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in �-like atomic systems
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We report and propose a simple scheme to achieve efficient and fast coherent population transfer by utilizing
either a nonlinearly chirped Gaussian-shaped few-cycle laser pulse or an unchirped sinc-shaped few-cycle laser
pulse. The proposed scheme is shown to be fairly robust against the variation of the laser parameters such
as temporal pulse width, chirp rates, carrier-envelope phases, and Rabi frequencies. We find that compared to
the so-called stimulated Raman adiabatic passage technique, our scheme for complete population transfer with
few-cycle Gaussian-shaped laser pulses requires less pulse area.
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I. INTRODUCTION

Coherent control of complete population transfer from
an initial quantum state to a desired quantum state and
creation of arbitrary coherence between two quantum states
has been a major theme of atomic and molecular physics
for quite some time now [1]. In particular, coherent control
of population transfer is necessary for many well-known
applications, including collision dynamics, atomic interferom-
etry, spectroscopy, and optical control of chemical reactions,
etc. Coherent population transfer (CPT) has found its rele-
vance even in nuclear physics [2]. For robust and efficient
controlling of population transfer between quantum states,
many novel strategies have been proposed and exploited by
several authors. Stimulated Raman adiabatic passage (STI-
RAP) [3–6], adiabatic rapid passage (ARP) [7], Raman chirped
adiabatic passage (RCAP) [8–10], and temporal coherent
control (TCC) [11,12], etc., are some of the well-known
methods. Recently, the field of coherent control of atoms and
molecules has received a tremendous boost owing to the recent
progress in the generation of femtosecond and attosecond
laser pulses and its possible future applications [13–18]. For
example, quantum coherent control of physical and chemical
processes and also of attosecond electronic dynamics by
use of frequency- and amplitude-chirped few-cycle pulses
is reported by some authors [19,20]. In the context of CPT,
the use of these so-called ultrashort laser pulses has certain
advantages, such as easy access to first electronic states of
many molecules and an extremely fast transfer process which
may be completed on a time scale much shorter than the typical
time between collisions of atoms or molecules [21]. Cheng
and Zhou [22] demonstrated numerically, without using the
so-called rotating-wave approximation (RWA), the ultrafast
population transfer in �-like three-state atomic systems with
frequency-chirped few-cycle femtosecond laser pulses, though
the scheme was not found to be robust against the variation
of laser-pulse parameters. In passing, it should be mentioned
that RWA may not hold when one deals with few-cycle-pulse-
related phenomena and should work in the non-RWA regime
[13,23–26]. Recently, Shapiro et al. [27,28] proposed a new
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method, the so-called piecewise rapid adiabatic passage (PAP),
for executing complete population transfer between quantum
states in a piecewise manner using a series of femtosecond laser
pulses. The proposed method is found to be robust against the
variation in the absolute and relative intensities, durations, and
time ordering of the pulses. More recently, Yang [24] exploited
the STIRAP method to demonstrate the sufficiently robust
and complete population transfer between the quantum states
in�-like three-state atomic systems driven by few-cycle fem-
tosecond laser pulses. However, for complete population trans-
fer with STIRAP technique, the time-separated but partially
overlapping pump and Stokes pulses should be applied in coun-
terintuitive order, i.e., there should be complete control over the
time lag between the pump and Stokes pulses. It is well known
that the STIRAP technique is successfully implemented with
continuous or narrow-band laser pulses. However, as discussed
by many authors, when one needs to deal with few-cycle pulses
or broadband pulses, this method may not be a suitable one [21,
29,30]. Moreover, for complete population transfer between
the quantum states, the STIRAP and rapid adiabatic passage
are generally energetically expensive; for example, relative to
a π−pulse technique [31,32]. On the other hand, sometimes
the π−pulse technique is not robust against the variation of the
laser-pulse parameters. In this work, we propose a relatively
simple scheme, in which no time separation is required be-
tween the pump and Stokes pulses. Our method is energetically
efficient and ultrafast. We show near complete CPT in the
given �-like three-state atomic system which is driven by
two simultaneously interacting nonlinearly chirped Gaussian-
shaped few-cycle laser pulses or by two sinc-shaped unchirped
few-cycle laser pulses, subject to the judicious choice of
laser-pulse parameters. It may be mentioned that shaped
pulses are also studied to enhance the transient population
of excited states [26] and obtain total inversion of electronic
state population in molecules [33]. Again, it may be noted
that nonlinearly chirped laser pulses have been found suitable
for many applications [34–38]. In this work, the phenomenon
of coherent population transfer is investigated by numerically
solving the appropriate density-matrix equations beyond the
rotating-wave approximation. In Sec. II we present the optical
Bloch equations that describe the interaction of the � system
with the few-cycle laser pulses. Sec. III contains our simulated
results and discussions followed by conclusions in Sec. IV.
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FIG. 1. Schematic of �-like system with two acting few-cycle
laser pulses.

II. THE MODEL

Our analysis is based on the scheme depicted in Fig. 1.
We consider a �-like atomic system interacting with two
few-cycle laser pulses. The electric field of the linearly
polarized laser interacting between |3〉 and |1〉 is given by
�E1 = �E10f (t) cos [ω10t + δ1(t)], where �E10, f (t), and ω10 are,
respectively, the amplitude, the field envelope, and the carrier
frequency of the pulse. Exactly analogous expression for the
linearly polarized laser pulse interacting between |3〉 and |2〉 is
given by �E2 = �E20f (t) cos[ω20t + δ2(t)]. For the Gaussian-
shaped few-cycle laser fields,f (t) = exp[−(t/τ )2], δ1(t) =
χ1t

3, and δ2(t) = χ2t
3. Here χ1 and χ2 are the respective

chirp rates of the Gaussian pulses. On the other hand, for
the sinc-shaped few-cycle pulses, f (t) = sin(t/τ )/(t/τ ) and
δ1 = φ1 and δ2 = φ2, where φ1 and φ2 are the respective
carrier-envelope phases. τp is the temporal width of the
laser pulses. For the Gaussian pulse, τp = 1.177τ , while
τp = 2.783τ for the sinc pulse.

In the given scheme, we assume that only |3〉 → |1〉 and
|3〉 → |2〉 transitions are dipole allowed, while |2〉 → |1〉
transitions are forbidden. The Hamiltonian of the system

is given by
	

H = 	

H 0 + 	

H int, where
	

H 0 = h̄ω1|1〉〈1| + h̄ω2

|2〉〈2| + h̄ω3|3〉〈3| and
	

H int = −�μ · �E = −h̄
31(t)|3〉〈1| −
h̄
32(t)|3〉〈2| + H.c.

Here 
31(t) = μ31 �E1(t)/h̄ and 
32(t) = μ32 �E2(t)/h̄ are
the time-dependent Rabi frequencies for the transition with
electric dipole moment μ31and μ32, respectively. The Bloch
equations, without invoking the so-called rotating-wave ap-
proximation, describing the temporal evolution of the density
matrix elements, are

ρ̇31 = −iω31ρ31 + i
32(t)ρ21 − i
31(t)(ρ33 − ρ11),

ρ̇32 = −iω32ρ32 + i
31(t)ρ12 − i
32(t)(ρ33 − ρ11),

ρ̇21 = −iω21ρ21 + i
32(t)ρ31 − i
31(t)ρ23,
(1)

ρ̇11 = i
31(t)(ρ31 − ρ13),

ρ̇22 = i
32(t)(ρ32 − ρ23),

ρ̇33 = i
31(t)(ρ13 − ρ31) + i
32(t)(ρ23 − ρ32).

Hereωij = ωi − ωj . It may be noted thatρij = ρ∗
ji .

III. RESULTS AND DISCUSSIONS

We solve Eq. (1) numerically using a standard fourth-order
Runge-Kutta method. We assume that initially all the atoms
are in the ground state |1〉. We use the following typical

FIG. 2. (Color online) Temporal evolution of populations with
the nonlinearly chirped Gaussianshaped few-cycle pulse.

parameters: ω31 = ω10 = 3.0 rad/fs, ω21 = 0.4 rad/fs, ω32 =
ω20 = 2.6 rad/fs, 
31 = 0.76 rad/fs, 
32 = 0.79 rad/fs, χ1 =
χ2 = 0.016fs−3, and φ1 = φ2 = 0. The temporal pulse width
is taken to be τp = 4.70 and 5.06 fs, respectively, for the
Gaussian and the sinc pulses. For our chosen parameters, the
pulse areas are too small for the so-called adiabatic condition to
be fulfilled. It is worthwhile to note that in the usual adiabatic
passage scheme for population transfer between the initial
state and the final one, the adiabatic condition can be written
as 
τ � π , where 
 = 
31(0) = 
32(0) is the maximal Rabi
frequency [39]. In practical applications the pulse area should
exceed 10π , i.e., 
τ > 10π to provide efficient population
transfer via the adiabatic passage scheme [40]. We find that
for complete population transfer, with our proposed scheme,
the total temporal area of the Gaussian pulses is calculated to
be 3.49π , while it is 13.53π for the STIRAP scheme with same
laser-pulse parameters. Figures 2 and 3 depict the respective

FIG. 3. (Color online) Temporal dynamics of populations with
the sinc-shaped few-cycle pulse.
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temporal evolution of the populationsρ11, ρ22, and ρ33 when
chirped Gaussian pulses and unchirped sinc pulses are used.

It is clear from Fig. 2 that one can obtain complete
population transfer (99.94%) from the ground state |1〉 to the
state |2〉 using two nonlinearly chirped Gaussian-shaped laser
pulses. On the other hand, as evident from Fig. 3, near complete
population transfer (99.05%) from |1〉 to |2〉 is possible due
to the simultaneous interaction of two sinc-shaped pulses with
the three-level atomic system.

These results could be explained on the basis of the
so-called stimulated emission pumping (SEP) [31]. In SEP
with continuous laser or short laser pulses, all the relaxation
processes in atomic systems take place on the time scale shorter
than the interaction time. Hence the maximum amount of
population transfer between the quantum states is restricted by
the spontaneous emission. For example, one can achieve max-
imum 30% population transfer in �-like three-level atomic
systems with SEP technique [31]. However, in our scheme,
we have shown that almost complete population transfer in
�-like atomic systems is possible owing to the use of few-cycle
pulses where interaction takes on a time scale shorter than that
of the relaxation processes. Nonadiabatic consequences on
the temporal evolution of the populations could be observed
from Figs. 2 and 3. Unlike the adiabatic passage techniques,
population in quantum state |3〉 during the intermediate time
is approaching a large value (ρ33 = 45% for Gaussian pulse
and ρ33 = 46% for sinc pulse) as the adiabatic criteria is not
fulfilled for the chosen laser-pulse areas. However, finally the
quantum state |2〉 receives almost all the populations in both
cases. The non-RWA effects on the temporal evolution of the
populations could also be observed from Figs. 2 and 3. Some
authors have pointed out that when the few-cycle laser pulses
are considered, the time-derivative-driven nonlinearities will
have a significant impact on the interaction of the laser pulses
with the atomic medium which may lead to strong oscillation
features during the evolution of the populations [41,42]. These
features are not present in the RWA solutions. Now, in order
to have some insight into or understanding of why the use
of Gaussian-shaped or sinc-shaped few-cycle-pulse results in
almost similar behavior with regard to population transfer, in
Fig. 4 we plot the temporal evolution of both the pulses.

Figure 4 reveals that the nonlinearly chirped Gaussian and
the unchirped sinc-shaped pulses are equivalent to each other,
particularly in the temporal range from −2 to +2 fs. For
other temporal ranges from −6 to −2 fs and −2 to +6 fs,
the amplitude of the nonlinearly chirped Gaussian pulse is
slightly greater than that of the unchirped sinc-shaped pulse.
Also, the carrier oscillation frequency of the Gaussian-shaped
few-cycle pulse is slightly larger, owing to the nonlinear chirp,
than that of the unchirped sinc-shaped few-cycle pulse in that
temporal range. This might be the reason behind the almost
similar nature of interaction of the pulses with the atomic
system. Hence, we may conclude that, subject to the chosen pa-
rameters, the nonlinearly chirped Gaussian and the unchirped
sinc-shaped few-cycle pulses exhibit almost identical behavior.
It may be observed from Fig. 4 that one-(�1 = ω31 − ω10 =
�2 = ω32 − ω20 = 0) and two-photon (� = �1 − �2 = 0)
resonance conditions are fulfilled for unchirped sinc-shaped
laser pulses. However, for the nonlinearly chirped Gaussian
laser pulse, one photon resonance condition is partially

FIG. 4. (Color online) Temporal evolution of nonlinearly chirped
Gaussian and unchirped sinc-shaped pulses.

fulfilled during the intermediate time of interaction while the
two-photon resonance condition is fulfilled during the whole
interaction. It is important to verify the robustness of the
scheme against the variation of the chirp rate and the temporal
pulse width of the Gaussian-shaped few-cycle pulse. So, in
Fig. 5 we present the simulation result for the variation of
the final population transfer to the state |2〉, i.e., ρ22(∞) with
τp, while in Fig. 6 we check the robustness of the scheme
against chirp rates for the nonlinearly chirped Gaussian-shaped
few-cycle pulses. It can be seen from Fig. 5(a) that the
final population transfer ρ22(∞) to the quantum state |2〉 is
sufficiently robust against the variation (4–6 fs) of temporal
width of Gaussian pulse, while Fig. 5(b) shows that the final
population transfer ρ22(∞) to quantum state |2〉 is robust
against the small variation (4.94–5.17 fs) of temporal width of
the sinc pulse.

FIG. 5. (Color online) Final population to quantum state |2〉 as
a function of (a) temporal pulse width τpof the nonlinearly chirped
Gaussian pulse and (b) temporal pulse widthτpof the sinc pulse. Here
all the other parameters are kept constant.
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FIG. 6. (Color online) Final population transferρ22(∞) to quan-
tum state |2〉 as a function of chirp rates χ1 and χ2, and other
parameters are the same as those in Fig. 2.

It could be observed from Fig. 6 that the final population
transfer ρ22(∞) is sufficiently robust against the variation of
the chirp rates χ1 and χ2. It can be seen that the final population
transfer ρ22(∞) to the quantum state |2〉 is robust against the
small variation (0.012–0.020 fs−3) of the chirp rates χ1and χ2.

In Fig. 7 we plot the variation of the final population ρ22(∞)
with the carrier-envelope phases to check the robustness of the
scheme for sinc-shaped few-cycle pulses. We find that, from
Fig. 7, the final population transfer ρ22(∞) is highly robust
against the variation of the carrier-envelope phases φ1 and φ2

of the sinc-shaped few-cycle pulses.
Finally, we test the robustness of our proposed scheme

against variation of the Rabi frequencies of the few-cycle
laser pulses considered in this work. In Fig. 8, we depict
the contour map of the final population to the quantum
state |2〉, i.e., ρ22(∞), against Rabi frequencies 
31and

32 of the nonlinearly chirped Gaussian-shaped few-cycle

FIG. 7. (Color online) Final population transfer ρ22(∞) to quan-
tum state |2〉 as a function of (a) carrier-envelope phases φ1 and φ2

in the unit of π radian, and other parameters are the same as those in
Fig. 3.

FIG. 8. (Color online) Contour maps of the final population
(in %) transfer for varying Rabi frequencies 
31and 
32 of non-
linearly chirped Gaussian pulse, and other parameters are the same
as those in Fig. 2.

pulse. A careful inspection of Fig. 8 reveals that the final
population transfer is fairly robust against the variation of the
Rabi frequencies 
31and 
32 in the range 0.70–0.92 rad/fs,
which amounts to more than 95% population. Population in
the range 88%–90% could be possible for variation of the
Rabi frequencies in the range 2.30–2.40 rad/fs. A similar
contour map for the sinc-shaped few-cycle pulse is depicted
in Fig. 9. The population transfer to the quantum state |2〉
exhibits sufficient robustness with the small variation of
Rabi frequencies. In fact one can obtain > 95% population
transfer for the variation of 
31 and 
32 in the range
0.70–0.85 rad/fs.

It is worthwhile to mention that we have tested our proposed
scheme for atomic systems such as indium, thallium, and
gallium. We observe near complete population transfer, with

FIG. 9. (Color online) Contour maps of the final population
(in %) transfer for varying Rabi frequencies 
31and 
32 of unchirped
sinc pulse, and other parameters are the same as those in Fig. 3.
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appropriate choice of simulation parameters, in these atomic
systems with both Gaussian and sinc-shaped few-cycle pulses.
Hence the model proposed by us may be tested experimentally
in atomic systems such as indium, thallium, and gallium. In
passing, it may be noted that indium, thallium and gallium have
been studied extensively both theoretically and experimentally
in the context of laser cooling of atoms [43–46].

IV. CONCLUSIONS

We have demonstrated almost complete population transfer
to the target quantum state with nonlinearly chirped Gaussian-
shaped and unchirped sinc-shaped few-cycle laser pulses
even when the adiabatic condition is not fulfilled. Population
transfer with nonlinearly chirped Gaussian pulse is found to
be sufficiently robust against the variation of temporal pulse
width, Rabi frequencies, and the chirp rates. However, the
population transfer with unchirped sinc-shaped pulse is found

to be highly robust against the variation of carrier-envelope
phase and fairly robust against the variation of the temporal
pulse width and Rabi frequencies. We find that compared to
the so-called STIRAP technique, our scheme for complete
population transfer with few-cycle Gaussian-shaped laser
pulses require less pulse area. Hence, nonlinearly chirped
Gaussian-shaped few-cycle laser pulses or the sinc-shaped
few-cycle laser pulses even with highly fluctuating carrier-
envelope phase, may be employed for an efficient and ultrafast
coherent population transfer with judicious choice of laser-
pulse parameters.
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