
α |r̃P (1),σP (1); . . . ; r̃P (l),σP (l)〉

:= εP εQ〈r̃′
1, . . . ,r̃

′
l|ϒ (l↑,l↓)

α |r̃1, . . . ,r̃l〉
= εP εQ〈r′

1↑, . . . ,r′
l↑; r′

1↓, . . . ,r′
l↓|

×ϒ
(l↑,l↓)
α |r1↑, . . . ,rl↑; r1↓, . . . ,rl↓〉, (30)

where P and Q are any one of l! permutations.
We give a few examples.
Example 1:

〈r′,↑|ϒ (1)
α |r,↑〉 = 〈r′|ϒ (1,0)

α |r〉, (31)

〈r′,↓|ϒ (1)
α |r,↓〉 = 〈r′|ϒ (0,1)

α |r〉. (32)

Example 2:

〈r′
1,↑; r′

2,↑|ϒ (2)
α |r1,↑; r2,↑〉

= ε〈r′
2,↑; r′

1,↑|ϒ (2)
α |r1,↑; r2,↑〉

= ε〈r′
1,↑; r′

2,↑|ϒ (2)
α |r2,↑; r1,↑〉

= 〈r′
2,↑; r′

1,↑|ϒ (2)
α |r2,↑; r1,↑〉

= 〈r′
1,r

′
2|ϒ (2,0)

α |r1,r2〉. (33)

Example 3:

〈r′
1,↑; r′

2,↓|ϒ (2)
α |r1,↑; r2,↓〉

= ε〈r′
2,↓; r′

1,↑|ϒ (2)
α |r1,↑; r2,↓〉

= ε〈r′
1,↑; r′

2,↓|ϒ (2)
α |r2,↓; r1,↑〉

= 〈r′
2,↓; r′

1,↑|ϒ (2)
α |r2,↓; r1,↑〉

= 〈r′
1; r′

2|ϒ (1,1)
α |r1; r2〉. (34)

IV. GRAPHICAL REPRESENTATION

A. Primary ζ -graphs

Using Eqs. (5), (6), and (13)–(17) and the rules introduced
in the preceding section, the grand partition function and
the one- and two-particle reduced density matrices can be
expressed in terms of the sum over connected products of
ϒα functions. The exact character of this sum is most simply
described in terms of primary ζ -graphs introduced by Lee and
Yang [3] for the grand partition function and the one-particle
reduced density matrix, and by de Dominicis [6] for the
two-particle reduced density matrix. A primary ζ -graph is
defined as follows:

Definition. A primary ζ -graph (ζ = 0,1,2, . . .) is a graph-
ical structure which consists of a collection of vertices
connected by directed lines, with ζ external incoming lines and
ζ external outgoing lines. Here, a line that has vertices at both
ends is called an internal line; otherwise, it is called an external
line. All external lines are considered distinguishable. Each
vertex, called the l-vertex (l = 2,3, . . .), connects l incoming
lines and l outgoing lines. A primary ζ -graph must include at
least one vertex and one line, and all parts must be connected
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(i.e., there must be a path from any one vertex to any other
vertex). Two primary graphs are different if their topological
structures are different. To each of these graphs we assign a
term, which is determined by the following procedures:

(i) Associate with each internal line a different integer
i (i = 1, . . . ,N ) and the corresponding coordinate and spin
(ri ,σi). Associate with each external line some prescribed
coordinate and spin.

(ii) Assign to each l-vertex a factor

B1

A1

Bl

AlA2 . . .

B2 . . .

= z
l↑
↑ z

l↓
↓ 〈B1, . . . ,Bl|ϒ (l)

α |A1, . . . ,Al〉, (35)

where Ai and Bi represent the coordinates and spins associated
with its incoming and outgoing ith lines (i = 1, . . . ,l), respec-
tively. The number of up spins associated with its incoming
lines is the same as that of outgoing lines, and it is denoted as
l↑. The same is true for down spins l↓, with l := l↑ + l↓.1

(iii) Assign a factor 1/S to the entire graph, where S is the
symmetry number and is defined as follows: Consider all N !
permutations of the positions of N integers associated with the
lines. The total number of permutations that leave the graph
topologically unchanged gives the symmetry number of the
graph. The symmetry numbers are listed under each graph in
Figs. 1, 2, etc.

(iv) Assign a factor −1 to the entire graph, if the permutation

A1 → B1, A2 → B2, . . . , Aα → Bα, . . . (36)

from all the initial coordinates into all the final coordinates of
all the vertex function ϒ

(l)
A taken together is odd.

The term that corresponds to each graph is given by∑
σ1,...,σl

∫
d3l↑r↑

∫
d3l↓r↓

× [product of all factors in (ii)–(v)]. (37)

B. Primary 0-graphs

In terms of these primary graphs, we can write the grand
partition function [3] as

ln � (β,z) =
∑

(all different primary 0-graphs) , (38)

to which each graph contributes a term given by Eq. (37).
Equation (38) is illustrated in Fig. 1. We can write Eq. (38)
explicitly as

ln � (β,z)

= z↑Tr (U (1,0)) + z2
↑
2

Tr (U (1,0))2 + z3
↑
3

Tr (U (1,0))3 + · · ·

+ z↑Tr (U (0,1)) + z2
↑
2

Tr (U (0,1))2 + z3
↑
3

Tr (U (0,1))3 + · · ·

1We use rules different from those of Lee and Yang [3]. The
relationships between the Lee-Yang and our notation are listed in
Appendix C.

(a)

+ln Ξ =

(1) 

+ +

+ …

…

++

(2) (3) 

(2) (1) 

+ +

+

+ …

+ …

(6) (2) 

(2) 

+

+= tr (ln η0) +

+ …

(2) 

(2) 

(6) 

(b)

= + +η0
(1) = ++

(1) (1) (1) 

…

FIG. 1. (a) Expression of ln � as the sum over all different
primary 0-graphs (solid curves) and as the sum over all different
contracted 0-graphs (dotted curves). The symmetry number is shown
under each graph. (b) Expression of 〈r′σ ′|η(1)

0 |rσ 〉 as the sum over
different primary 1-graphs.

+
∫

d3r1

∫
d3r2 〈r1,r2|ϒ (2,0)

α |r1,r2〉

×
(

z2
↑
2

+ z3
↑〈r1|U (1,0)|r1〉 + · · ·

)
+ · · · , (39)

where TrX := ∫
d3r〈r|X|r〉, TrX2 := ∫

d3r1
∫

d3r2

〈r1|X|r2〉〈r2|X|r1〉, etc.

C. Primary 1- and 2-graphs

It is useful to define functions 〈r′σ ′|η(1)|rσ 〉 and
〈r′

1σ
′
1,r

′
2σ

′
2|η(2)|r1σ1,r2σ2〉 related to the one- and two-particle

reduced density matrices by

〈r′σ ′|η(1)|rσ 〉 := δ(r′ − r)δσσ ′ + ε〈rσ |ρ(1)|r′σ ′〉 (40)

and

〈1′2′|η(2)|12〉 − 〈1′|η(1)|1〉〈2′|η(1)|2〉 − ε〈2′|η(1)|1〉〈1′|η(1)|2〉
≡ 〈1′2′|ρ(2)|12〉 − 〈1′|ρ(1)|1〉〈2′|ρ(1)|2〉

− ε〈2′|ρ(1)|1〉〈1′|ρ(1)|2〉, (41)

where 1,2 and 1′,2′ represent both the coordinate and spin of
the particle such as 1 := (r1,σ1) and 1′ := (r′

1,σ
′
1).
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In terms of second-quantized field operators, η(1) and η(2)

can be written as

〈r′σ |η(1)|rσ 〉 = 〈
̂σ (r′) 
̂†
σ (r)〉, (42)

〈r1σ,r2σ
′|η(2)|r′

1σ,r′
2σ

′〉
= 〈
̂σ ′(r′

2)
̂σ (r′
1) 
̂†

σ (r1)
̂†
σ ′(r2)〉. (43)

These functions can be shown to be related to 1- and 2-graphs
[3,6] by

〈r′σ ′|η(1)|rσ 〉 = δ(r′ − r)δσσ ′

+ ε
∑

(all different primary 1-graphs)

(44)

and

〈1′2′|η(2)|12〉
−〈1′|η(1)|1〉〈2′|η(1)|2〉 − ε〈2′|η(1)|1〉〈1′|η(1)|2〉

=
∑

(all different primary 2-graphs). (45)

D. Contracted ζ -graphs

In Fig. 1(a), we have arranged the sum so that the different
primary graphs in the same row have the same number of
l-vertices for l � 2 and they differ only in the total number
and relative positions of 1-vertices. We see that all the terms
in the same row in Eq. (39) can easily be summed up. Thus,
Eq. (39) becomes

ln � = Tr
[

ln
(
η

(1)
0

)] + z2
↑
2

∫
d3r1

∫
d3r2 〈r1,r2|ϒ (2,0)

α |r1,r2〉

× 〈r1↑|η(1)
0 |r1↑〉〈r2↑|η(1)

0 |r2↑〉
+ z↑z↓

∫
d3r1

∫
d3r2 〈r1,r2|ϒ (1,1)

α |r1,r2〉

× 〈r1↑|η(1)
0 |r1↑〉〈r2↓|η(1)

0 |r2↓〉

+ z2
↓
2

∫
d3r1

∫
d3r2 〈r1,r2|ϒ (0,2)

α |r1,r2〉

× 〈r1↓|η(1)
0 |r1↓〉〈r2↓|η(1)

0 |r2↓〉 + · · · , (46)

where

〈r′↑|η(1)
0 |r↑〉 := 〈r′|(I − εzU (1,0))−1|r〉

= δ(r′ − r) + εz↑〈r′|U (1,0)|r〉
+ z2

↑

∫
d3r1〈r′|U (1,0)|r1〉〈r1|U (1,0)|r〉 + · · · , (47)

〈r′↓|η(1)
0 |r↓〉 := 〈r′|(I − εzU (0,1))−1|r〉

= δ(r′ − r) + εz↓〈r′|U (0,1)|r〉
+ z2

↓

∫
d3r1〈r′|U (0,1)|r1〉〈r1|U (0,1)|r〉 + · · · . (48)

It is therefore convenient to represent the primary graphs in the
same row as in Fig. 1(a) by a single structure, which is obtained
from any one of these primary graphs by simply eliminating
all 1-vertices [see Fig. 1(b)].

We now introduce a contracted graph. A contracted graph
(or, contracted ζ -graph) has the same topological structure as
a primary graph (or, primary ζ -graph) except that a contracted
graph does not have any 1-vertex. To each contracted graph,
we assign a term which is determined by the same procedures
(i)–(v) and the following additional rule:

(iv) Assign a factor η
(1)
0 to the ith internal line.

In terms of these graphs, Eq. (46) reduces to

ln � (β,z) = Tr
[

ln
(
η

(1)
0

)]
+

∑
(all different contracted 0-graphs) . (49)

This sum is also illustrated in Fig. 1(b) in which solid lines
represent the primary graphs and dotted lines represent the
contracted graphs.

Similarly, Eqs. (44) and (45) become

〈r′σ ′|η(1)|rσ 〉 = δ(r′ − r)δσσ ′

+ ε
∑

(all different contracted 1-graphs) (50)

and

〈1′2′|η(2)|12〉
−〈1′|η(1)|1〉〈2′|η(1)|2〉 − ε〈2′|η(1)|1〉〈1′|η(1)|2〉

=
∑

(all different contracted 2-graphs). (51)

Equation (50) is illustrated in Fig. 2.
For further discussions as well as examples of primary and

contracted ζ -graphs, the reader is referred to Sec. 3 of Ref. [3]
and Sec. II-(ii) of Ref. [6].

E. One-component system

In this subsection, we consider a one-component Bose
or Fermi gas. We can establish the formulas for the one-
component gas by substituting z↓ = 0 in the corresponding
formulas of the two-component gas. From Eqs. (39) and (46),
the grand partition function is

ln � (β,z)

= zTr (U (1)) + 1

2
z2Tr (U (1))2 + 1

3
z3Tr (U (1))3 + · · ·

+
∫

d3r1d
3r2 〈r1,r2|ϒ (2)

α |r1,r2〉

×
(

1

2
z2 + z3〈r1|U (1)|r1〉 + · · ·

)
+ · · ·

= Tr
[

ln
(
η

(1)
0

)] + 1

2

∫
d3r1d

3r2 〈r1,r2|ϒ (2)
α |r1,r2〉

× 〈r1|η(1)
0 |r1〉〈r2|η(1)

0 |r2〉 + · · · , (52)

where z := z↑U (l) := U (l,0)ϒ (l)
α := ϒ (l,0)

α and

〈r′|η(1)
0 |r〉 := 〈r′|(I − εzU (1,0))−1|r〉. (53)
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(a)

+η 
(1) =

++

+ +

+

…

…

(1) (1) 

(2) (1) 

+ + + …

(1) (1) 

+ …

= + ++ + …

(b)

= +

+ + + …

(1) (2) 

(2) (6) 

FIG. 2. (a) Expression of 〈r′σ ′|η(1)|rσ 〉 as the sum over all
different contracted 1-graphs, where the sum is rewritten in the form
of a geometric series (last line). (b) Expression of 〈r′σ ′|K̃ (1)|rσ 〉
as the sum over all different irreducible contracted 1-graphs. The
corresponding symmetry numbers are shown under the graphs.

V. PHYSICAL MEANING OF PRIMARY GRAPHS

For a uniform system in a finite volume V , the cluster
functions in momentum representation are

〈k′
1, . . . ,k

′
l |U (l↑,l↓)|k1, . . . ,kl〉

:= 1

V l

l∏
i=1

(∫
d3ri

∫
d3r′

ie
i(k′

i ·r′
i−ki ·ri )

)

×〈r′
1, . . . ,r

′
l|U (l↑,l↓)|r1, . . . ,rl〉, (54)

where (k1, . . . ,kl) = (k1, . . . ,kl↑ ; kl↑+1, . . . ,kl), etc.
For later use, we evaluate the cluster functions U (1) for

a one-component system and U (1,1) for a two-component
system. We can evaluate U (1) for the one-component system
as

〈k′|U (1)|k〉 = δk,k′e−βk2/(2m). (55)

Next, we evaluate U (1,1) for the two-component system. The
two-particle Hamiltonian is

H (1,1) = 1

2m↑
k2

1 + 1

2m↓
k2

2 + v = 1

2(m↑ + m↓)
K2 + H (rel),

(56)

H (rel) = 1

2m∗ k2 + v, (57)

where we introduce the center-of-mass momentum K := k1 +
k2, the relative momentum k := (k1 − k2)/2, and reduced
mass m∗ := m↑m↓/(m↑ + m↓). The cluster function is

〈k′
1k′

2|U (1,1)|k1k2〉

= 8π3

V
δK,K′ e−βK2/{2(m↑+m↓)} 〈k′|U (rel)|k〉, (58)

where

〈k′|U (rel)|k〉 := 〈k′|e−βH (rel) |k〉 − δk,k′ e−βk2/(2m∗). (59)

The function 〈k′|U (rel)|k〉, which is independent of the volume,
includes the effect of the interaction and can be calculated by
the eigenfunction and the eigenvalue of H (rel).

In the following, we list four simple examples for a uniform
and equal-mass (m↑ = m↓ = m) system in a finite volume V .

Example 1 (quantum exchange and interaction). The grand
partition function of a one-component Bose or Fermi gas is
expressed as a sum of primary 0-graphs. Let us consider any
one of the primary 0-graphs. It has several l-vertices and
their orders are denoted as l1, . . . ,ln. The total number of
the orders

∑n
i=1 li corresponds to the order of fugacity z of

the corresponding primary 0-graph. In general, a contribution
from N particles is expressed as the N th-order term in z.
Hence, the primary 0-graph represents the many-body effect
among

∑n
i=1 li particles. The one-particle cluster function is

given by

〈r′|U (1)|r〉−→
V →∞

λ−3 exp[−(r′ − r)2/(4β)], (60)

where λ := (2πβ/m)1/2 is the thermal de Broglie length. This
expression can be better understood if we separate the effect of
the interaction from the quantum-exchange effect. To provide
a concrete example, we consider the second order in fugacity
z for the primary 0-graph (see Fig. 3):

z2

2

∫
d3r1d

3r2
(〈r1,r2|ϒ (2)

α |r1,r2〉

+ ε〈r2|U (1)|r1〉〈r1|U (1)|r2〉
)
. (61)

Here, the first term in the integrand is

〈r1,r2|ϒ (2)
α |r1,r2〉

= 〈r1,r2|U (2)|r1,r2〉 + ε〈r2,r1|U (2)|r1,r2〉, (62)

where the cluster functions U (2) contain only the effect of
the interaction because they are defined with unsymmetrized
wave functions. The second term in the integrand of (61)
describes the particle-exchange effect. According to Eq. (60),
the relevant scale of the term ε〈r2|U (1)|r1〉〈r1|U (1)|r2〉 is
the thermal length λ. We can thus divide the effect of the
two-particle correlation into the quantum-exchange effect of
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+

FIG. 3. The second-order terms in fugacity z for the primary
0-graphs [see Eq. (61)].

the Bose-Einstein or Fermi-Dirac statistics and the effect of
the interaction with Boltzmann statistics.

Example 2 (ideal Bose gas and BEC). For an ideal Bose
gas, BEC is caused by the quantum-exchange effect such as the
first term in Fig. 3. For noninteracting particles, it is clear from
Eq. (20) that U (2) = 0, U (3) = 0, etc. Therefore, we obtain
from Eq. (38)

ln � =
∑

(all different primary 0-graphs)

= z
∑

k

〈k|U (1)|k〉 + z2

2

∑
k1,k2

〈k2|U (1)|k1〉〈k1|U (1)|k2〉

+ z3

3

∑
k1,k2,k3

〈k2|U (1)|k1〉〈k3|U (1)|k2〉〈k1|U (1)|k3〉

+ · · · , (63)

where each term in the sum corresponds to the primary
0-graph in the sum in Fig. 4. The summation extends over ki ∈
2πZ3/L, where we use the symbol Z = {0,±1, . . .} for a set
of integers. As mentioned earlier, the order (power) of fugacity
z indicates the number of the particles involved. For example,
the first term on the right-hand side of Eq. (63) corresponds to
the free motion of one particle, the second term corresponds
to the quantum-exchange effect between two bosons, and the

+=

(1) 

+ + …

(2) (3) 

(n) 

Σ
n = 1 

∞  

Σ
k 

= +
k 

k 

quantum exchange 
between 2 particles 

Σ
k1, k2 

1 
2  

k1 

k2 

k2 

k1 

+

quantum exchange 
between 3 particles 

Σ
k1, k2, k3 

1 
3  +

k1 

k3 

k2 

k1 

k3 

k2 

…

FIG. 4. Sum over different primary 0-graphs which include the
1-vertex only [see Eq. (63)].

third term corresponds to the quantum-exchange effect among
three bosons. By substituting Eq. (55) in Eq. (63), we obtain

ln � =
∑

k

∞∑
n=1

zn

n
e−nβk2/(2m)

= −
∑

k

ln(1 − z e−βk2/(2m)), (64)

which agrees with the well-known result for ideal bosons.
At z = eβμ = 1, the summation in Eq. (64) has a singularity
at k = 0, which is characteristic of a Bose-Einstein phase
transition.

Example 3 (ideal Fermi gas and Fermi surface). For ideal
fermions, we obtain

ln � =
∑

(all different primary 0-graphs)

= z
∑

k

〈k|U (1)|k〉 − z2

2

∑
k1,k2

〈k2|U (1)|k1〉〈k1|U (1)|k2〉

+ z3

3

∑
k1,k2,k3

〈k2|U (1)|k1〉〈k3|U (1)|k2〉〈k1|U (1)|k3〉

+ · · ·

= −
∑

k

∞∑
n=1

(−z)n

n
e−nβk2/(2m)

=
∑

k

ln(1 + z e−βk2/(2m)), (65)

which agrees with the known result for ideal fermions.
Example 4 (two-component Fermi gas in the tightly bound

limit). We assume that the two-body interaction v is finite
ranged and supports one bound state corresponding to a
diatomic molecular state. Let ψb(k) be the bound-state solution
for the center-of-mass system of two particles with binding
energy Eb such that H (rel)ψb(k) = Ebψb(k). We assume that
the binding energy is much larger than the thermal energy, i.e.,
|Eb| � kBT . For the Bose-Einstein distribution of diatomic
molecules to develop a singularity, we should have μ �
−|Eb|/2. Using Eq. (59), we obtain

〈k′|U (rel)|k〉 � ψb(k′)ψ∗
b (k) eβ|Eb|. (66)

We can show that a general formula for a central potential
v(r) is given by

〈k′
1,k

′
2|ϒ (1,1)

A |k1,k2〉 � e−βK2/(4m)δK,K′ψb(k′)ψ∗
b (k) eβ|Eb|.

(67)

The factor e−βK2/(4m)δK,K′ is associated with a free motion of
the center of mass of molecules. Then, if we consider an infinite
series of primary 0-graphs that correspond to the quantum
exchange of molecules, the sum of the infinite series leads to
the BEC of diatomic molecules below the critical temperature.
We consider the sum of ladder-type primary 0-graphs as
shown in Fig. 5. The number in the parentheses under each
graph in Fig. 5 is the symmetry number of the corresponding
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FIG. 5. Plad [Eq. (68)] as the sum over different ladder-type
primary 0-graphs. The symmetry number is shown under each graph.

ladder-type primary 0-graph. The explicit algebraic expression
of the sum of the graphs is given as

Plad =
∞∑

n=1

z2n

n × 2n

∑
k1,...,k2n

∑
σ1,...,σ2n

×〈k1σ1,k2σ2|ϒ (2)
A |k3σ3,k4σ4〉 . . .

×〈k2n−1σ2n−1,k2nσ2n|ϒ (2)
A |k1σ1,k2σ2〉. (68)

Substituting Eq. (67) into (68), we have

Plad =
∑

K

∞∑
n=1

1

n
(z2eβ|Eb|e−βK2/(4m))n

(∑
k

|ψb(k)|2
)n

=
∑

K

ln(1 − z2eβ|Eb|e−βK2/(4m)). (69)

At z = e−β|Eb|/2 (i.e., μ = −|Eb|/2), the sum in Eq. (69)
develops a singularity at K = 0, which is a manifestation of
the Bose-Einstein phase transition of diatomic molecules.

Note that the sum of ladder-type graphs shown in Fig. 5
gives rise to the quantum-exchange effect of the Bose-Einstein
statistics of diatomic molecules. In the Matsubara Green’s
function method, a bound state emerges as a result of an
infinite summation of ladder-type Feynman diagrams, which is
interpreted as describing an effect of repeated binary collisions.
In the Lee-Yang method, however, since the cluster function
U (2) is evaluated from a nonperturbative bound-state solution,
the single cluster function U (2) includes the effect of repeated
binary collisions. In this method, we should carry out an
infinite summation of ladder-type Lee-Yang graphs to include
a quantum-exchange effect of the Bose-Einstein statistics since

the cluster function U (2) is defined in terms of the Boltzmann
statistics.

VI. CRITERIA OF ODLRO IN BOSE SYSTEMS

A. Off-diagonal long-range order in Bose systems

The defining characteristic of Bose-Einstein condensa-
tion is the occurrence of macroscopic occupation of one-
particle states [17]. The one-particle reduced density matrix
〈rσ |ρ(1)|r′σ ′〉 := 〈
̂†

σ (r)
̂σ ′(r′)〉 may be expanded in terms of
its eigenfunctions χi(rσ ) with eigenvalues ni as

〈rσ |ρ(1)|r′σ ′〉 =
∑

i

ni χ
∗
i (rσ )χi(r′σ ′). (70)

According to Penrose and Onsager [17], the system exhibits
BEC if one or more of the eigenvalues ni are of the order of
the total number of particles N := 〈N̂〉, i.e.,

ni = xiN + o(N ) (0 < xi � 1). (71)

It can be shown that in an infinite system, this condition is
equivalent to the emergence of an off-diagonal long-range
order (ODLRO) [18]. A single BEC is said to emerge if one
and only one eigenvalue is of the order of N , all the rest being
of the order of 1. If there exists more than one eigenvalue of
the order of N , the BEC is said to be fragmented [21–23].

To establish the criterion of BEC in terms of the Lee-Yang
cluster expansion method, we first consider the relationship
between the eigenvalues of ρ(1) and η(1). It is convenient to use
the basis set {χi(rσ )}. The matrix elements ρ

(1)
ji and η

(1)
ij are

defined by

ρ
(1)
ji :=

∑
σσ ′

∫
d3r

∫
d3r′〈rσ |ρ(1)|r′σ ′〉χi(rσ )χ∗

j (r′σ ′)

= niδij (72)

and

η
(1)
ij :=

∑
σσ ′

∫
d3r

∫
d3r′〈r′σ ′|η(1)|rσ 〉χi(rσ )χ∗

j (r′σ ′). (73)

Using Eq. (40), we obtain

η
(1)
ij = δij + ρ

(1)
ji = (ni + 1)δij . (74)

Therefore, if the system shows BEC, the eigenvalue of η(1) is
of the order of the total number of particles N := 〈N̂〉, i.e.,

ni + 1 = xiN + o(N ) (0 < xi � 1). (75)

B. Criterion of BEC in terms of irreducible contracted graphs

We introduce the concept of reducibility of a primary
1-graph or a contracted 1-graph.

Definition. A primary 1-graph or a contracted 1-graph is
reducible if by cutting one of its internal lines, the entire graph
can be separated into two disconnected primary 1-graphs.

Definition. An irreducible primary 1-graph or an irreducible
contracted 1-graph is a primary 1-graph or a contracted
1-graph, which is not reducible.

Note that we use the term “irreducible” in a conventional
sense. The same term was used for a different meaning by
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Lee and Yang [3]. The correspondence between the Lee-Yang
notation and ours is listed in Appendix C.

In terms of irreducible contracted 1-graphs, 〈r′σ ′|η(1)|rσ 〉
can be expressed as a geometric series:

〈r′σ ′|η(1)|rσ 〉
= 〈r′σ ′|η(1)

0 |rσ 〉 +
∑
σ1,σ2

∫
d3r1d

3r2〈r′σ ′|η(1)
0 |r1σ1〉

× 〈r1σ1|K̃ (1)|r2σ2〉〈r2σ2|η(1)
0 |rσ 〉

+
∑

σ1,...,σ4

∫
d3r1 . . . d3r4〈r′σ ′|η(1)

0 |r1σ1〉〈r1σ1|K̃ (1)|r2σ2〉

× 〈r2σ2|η(1)
0 |r3σ3〉〈r3σ3|K̃ (1)|r4σ4〉〈r4σ4|η(1)

0 |rσ 〉 + · · · ,
(76)

where

〈r′σ ′|K̃ (1)|rσ 〉
=

∑
(all different irreducible contracted 1-graphs)

= z2
∑
r1σ1

〈r′σ ′,r1σ1|ϒ (2)
α |rσ,r1σ1〉〈r1σ1|η(1)

0 |r1σ1〉

+ z3
∑

r1r2σ1σ2

〈r′σ ′,r1σ1,r2σ2|ϒ (3)
α |rσ,r1σ1,r2σ2〉

× 〈r1σ1|η(1)
0 |r1σ1〉〈r2σ2|η(1)

0 |r2σ2〉 + · · · . (77)

This geometric series is illustrated in Fig. 2. The matrix
elements η

(1)
0,j i and K̃

(1)
ij are defined by

η
(1)
0,ij :=

∑
σσ ′

∫
d3r

∫
d3r′〈r′σ ′|η(1)

0 |rσ 〉χi(rσ )χ∗
j (r′σ ′) (78)

and

K̃
(1)
ij :=

∑
σσ ′

∫
d3r

∫
d3r′〈r′σ ′|K̃ (1)|rσ 〉χi(rσ )χ∗

j (r′σ ′). (79)

We can rewrite Eq. (76) as

η(1) = η
(1)
0 + η

(1)
0 K̃ (1)η(1). (80)

Then, we obtain

(η(1))−1 = (
η

(1)
0

)−1 − K̃ (1). (81)

This equation is illustrated in Fig. 6. Thus, the following
theorem is established:

Theorem 1. The following two criteria are equivalent:
(1) The largest eigenvalue of the one-particle reduced density
matrix ρ(1) is O(N ) as N → ∞. (2) The smallest eigenvalue
of the positive definite matrix (η(1)

0 )−1 − K̃ (1) is O(1/N ) as
N → ∞.

= +η 
(1) =

FIG. 6. Expression of 〈r′σ ′|η(1)|rσ 〉 in terms of an iterated
equation.

The former implies ODLRO and the latter can be obtained
from the sum over the contracted graphs.

C. Criterion of BEC in terms of irreducible primary graphs

We can regroup primary 1-graphs and establish a criterion
of BEC in a more transparent manner. In terms of irreducible
primary 1-graphs, 〈r′σ ′|η(1)|rσ 〉 can be expressed as a geo-
metric series:

〈r′σ ′|η(1)|rσ 〉
= δ(r′ − r) δσσ ′ + 〈r′σ ′|K (1)|rσ 〉

+
∑
r1σ1

〈r′σ ′|K (1)|r1σ1〉〈r1σ1|K (1)|rσ 〉

+
∑

r1r2σ1σ2

〈r′σ ′|K (1)|r1σ1〉〈r1σ1|K (1)|r2σ2〉

× 〈r2σ2|K (1)|rσ 〉 + · · · , (82)

where

〈r′σ ′|K (1)|rσ 〉
=

∑
(all different irreducible primary 1-graphs)

= εz〈r′σ ′|U (1)|rσ 〉 + 〈r′σ ′|K̃ (1)|rσ 〉. (83)

This geometric series is illustrated in Fig. 7.

(a)

+η 
(1) = +

++

+

+ …

(1) (1) (1) 

(1) (2) 

+ + ++ …

(1) (1) (1) 

= + ++ + …

(b)

= +

FIG. 7. (a) Expression of 〈r′σ ′|η(1)|rσ 〉 as the sum over all
different primary 1-graphs, where the sum is rewritten in the form
of a geometric series (last line). The symmetry number is shown
under each graph. (b) Expression of 〈r′σ ′|K (1)|rσ 〉 as the sum over
all different irreducible primary 1-graphs.
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Since matrices 〈r′σ ′|η(1)|rσ 〉 and 〈r′σ ′|K (1)|rσ 〉 commute,
they can be diagonalized simultaneously. Therefore, we can
write

〈rσ |K (1)|r′σ ′〉 =
∑

i

λi χ
∗
i (rσ )χi(r′σ ′). (84)

We can write Eq. (82) as

ni + 1 =
∞∑
l=0

(λi)
l = (1 − λi)

−1 . (85)

Hence, we obtain

λi = 1 − 1

ni + 1
. (86)

Thus, the following theorem is established.
Theorem 2. The following two criteria are equivalent:

(1) The largest eigenvalue of the one-particle reduced density
matrix ρ(1) is O(N ) as N → ∞. (2) The largest eigenvalue of
the matrix K (1) is 1 + O(1/N) as N → ∞.

The former implies ODLRO and the latter can be obtained
as the sum over the contracted graphs. Thus, we can use
Theorems 1 and 2 to find out whether the Bose system exhibits
ODLRO based on the Lee-Yang cluster expansion method.

D. Application to a uniform one-component Bose gas
of hard spheres

As an example of the formulation given in this section, we
consider a uniform one-component dilute Bose system of hard
spheres of radius a in a gaseous phase and evaluate the critical
value zc for the BEC transition in a power series of a. Now,

〈k′|K (1)|k〉 = z〈k′|U (1)|k〉
+z2

∑
q

〈k′,q|ϒ (2)
S |k,q〉η0(q) + O(a2). (87)

Using an explicit form of U (2), which was derived in Ref. [2],
we have

〈k′,q|ϒ (2)
S |k,q〉 = 2〈k′,k1|U (2)|k,k1〉 + O(a2)

= −δkk′
4aλ2

V
e−β(k2

1+k2)/(2m) + O(a2). (88)

From Eq. (88) and η0(q) = (1 − ze−βk2/(2m))−1, we have∑
q

〈k,q|ϒ (2)
S |k,q〉η0(q) = −4

z
Li 3

2
(z)

a

λ
+ O(a2), (89)

where Lin(z) := ∑∞
l=1 zl/ ln is the polylogarithm. By substi-

tuting Eqs. (55) and (89) into Eq. (87), we obtain

〈k′|K (1)|k〉
= δkk′e−βk2/(2m)z

(
1 − 4 Li 3

2
(z)

a

λ

)
+ O(a2). (90)

According to Theorem 2, the critical fugacity zc satisfies the
following equation:

1 = zc

(
1 − 4 Li 3

2
(zc)

a

λ

)
+ O(a2). (91)

Hence, we obtain

zc = 1 + 4 ζ

(
3

2

)
a

λ
+ O(a2), (92)

where ζ (3/2) := Li3/2(1) � 2.612. This result agrees with that
obtained by Lee and Yang [3].

VII. CRITERIA OF ODLRO IN FERMI SYSTEMS

A. Off-diagonal long-range order in Fermi systems

We consider a system of two-component Fermi parti-
cles with fixed temperature T and fugacity z. A general
criterion of the quantum phase transition of a Fermi gas
(e.g., superconductivity) is characterized by the occurrence
of macroscopic occupation of two-particle states [18]. The
two-particle reduced density matrix

ρ
(2)
r1r2;r′

1r′
2

:= 〈r1↑r2↓|ρ(2)|r′
1↑r′

2↓〉
:= 〈
̂†

↑(r1)
̂†
↓(r2)
̂↓(r′

2)
̂↑(r′
1)〉 (93)

may be expanded in terms of its eigenfunctions χi(r1r2) with
eigenvalues n

(2)
i as

ρ
(2)
r1r2;r′

1r′
2
=

∑
i

n
(2)
i χ∗

i (r1,r2)χi(r′
1,r

′
2). (94)

The system shows ODLRO if one or more of the eigenvalues
n

(2)
i are of the order of the total number of particles N :=

〈N̂↑〉 + 〈N̂↓〉, i.e.,

n
(2)
i = xiN + o(N ) (0 < xi � 1). (95)

To establish the criterion of ODLRO in terms of the Lee-
Yang cluster expansion, we consider the relationship between
the eigenvalues of ρ(2) and η(2). We define matrices η(2), ρ(1⊗1),
and η(1⊗1) as follows:

η
(2)
r′

1r′
2;r1r2

:= 〈r′
1↑r′

2↓|η(2)|r1↑r2↓〉, (96)

ρ
(1⊗1)
r′

1r′
2;r1r2

:= 〈r′
1↑|ρ(1)|r1↑〉〈r′

2↓|ρ(1)|r2↓〉, (97)

and

η
(1⊗1)
r′

1r′
2;r1r2

:= 〈r′
1↑|η(1)|r1↑〉〈r′

2↓|η(1)|r2↓〉. (98)

The identity matrix I is

Ir′
1r′

2;r1r2 := δ(r′
1 − r1) δ(r′

2 − r2). (99)

We first establish the following lemma.
Lemma. Let n

(2)
i and n̄

(2)
i be the eigenvalues of ρ(2) and η(2),

respectively, and let us assume that n
(2)
0 � n

(2)
1 � n

(2)
2 � . . .

and n̄
(2)
0 � n̄

(2)
1 � n̄

(2)
2 � . . . . Then, for all i = 0,1, . . . , the

following inequality holds:∣∣n(2)
i − n̄

(2)
i

∣∣ � 1. (100)

Proof. We notice that by using Eqs. (97) and (98),

I + η(1⊗1) − ρ(1⊗1) � 0 (101)

and

I + ρ(1⊗1) − η(1⊗1) � 0. (102)
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(a)

r1, σ1 r2, σ2 

r1′ , σ1′     r2′ , σ2′         

r1, σ1 r2, σ2   

1 2 
1′  2′  

cutting two 
internal lines 

r1′ , σ1′     r2′ , σ2′

(b) (c)

(2) (1) 

FIG. 8. (a) One of the conditions appearing in the definition of a
reducible contracted 2-graph. By cutting two of its internal lines and
associating (1,2) with the incoming lines and (1′,2′) with the outgoing
lines, the entire graph can be separated into two disconnected
contracted 2-graphs: one including two incoming external lines (1,2)
and two outgoing external lines, and the other including two incoming
external lines and two outgoing external lines (1′,2′). (b) An example
of reducible contracted 2-graphs. If we cut one of its internal lines,
the entire graph can be separated into two disconnected parts. (c) An
example of reducible contracted 2-graphs. If we cut two of its internal
lines, the entire graph can be separated into two disconnected parts,
which satisfy the condition given by in (a).

It follows from the relation η(2) − η(1⊗1) = ρ(2) − ρ(1⊗1) that
η(2) � ρ(2) + I and ρ(2) � η(2) + I .

Let A and B be arbitrary Hermitian matrices and let us
assume that their eigenvalues are ordered in such a manner
that a0 � a1 � . . . and b0 � b1 � . . ., respectively. If A � B,
then ai � bi for all i. Then, we have n̄

(2)
i � n

(2)
i + 1 and n

(2)
i �

n̄
(2)
i + 1. Thus, the Lemma is proved. (Q.E.D.)

Then, in the normal phase, n̄(2)
i = o(N ), whereas in the BEC

phase,

n̄
(2)
i = xiN + o(N ) (0 < xi � 1). (103)

B. Criterion of ODLRO for a two-component Fermi system
in terms of irreducible graphs

The criterion of ODLRO based on the Lee-Yang cluster
expansion can be obtained for two-component Fermi systems,
following procedures similar to Bose systems.

Definition. A contracted 2-graph is called reducible if it
satisfies any one of the following conditions: (i) By cutting
one of its internal lines, the entire graph can be separated into
two disconnected parts. (ii) By cutting two of its internal lines
and associating (1,2) with the incoming lines and (1′,2′) with
the outgoing lines, the entire graph can be separated into two
disconnected contracted 2-graphs; one including two incoming
external lines (1,2) and two outgoing external lines, and the
other including two incoming external lines and two outgoing
external lines (1′,2′).

(a)

+= + +

+=

…

(b)

= + +

+ + …

(1) (1) (2) 

(1) 

FIG. 9. (a) Expression of 〈1′,2′|η(2)|1,2〉 in terms of irreducible
contracted 2-graphs in the form of a geometric series. (b) Expression
of 〈1′,2′|K̃ (2)|1,2〉 as the sum over all different irreducible contracted
2-graphs.

Definition. An irreducible contracted 2-graph is a con-
tracted 2-graph that is not reducible.

The above condition (ii) and its examples are shown in
Fig. 8. An irreducible contracted 2-graph is called a simple
2-diagram in Ref. [6]. In terms of irreducible contracted
2-graphs, η

(2)
r′

1r′
2;r1r2

can be expressed as a geometric series:

η(2) = η(1⊗1) + η(1⊗1)K̃ (2)η(1⊗1)

+ η(1⊗1)K̃ (2)η(1⊗1)K̃ (2)η(1⊗1) + · · · , (104)

where

K̃
(2)
r′

1r′
2;r1r2

=
∑

(all different irreducible contracted 2-graphs).

(105)

Equation (104) can be rewritten as

η(2) = η(1⊗1) + η(1⊗1)K̃ (2)η(2). (106)

Equations (104)–(106) are illustrated in Fig. 9. From Eq. (106),
we obtain

(η(2))−1 = (η(1⊗1))−1 − K̃ (2). (107)

Thus, the following theorem is established:
Theorem 3. The following two criteria are equivalent:

(1) The largest eigenvalue of the two-particle reduced density
matrix ρ(2) is O(N ) as N → ∞. (2) The smallest eigenvalue
of (η(1⊗1))−1 − K̃ (2) is O(1/N ) as N → ∞.
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(a)

+= + +

+=

…

(b)

=

+

+

FIG. 10. (a) Expression of 〈1′,2′|η(2)|1,2〉 as the sum over all
different primary 2-graphs in the form of a geometric series.
(b) Expression of 〈1′,2′|K (2)|1,2〉.

The former implies ODLRO at the two-particle level and
the latter can be obtained from the sum over the contracted
graphs.

C. Alternative form of the criterion of ODLRO
of a two-component Fermi system

Following a procedure similar to Sec. VI C, we can
rewrite η

(2)
r′

1r′
2;r1r2

in a geometric series, which is different from
Eq. (104):

η(2) = I + K (2) + (K (2))2 + (K (2))3 + · · · , (108)

where

K
(2)
r′

1r′
2;r1r2

:= η
(0⊗1)
r′

1r′
2;r1r2

+ η
(1⊗0)
r′

1r′
2;r1r2

− η
(1⊗1)
r′

1r′
2;r1r2

+ K̃
(2)
r′

1r′
2;r1r2

,

(109)

η
(0⊗1)
r′

1r′
2;r1r2

:= δ(r′
1 − r1) 〈r′

2↓|η(1)|r2↓〉, (110)

and

η
(0⊗1)
r′

1r′
2;r1r2

:= 〈r′
1↑|η(1)|r1↑〉 δ(r′

2 − r2). (111)

This geometric series is illustrated in Fig. 10.
The matrix η

(2)
r′

1r′
2;r1r2

may be expanded in terms of its

eigenfunctions χi(r1,r2) with eigenvalues n̄
(2)
i as

η
(2)
r′

1r′
2;r1r2

=
∑

i

n̄
(2)
i χ̄∗

i (r1,r2)χ̄i(r′
1,r

′
2). (112)

[Note that χ̄i(r1,r2) �= χi(r1,r2).] Since matrices η(2) and K (2)

commute, they can be diagonalized simultaneously. Thus, we
can write

K
(2)
r′

1r′
2;r1r2

=
∑

i

λ
(2)
i χ̄∗

i (r1,r2)χ̄i(r′
1,r

′
2). (113)

We may write Eq. (76) as

n̄
(2)
i =

∞∑
l=0

(
λ

(2)
i

)l = (
1 − λ

(2)
i

)−1
. (114)

Then, we obtain

λ
(2)
i = 1 − 1

n̄
(2)
i

. (115)

Thus, the criterion of ODLRO at the two-particle level is stated
as the largest eigenvalue of K (2) becoming unity as N → ∞.

Theorem 4. The following two criteria are equivalent:
(1) The largest eigenvalue of the one-particle reduced density
matrix ρ(2) is O(N ) as N → ∞. (2) The largest eigenvalue of
the matrix K (2) is 1 + O(1/N) as N → ∞.

The former implies ODLRO at the two-particle level and
the latter can be obtained from the sum over the contracted
2-graphs. Thus, we can use Theorems 3 and 4 to find out
whether the Fermi system exhibits ODLRO at the two-particle
level based on the Lee-Yang cluster expansion method.

D. Application to a uniform two-component Fermi gas
in the tightly bound limit

As an example of Theorem 4, we consider a uniform two-
component Fermi gas in the tightly bound limit, which was
discussed in Example 4 of Sec. V, and evaluate the critical
value zc for the Bose-Einstein phase transition of diatomic
molecules. Using Eq. (67), we have

〈k′
1,k

′
2|K (2)|k1,k2〉

= z2〈k′
1,k

′
2|ϒ (1,1)

A |k1,k2〉 + z2 eβ|Eb|
[
O

(
a

λ

)
+ O(z)

]
= z2e−βK2/(4m)δK,K′ψb(k′)ψ∗

b (k) eβ|Eb|

+ z2 eβ|Eb|
[
O

(
a

λ

)
+ O(z)

]
, (116)

where a is an s-wave scattering length between up- and down-
spin atoms. Here, in the tightly bound limit, the following
inequalities hold: 0 < z � 1 and 0 < a/λ � 1. According
to Theorem 4, the critical fugacity zc satisfies the following
equation:

1 = z2
c eβ|Eb|

[
1 + O

(
a

λ

)
+ O(z)

]
. (117)

Hence, we obtain

zc = e−β|Eb|/2

[
1 + O

(
a

λ

)]
. (118)

This result agrees with that obtained in Example 4 of Sec. V or
in Ref. [9]. The formulation given in this section includes the
method in Ref. [9] and enables us to systematically compute
the criteria of ODLRO at the two-particle level.
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VIII. SUMMARY

We have discussed the Lee-Yang cluster expansion method
and its application to the criteria of ODLRO in Bose and Fermi
systems. Lee and Yang [3] and de Dominicis [6] discussed
graphical expansions of the grand partition function and the
one- and two-particle reduced density matrices for the case of
a one-component uniform system. We have generalized these
results for the case of multicomponent uniform and trapped
systems. We have explained a physical meaning of primary
0-graphs. In particular, we have elucidated a physical meaning
of an infinite series of the ladder-type Lee-Yang primary
graphs, the sum of which leads to the BEC of the diatomic
molecules below a critical temperature. We have given the
criterion of ODLRO of Bose systems at the one-particle
level based on the Lee-Yang cluster expansion method. It
is expressed as a converging infinite series of irreducible
contracted 1-graphs or irreducible primary 1-graphs. Appli-
cations to a Bose gas of hard spheres have also been made.
Furthermore, we have given the criterion of ODLRO of Fermi
systems at the two-particle level based on the Lee-Yang cluster
expansion method. This is expressed as a converging infinite
series of irreducible contracted 2-graphs or irreducible primary
2-graphs. Applications to a two-component Fermi gas in the
tightly bound limit have also been made. Finally, we note that

the formulation given in this paper includes the method in
Ref. [3] for Bose systems and in Ref. [9] for Fermi systems,
enabling us to systematically compute the criteria of ODLRO.
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APPENDIX A: DERIVATIONS OF QUANTUM CLUSTER
EXPANSION FORMULAS

In this Appendix, we derive the quantum cluster expansion
formulas of the grand partition function (5) and the one- and
two-particle reduced density matrices (13), (15), and (17). We
first introduce partial traces of W

(n↑,n↓)
α and U

(n↑,n↓)
α , which are

denoted as

〈y↑|X̄(n↑,n↓)
α |x↑〉 = 1

(n↑ − 1)!

1

n↓!

∫
d3(n↑−1)r↑

∫
d3n↓r↓〈y,1↑, . . . ,n↑ − 1; 1↓, . . . ,n↓|X(n↑,n↓)

α |x,1↑, . . . ,n↑ − 1; 1↓, . . . ,n↓〉,
(A1)

〈y1↑,y2↑|X̄(n↑,n↓)
α |x1↑,x2↑〉

:= 1

(n↑ − 2)!

1

n↓!

∫
d3(n↑−2)r↑

∫
d3n↓r↓〈y1,y2,1↑, . . . ,n↑ − 2; 1↓, . . . ,n↓|X(n↑,n↓)

α |x1,x2,1↑, . . . ,n↑ − 2; 1↓, . . . ,n↓〉, (A2)

〈y1↑,y2↓|X̄(n↑,n↓)
α |x1↑,x2↓〉 := 1

(n↑ − 1)!

1

(n↓ − 1)!

∫
d3(n↑−1)r↑

∫
d3(n↓−1)r↓

× 〈y1,1↑, . . . ,n↑ − 1; y2,1↓, . . . ,n↓ − 1|X(n↑,n↓)
α |x1,1↑, . . . ,n↑ − 1; x2,1↓, . . . ,n↓ − 1〉, (A3)

where X
(n↑,n↓)
α = W

(n↑,n↓)
α or U

(n↑,n↓)
α , and X̄

(n↑,n↓)
α = W̄

(n↑,n↓)
α or Ū

(n↑,n↓)
α .

1. Grand partition function: Proof of Eq. (5)

To prove Eq. (5), we first note that a general term in
Eq. (3) for W

(N↑,N↓)
α is expressed as the sum over products

of ml↑,l↓ (=0,1,2, . . .) cluster functions U
(l↑,l↓)
α :

〈1↑, . . . ,N↑; 1↓, . . . ,N↓|W (N↑,N↓)
α |1↑, . . . ,N↑; 1↓, . . . ,N↓〉

=
∑

{ml↑ ,l↓ }

∑
per.

(
U (1,0)

α . . . U (1,0)
α

)︸ ︷︷ ︸
m1,0

(
U (2,0)

α . . . U (2,0)
α

)︸ ︷︷ ︸
m2,0

. . .

× (
U

(l↑,l↓)
α . . . U

(l↑,l↓)
α

)︸ ︷︷ ︸
ml↑ ,l↓

. . . , (A4)

where the set of integers {ml↑,l↓} satisfies the conditions

N↑∑
l↑=0

N↓∑
l↓=0

l↑ml↑,l↓ = N↑, (A5)

N↑∑
l↑=0

N↓∑
l↓=0

l↓ml↑,l↓ = N↓. (A6)

In Eq. (A4),
∑

{ml↑ ,l↓ } denotes the sum over all sets {ml↑,l↓} sat-

isfying the conditions (A5) and (A6), and
∑

per. is the sum over
all different ways of assigning {r1↑, . . . ,rN↑,r1↓, . . . ,rN↓} to

each U
(l↑,l↓)
α . In accordance with Eq. (4), we integrate W

(N↑,N↓)
α

over all the coordinates.
Integrating W

(N↑,N↓)
α using Eq. (A4), we obtain the same

result for every term in the sum
∑

per. for fixed {ml↑,l↓}. The
number of such terms in the sum

∑
per. is

(N↑!)(N↓!)

[
N↑∏

l↑=0

N↓∏
l↓=0

ml↑,l↓ !{(l↑!)(l↓!)}ml↑,l↓

]−1

. (A7)
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By the definition of B(l↑,l↓) in Eq. (6), we have∫
d3l↑r↑

∫
d3l↓r↓〈1↑, . . . ,l↑; 1↓, . . . ,l↓|U (l↑,l↓)

α |1↑, . . . ,l↑; 1↓, . . . ,l↓〉 = (l↑!)(l↓!)B(l↑,l↓). (A8)

We thus obtain∫
d3l↑r↑

∫
d3l↓r↓〈1↑, . . . ,N↑; 1↓, . . . ,N↓|W (N↑,N↓)

α |1↑, . . . ,N↑; 1↓, . . . ,N↓〉 = (N↑!)(N↓!)
∑

{ml↑ ,l↓ }

N↑∏
l↑=0

N↓∏
l↓=0

1

ml↑,l↓ !
(B(l↑,l↓))ml↑ ,l↓ .

(A9)

The grand partition function can be obtained by substituting Eq. (A9) in Eq. (4):

� =
∞∑

N↑=0

∞∑
N↓=0

∑
{ml↑ ,l↓ }

N↑∏
l↑=0

N↓∏
l↓=0

1

ml↑,l↓ !

(
z
l↑
↑ z

l↓
↓ B(l↑,l↓)

)ml↑ ,l↓

=
∞∏

l↑=0

∞∏
l↓=0

∞∑
ml↑ ,l↓=0

1

ml↑,l↓ !

(
z
l↑
↑ z

l↓
↓ B(l↑,l↓)

)ml↑ ,l↓ = exp

⎛
⎝ ∞∑

l↑=0

∞∑
l↓=0

z
l↑
↑ z

l↓
↓ B(l↑,l↓)

⎞
⎠ . (A10)

2. One-particle reduced density matrix: Proofs of Eqs. (13) and (14)

To prove Eq. (13), we first rewrite the one-particle reduced density matrix using W
(N↑,N↓)
α . We note that

trH(N↑ )
α↑ ⊗H(N↓ )

α↓
(
̂†

↑(x)
̂↑(y)e−βĤ )

=
∑

ψi∈H(N↑ )
α↑ ⊗H(N↓ )

α↓

∫
d3(N↑−1)r↑

∫
d3(N↓−1)r↓〈ψi |
̂†

↑(x)|1, . . . ,N − 1〉〈1, . . . ,N − 1|
̂↑(y)|ψi〉e−βE
(N)
i

= N↑
∑

ψi∈H(N↑ )
α↑ ⊗H(N↓ )

α↓

∫
d3(N↑−1)r↑

∫
d3N↓r↓ψ∗

i (x,1↑, . . . ,N↑ − 1; 1↓, . . . ,N↓)ψi(y,1↑, . . . ,N↑ − 1; 1↓, . . . ,N↓)e−βE
(N)
i

= 1

(N↑ − 1)!N↓!

∫
d3(N↑−1)r↑

∫
d3N↓r↓〈y,1↑, . . . ,N↑ − 1; 1↓, . . . ,N↓|W (N↑,N↓)

α |x,1↑, . . . ,N↑ − 1; 1↓, . . . ,N↓〉.
(A11)

Then, the one-particle reduced density matrix is rewritten as

〈x↑|ρ(1)|y↑〉 := 〈
̂†
↑(x)
̂↑(y)〉 = 1

�

∞∑
N↑=1

∞∑
N↓=0

z
N↑−1
↑ z

N↓
↓ 〈y↑|W̄ (N↑,N↓)

α |x↑〉. (A12)

Using the definitions of the cluster functions (3), W
(N↑,N↓)
α in Eq. (A12) can be expressed as the sum over products of the

cluster functions:

〈y,1↑, . . . ,N↑ − 1; 1↓, . . . ,N↓|W (N↑,N↓)
α |x,1↑, . . . ,N↑ − 1; 1↓, . . . ,N↓〉

=
N↑∑

n↑=1

N↓∑
n↓=0

∑
{ml↑ ,l↓ }

∑
per.

〈y,a1, . . . ,an↑−1; a1, . . . ,an↓ |U (n↑,n↓)
α |x,a1, . . . ,an↑−1; a1, . . . ,an↓〉

×〈b1|U (1,0)
α |b1〉 . . .

〈
bm1,0

∣∣U (1,0)
α

∣∣bm1,0

〉
. . .

×〈c1, . . . ,cl↑ ; c1, . . . ,cl↓ |U (l↑,l↓)
α |c1, . . . ,cl↑ ; c1, . . . ,cl↓〉 . . .

〈
. . . ,cl↑ml↑ ,l↓ ; . . . ,cl↓ml↑ ,l↓

∣∣U (l↑,l↓)
α

∣∣ . . . ,cl↑ml↑ ,l↓ ; . . . ,cl↓ml↑ ,l↓

〉
. . . ,

(A13)

where
∑

{ml↑ ,l↓ } is the sum over all sets of integers {ml↑,l↓} satisfying Nσ = nσ + ∑∞
lσ =1 lσml↑,l↓ , and

∑
per. is the sum over

different ways of grouping as follows:

(a1, . . . ,an↑−1),
{
(b1), . . . ,

(
bm1,0

)}
, . . . ,

{
(c1, . . . ,cl↑ ), . . . ,

(
. . . ,cl↑ml↑ ,l↓

)}
, . . . , (A14)

where a1, . . . ,an↑−1,b1, . . . is a permutation of the coordinates {1↑, . . . ,N↑ − 1}, and

(a1, . . . ,an↑−1), . . . ,
{
(c1, . . . ,cl↑ ), . . . ,

(
. . . ,cl↑ml↑ ,l↓

)}
, . . . , (A15)
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where a1, . . . ,an↑−1, . . . is a permutation of the coordinates
{1↓, . . . ,N↓}. In the groupings (A14) and (A15), within each
pair of round brackets, the integers are arranged in ascending
order and within each curly bracket the round brackets are
arranged such that their first entries follow ascending order.
In general, Eq. (A13) is a product of one U

(n↑,n↓)
α , which

includes x and y as two of its variables, and products of cluster
functions U

(l↑,l↓)
α , which include other particles as variables.

According to Eq. (A12), we need to integrate W
(N↑,N↓)
α .

Using Eq. (A13), if we integrate W
(N↑,N↓)
α over coordinates

{1↑, . . . ,N↑ − 1; 1↓, . . . ,N↓}, we obtain the same result for
every term in the sum

∑
per. for fixed n↑, n↓ and {ml↑,l↓}. The

number of such terms in the sum
∑

per. is

(N↑ − 1)!N↓!

(n↑ − 1)!n↓!

[
N↑∏

l↑=0

N↓∏
l↓=0

ml↑,l↓ !{(l↑!)(l↓!)}ml↑,l↓

]−1

.

We thus obtain

〈y↑|W̄ (N↑,N↓)
α |x↑〉 =

N↑∑
n↑=1

N↓∑
n↓=0

∑
{ml↑ ,l↓ }

〈y↑|Ū (n↑,n↓)
α |x↑〉

×
N↑∏

l↑=0

N↓∏
l↓=0

1

ml↑,l↓ !
(B(l↑,l↓))ml↑ ,l↓ . (A16)

Substituting Eq. (A16) into Eq. (A12), we obtain

〈x↑|ρ(1)|y↑〉 = 1

�

∞∑
N↑=1

∞∑
N↓=0

N↑∑
n↑=1

N↓∑
n↓=0

∑
{ml↑ ,l↓ }

× z
n↑−1
↑ z

n↓
↓ 〈y↑|Ū (n↑,n↓)

α |x↑〉

×
N↑∏

l↑=0

N↓∏
l↓=0

1

ml↑,l↓ !
(zl↑zl↓B(l↑,l↓))ml↑ ,l↓ . (A17)

Using Eq. (A10), we find

〈x↑|ρ(1)|y↑〉 =
∞∑

n↑=1

∞∑
n↓=0

z
n↑−1
↑ z

n↓
↓ 〈y↑|Ū (n↑,n↓)

α |x↑〉. (A18)

The proof of Eq. (14) can similarly be made.

3. Two-particle reduced density matrix:
Proofs of Eqs. (15)–(17)

To prove Eqs. (15)–(17), we rewrite the two-particle
reduced density matrix using W

(N↑,N↓)
α in a manner similar to

what we have done to the one-particle reduced density matrix
in the preseding subsection. The results are

〈x1↑,x2↑|ρ(2)|y1↑,y2↑〉
:= 〈
̂†

↑(x1)
̂†
↑(x2)
̂↑(y2)
̂↑(y1)〉

= 1

�

∞∑
N↑=2

∞∑
N↓=0

z
N↑−2
↑ z

N↓
↓ 〈y1↑,y2↑|W̄ (N↑,N↓)

α |x1↑,x2↑〉

(A19)

and

〈x1↑,x2↓|ρ(2)|y1↑,y2↓〉
:= 〈
̂†

↑(x1)
̂†
↓(x2)
̂↓(y2)
̂↑(y1)〉

= 1

�

∞∑
N↑=1

∞∑
N↓=1

z
N↑−1
↑ z

N↓−1
↓ 〈y1↑,y2↓|W̄ (N↑,N↓)

α |x1↑,x2↓〉.

(A20)

First, we prove Eq. (15). We now use the definitions of the
cluster functions (3) and note that each W

(N↑,N↓)
α in Eq. (A19)

can be expressed as the sum over products of the two forms as
follows:

〈y1,y2,a1, . . . ,an↑−2; b1, . . . ,bn↓ |
×U

(n↑,n↓)
α |x1,x2,a1, . . . ,an↑−2; b1, . . . ,bn↓〉

× 〈c1|U (1,0)
α |c1〉 . . .

〈
cm1,0

∣∣U (1,0)
α

∣∣cm1,0

〉
. . .

×〈d1, . . . ,dl↑ ; e1, . . . ,el↓ |U (l↑,l↓)
α |d1, . . . ,dl↑ ; e1, . . . ,el↓〉

× . . .
〈
. . . ,dl↑ml↑ ,l↓ ; . . . ,el↓ml↑ ,l↓

∣∣
×U

(l↑,l↓)
α

∣∣ . . . ,dl↑ml↑ ,l↓ ; . . . ,el↓ml↑ ,l↓

〉
. . . (A21)

and〈
y1,a1, . . . ,an1↑−1; b1, . . . ,bn1↓

∣∣
×U

(n1↑,n1↓)
α

∣∣x1,a1, . . . ,an1↑−1; b1, . . . ,bn1↓
〉

× 〈
y2,c1, . . . ,cn2↑−1; d1, . . . ,dn2↓

∣∣
×U

(n2↑,n2↓)
α

∣∣x2,c1, . . . ,cn2↑−1; d1, . . . ,dn2↓
〉

×〈e1|U (1,0)
α |e1〉 . . .

〈
em1,0

∣∣U (1,0)
α

∣∣em1,0

〉
. . .

×〈f1, . . . ,fl↑ ; g1, . . . ,gl↓ |U (l↑,l↓)
α |f1, . . . ,fl↑ ; g1, . . . ,gl↓〉

× . . .
〈
. . . ,fl↑ml↑ ,l↓ ; . . . ,gl↓ml↑ ,l↓

∣∣
×U

(l↑,l↓)
α

∣∣ . . . ,fl↑ml↑ ,l↓ ; . . . ,gl↓ml↑ ,l↓

〉
. . . . (A22)

In Eq. (A21), the set of integers {ml↑,l↓} satisfies Nσ = nσ +∑∞
lσ =1 lσml↑,l↓ , and in Eq. (A22), the set of integers {ml↑,l↓}

satisfies the conditions Nσ = n1σ + n2σ + ∑∞
lσ =1 lσml↑,l↓ . In

general, (i) the term (A21) is a product of one U
(n↑,n↓)
α (which

includes x1, x2, y1, and y2 as four of its variables) and products
of cluster functions U

(l↑,l↓)
α (which include other particles as

variables), and (ii) the term (A22) is a product of one U
(n1↑,n1↓)
α

(which includes x1 and y1 as two of its variables), one U
(n2↑,n2↓)
α

(which includes x2 and y2 as two of its variables), and products
of cluster functions U

(l↑,l↓)
α (which include other particles

as variables). In accordance with Eq. (A19), we integrate
W

(N↑,N↓)
α . Using Eqs. (A21) and (A22), we integrate W

(N↑,N↓)
α

over coordinates {1↑, . . . ,N↑ − 2; 1↓, . . . ,N↓}. We thus obtain

〈y1↑,y2↑|W̄ (N↑,N↓)
α |x1↑,x2↑〉

=
N↑∑

n↑=2

N↓∑
n↓=0

∑
{ml↑ ,l↓ }

〈y1↑,y2↑|Ū (n↑,n↓)
α |x1↑,x2↑〉

×
N↑∏

l↑=0

N↓∏
l↓=0

1

ml↑,l↓ !
(B(l↑,l↓))ml↑ ,l↓
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+
N↑∑

n1↑=1

N↓∑
n1↓=0

N↑−n1↑∑
n2↑=1

N↓−n1↓∑
n2↓=0

∑
{ml↑ ,l↓ }

〈y1↑|Ū (n1↑,n1↓)
α |x1↑〉〈y2↑|Ū (n2↑,n2↓)

α |x2↑〉

×
N↑∏

l↑=0

N↓∏
l↓=0

1

ml↑,l↓ !
(B(l↑,l↓))ml↑ ,l↓ . (A23)

Substituting Eqs. (A10) and (A23) into (A19), we have

〈x1↑,x2↑|ρ(2)|y1↑,y2↑〉

=
∞∑

n↑=2

∞∑
n↓=0

z
n↑−2
↑ z

n↓
↓ 〈y1↑,y2↑|Ū (n↑,n↓)

α |x1↑,x2↑〉

+
( ∞∑

n1↑=1

∞∑
n1↓=0

z
n1↑−1
↑ z

n1↓
↓ 〈y1↑|Ū (n1↑,n1↓)

α |x1↑〉
)

×
( ∞∑

n2↑=1

∞∑
n2↓=0

z
n2↑−1
↑ z

n2↓
↓ 〈y2↑|Ū (n2↑,n2↓)

α |x2↑〉
)

.

(A24)

Then, using Eq. (A18), we obtain

〈x1↑,x2↑|ρ(2)|y1↑,y2↑〉
= 〈x1↑|ρ(1)|y1↑〉〈x2↑|ρ(1)|y2↑〉

+
∞∑

n↑=2

∞∑
n↓=0

z
n↑−2
↑ z

n↓
↓ 〈y1↑,y2↑|Ū (n↑,n↓)

α |x1↑,x2↑〉.

(A25)

The proof of Eq. (16) can similarly be made.
Next, we prove Eq. (17). Following a procedure similar to

the above derivation of Eq. (15), we obtain

〈y1↑,y2↓|W̄ (N↑,N↓)
α |x1↑,x2↓〉

=
N↑∑

n↑=1

N↓∑
n↓=1

∑
{ml↑ ,l↓ }

〈y1↑,y2↓|Ū (n↑,n↓)
α |x1↑,x2↓〉

×
N↑∏

l↑=0

N↓∏
l↓=0

1

ml↑,l↓ !
(B(l↑,l↓))ml↑ ,l↓

+
N↑∑

n1↑=1

N↓∑
n1↓=0

N↑−n1↑∑
n2↑=0

N↓−n1↓∑
n2↓=1

∑
{ml↑ ,l↓ }

×〈y1↑|Ū (n1↑,n1↓)
α |x1↑〉〈y2↓|Ū (n2↑,n2↓)

α |x2↓〉

×
N↑∏

l↑=0

N↓∏
l↓=0

1

ml↑,l↓ !
(B(l↑,l↓))ml↑ ,l↓ . (A26)

Substituting Eqs. (A10) and (A26) into (A20), we find

〈x1↑,x2↓|ρ(2)|y1↑,y2↓〉

=
∞∑

n↑=1

∞∑
n↓=1

z
n↑−1
↑ z

n↓−1
↓ 〈y1↑,y2↓|Ū (n↑,n↓)

α |x1↑,x2↓〉

+
( ∞∑

n1↑=1

∞∑
n1↓=0

z
n1↑−1
↑ z

n1↓
↓ 〈y1↑|Ū (n1↑,n1↓)

α |x1↑〉
)

×
( ∞∑

n2↑=0

∞∑
n2↓=1

z
n2↑
↑ z

n2↓−1
↓ 〈y2↓|Ū (n2↑,n2↓)

α |x2↓〉
)

. (A27)

Then, using Eq. (A18). we have

〈x1↑,x2↓|ρ(2)|y1↑,y2↓〉

= 〈x1↑|ρ(1)|y1↑〉〈x2↓|ρ(1)|y2↓〉 +
∞∑

n↑=1

∞∑
n↓=1

z
n↑−1
↑ z

n↓−1
↓

× 〈y1↑,y2↓|Ū (n↑,n↓)
α |x1↑,x2↓〉. (A28)

4. Mathematical justification of quantum cluster expansion

The above derivations can actually be mathematically
justified. We consider a uniform system or a trapped system.
To be rigorous, let us assume that the system is confined in an
infinite potential well with a volume V and the interaction v has
a hard repulsive core. Then, W

(N↑,N↓)
α vanishes for sufficiently

large values of N↑ or N↓ and we denote their upper bounds as
M↑ and M↓, respectively.

First we demonstrate the validity of Eq. (5). The grand
partition function reads as

� :=
M↑∑

N↑=0

M↓∑
N↓=0

z
N↑
↑

N↑!

z
N↓
↓

N↓!
Q(N↑,N↓), (A29)

where

Q(N↑,N↓) :=
∫

d3N↑r↑
∫

d3N↓r↓〈1↑, . . . ,N↑; 1↓, . . . ,N↓|

×W
(N↑,N↓)
α |1↑, . . . ,N↑; 1↓, . . . ,N↓〉 (A30)

is a partition function. Equation (A29) is positive and is thus
a polynomial of z↑ and z↓ with no zeros on both the positive
real axes. Therefore, ln �(z↑,z↓) is holomorphic near the origin
and along the positive real axes in both the complex z↑ and z↓
planes. Near the origin, this logarithm can be expanded as a
power series, and this power series is nothing but Eq. (5). If we
understand Eq. (5) to mean the analytic continuation, Eq. (5)
is valid for all positive values of z↑ and z↓.

Next, we show the validity of Eq. (13). Since W
(N↑,N↓)
α

vanishes for sufficiently large values of N↑ or N↓ and � is
a polynomial function of z↑ and z↓ with no zeros on their
positive real axes, from Eq. (A12) the one-particle reduced
density matrix 〈x↑|ρ(1)|y↑〉 is a rational function of z↑ and
z↓. Therefore, the one-particle reduced density matrix is
holomorphic near the origin and along the positive real axes
in both the complex z↑ and z↓ planes. Near the origin, the
one-particle reduced density matrix can be expanded as a
power series, and this power series is exactly Eq. (13). If we
understand Eq. (13) to mean the analytic continuation, Eq. (13)
is valid for all positive values of z↑ and z↓. The two-particle and
multiparticle reduced density matrices can be mathematically
justified in a similar manner.

Note that, for the above justification, interaction v needs to
have a hard-repulsive core, but the s-wave scattering length
can be either positive or negative.
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APPENDIX B: W
(l↑,l↓)
α IN TERMS OF W (l↑,l↓)

We prove Eq. (21). The eigenfunctions of H (N↑,N↓) can
be classified according to the tensor product of the ir-
reducible representations of the permutation group of N↑
objects and that of N↓ objects. If ψi(1′

↑, . . . ,N ′
↑; 1′

↓, . . . ,N ′
↓)

belongs to an irreducible representation D↑ ⊗ D↓, then
εP εQψi(P (1′

↑), . . . ,P (N ′
↑); Q(1′

↓), . . . ,Q(N ′
↓)) also belongs

to the same representation D↑ ⊗ D↓. Hence,∑
P∈SN↑

∑
Q∈SN↓

εP εQψi(P (1′
↑), . . . ,P (N ′

↑); Q(1′
↓), . . . ,Q(N ′

↓))

(B1)

belongs to D↑ ⊗ D↓. However, the function (B1) is symmetric.
Hence, if D↑ ⊗ D↓ is not a symmetric representation, (B1)
is zero. On the other hand, if D↑ ⊗ D↓ is a symmetric
representation, then∑

P∈SN↑

∑
Q∈SN↓

εP εQψi[P (1′
↑), . . . ,P (N ′

↑); Q(1′
↓), . . . ,Q(N ′

↓)]

= (N↑!)(N↓!)ψi(1
′
↑, . . . ,N ′

↑; 1′
↓, . . . ,N ′

↓). (B2)

Using the definitions (2) and (19), we obtain Eq. (21).

TABLE I. Correspondence between the Lee-Yang and our
notations.

Lee-Yang This paper

Solid line z 1

Dotted line m(k) η
(1)
0 (k)

Thick solid line M(k) η(1)(k)
l vertex 〈. . . |ϒ (l)| . . .〉 zl〈. . . |ϒ (l)| . . .〉

APPENDIX C: CORRESPONDENCE BETWEEN THE
LEE-YANG AND OUR NOTATIONS

In this Appendix, we list the correspondence between
the Lee-Yang notation [3] and ours in momentum space.
For simplicity, we consider a one-component system. The
η

(1)
0 (k) and η(1)(k) functions used in this paper are defined by

η
(1)
0 (k) := (1 − εze−βk2

)−1 and η(1)(k) := 〈
̂(k)
̂†(k)〉. The
corresponding m(k) and M(k) functions used in the original
paper of Lee and Yang [3] are defined by m(k) := z(1 −
εze−βk2

)−1 and M(k) := z{1 − 〈
̂†(k)
̂(k)〉}. Thus, we ob-
tain m(k) = zη

(1)
0 (k) and M(k) = zη(1)(k). These relationships

are listed in Table I.
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