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Multiphoton Rabi oscillations of a ringlike three-level system
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We propose a ringlike three-level model and show that it can be realized using Stark states of highly excited
potassium interacting with two-mode microwave fields. We demonstrate this by using both analytical model and
numerical simulations to study the problems of multiphoton Rabi oscillations. The results show that the Rabi
oscillation patterns of the ringlike three-level system exhibit additional envelope and nodes compared to the
oscillatory behavior of a three-level cascade system; in other words, there exist collapse and revival phenomena
for Rabi oscillation patterns. The origin of the collapse and revival of the population oscillations is the multiphoton
two-color resonances at frequency � = nω1 + mω2. Our analytic results are in good agreement with numerical
simulations. In addition, all the analytical solutions for the three basic configurations of the three-level system
classified as the �, vee, and cascade systems can be deduced from our analytical solution for the ringlike
three-level configuration by setting one of the three coupling strengths equal to 0.
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I. INTRODUCTION

The three-level model is associated with a variety of
physical processes, including electromagnetically induced
transparency [1,2], stimulated Raman adiabatic passage [3,4],
lasers without inversion [5,6], and laser cooling of atoms [7].
There has been increased interest in the study of three-level
quantum systems, such as quantum computation [8] and
quantum control [9,10]. Recently, it was found that photon
blockade can be circumvented completely by using a three-
level atom coupled to a single-sided cavity, enabling an ideal
and robust photon routing mechanism [11].

Because of its basic importance, the exact solution of the
three-level model to find the probability amplitudes of all
three levels is required. There are three basic configurations
of the three-level system, classified as the �, vee, and
cascade systems. For the corresponding semiclassical models
[12–14] and their fully quantized versions [15–17], the time
dependence of the population can be described by explicit
analytical expressions in the weak-coupling regime where the
coupling strength between the atom and the fields is several
orders of magnitude smaller than the frequencies of the fields.
The collapses and revivals of the system populations due to
the effect of field quantization are similar to the two level
Jaynes-Cummings model [18–20]. It is worth pointing out that,
despite its old age and central importance, the quantum Rabi
model for a two-level system had never been solved exactly
until it was declared solved for arbitrary coupling strength very
recently [21].

For three-level systems, labeled |1〉, |2〉, and |3〉, of respec-
tive energies E1, E2, and E3, driven by two resonant fields,
under the rotating-wave and electric-dipole approximations
and at zero detuning, the interaction Hamiltonian can be
written as the Hermitian matrix

H =
⎛
⎝ 0 �12 �13

�12 0 �23

�13 �23 0

⎞
⎠ , (1)

*hyl@hxu.edu.cn

where �ij (i,j = 1,2,3) represents the coupling strength
between state |i〉 and state |j 〉. Here we assume that the fields
with real coupling strengths couple the atomic transitions.
All the Hamiltonians for three basic configurations can be
read off from Eq. (1) by setting one of the three coupling
strengths equals 0. It is surprising that the general Hamiltonian
of a three-level configuration with all the coupling strengths
nonzero values has never been solved exactly. This situation
has induced a closed, ringlike three-level configuration. To the
best of our knowledge, no work has clearly concentrated on
this ringlike three-level configuration.

Atoms in highly excited Rydberg states have very large
electric dipole matrix elements for transitions to neighboring
levels which scale as d ∼ qa0n

2, where q is the electron
charge and a0 the Bohr radius. For principal quantum number
n = 30, the corresponding electric dipole matrix elements
are about 3 orders of magnitude larger than those for low
quantum numbers [22]. Study of atoms in highly excited
Rydberg states interacting with external fields allows us to test
fundamental theories on light-matter interaction. For example,
an experiment on microwave multiphoton transitions between
Stark states of highly excited potassium was done about 25
years ago [23]. A Stark state of highly excited potassium is
labeled by its parabolic quantum number (n,n1) [23]. It is
not a state of definite parity because the wave function of
the (n,n1) state is the superposition of the wave functions
of all zero-field states with the same n and l � n1 due to the
external static electric field. Single- or multiphoton resonances
between Stark states of Rydberg potassium atoms occur when
the separation between levels is equal to the integer times of the
microwave frequency. Thus, the Stark states of highly excited
potassium may serve as a good candidate for the considered
ringlike three-level model.

In this paper, we report on the theoretical realization
of the ringlike three-level configuration by investigating its
multiphoton Rabi oscillation behavior. We derive the analytical
solution for the ringlike three-level system using a nonper-
turbative resonant theory and the Laplace transform method.
We also perform numerical simulations by solving the time-
dependent Schrödinger equation. For numerical simulations,
our ringlike three-level system consists of the (21,0), (19,3),
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and (19,4) Stark states of highly excited potassium. Our
analytic results agree, qualitatively at least, with those of
numerical simulations. It is found that the Rabi oscillation
patterns of the ringlike three-level system are completely
different from those of the �, vee, and cascade system; they
exhibit additional envelope and nodes or collapse and revival
phenomena due to the existence of the multiphoton two-color
resonances at frequency � = nω1 + mω2.

Our paper is organized as follows. In Sec. II we introduce
the ringlike three-level model and derive its analytical solution.
In Sec. III we perform numerical simulations by solving the
time-dependent Schrödinger equation for highly excited potas-
sium. We also show the comparison between the analytical
solution and numerical simulations. Finally, conclusions are
given in Sec. IV.

II. THEORETICAL MODEL AND ANALYTICAL
SOLUTION

We consider a general model of two-mode microwave fields
interacting with a three-level system as shown in Fig. 1.
We assume that |1〉 ←→ |2〉, |2〉 ←→ |3〉, and |1〉 ←→ |3〉
transitions are all dipole allowed. We name this system the
ringlike three-level system. For our ringlike three-level system,
we assume that all three states are affected by the microwave
fields. Then the interaction Hamiltonian for this system is
presented in the form

Ĥ = (ε1 + V11) |1〉 〈1| + (ε2 + V22) |2〉 〈2|
+ (ε3 + V33) |3〉 〈3| + (V12 |1〉 〈2|
+V23 |2〉 〈3| + V13 |1〉 〈3| + H.c.), (2)

where
Vij = −dij(F1 cos ω1t + F2 cos ω2t) (3)

and dij is the matrix element of the electric dipole moment.
F1 and F2 are the amplitudes of the two microwave fields
and ω1 and ω2 are the corresponding angular frequencies. V11,
V22, and V33 account for interaction due to the mean dipole
moments and these terms are important for the multiphoton
resonance. The wave function of the system can be written in
the form

|ψ(t)〉 = a1(t)e−i(ε1t+
∫ t

0 V11dt) |1〉
+ a2(t)e−i(ε2t+

∫ t

0 V22dt) |2〉
+ a3(t)e−i(ε3t+

∫ t

0 V33dt) |3〉 . (4)

FIG. 1. Schematic for the ringlike three-level system. n and m are
the numbers of photons.

From the time-dependent Schrödinger equation,

i
∂ |ψ(t)〉

∂t
= Ĥ |ψ(t)〉 , (5)

and following the nonperturbative resonant approach intro-
duced by Avetissian et al. [24,25], using the generalized
rotating wave-approximation, and separating slow and rapid
oscillations, we obtain the matrix equation for the time-average
amplitudes with the assumption that fields with real coupling
strengths couple atomic transitions,

i
dX

dt
= AX, (6)

where

X = ( a1(t),a2(t),a3(t) )T (7)

is a column matrix,

A =

⎛
⎜⎝

−(�12 + �13) �12 − �13,23 �13 + �12,23

�12 − �23,13 �12 − �23 �23 + �23,12

�13 − �23,12 �23 + �13,12 �13 + �23

⎞
⎟⎠ .

(8)

The coupling strengths are given by

ηij = − dij

djj − dii

(s1ω1 + s2ω2)Js1

[
(djj − dii)

F1

ω1

]

× Js2

[
(djj − dii)

F2

ω2

]
, i,j = 1,2,3, (9)

where Js1 and Js2 are the Bessel functions of the first kind with
orders s1 and s2, respectively. For simplicity, we only consider
the case where the resonant condition holds for any pair of
photon numbers {s1 = n,s2 = m}, single-channel resonance;
then the terms �ij = ηij (n,m) (i,j = 1,2,3) represent the
coupling strengths or the generalized Rabi frequencies related
to n and m photons. The terms �ij and �ij.kl (i,j,k,l = 1,2,3)
describe dynamic Stark shifts, which can be written as follows:

�ij =
∑
s1 �=n

∑
s2 �=m

ηij (n,m)ηij (s1,s2)

(s1 − n)ω1 + (s2 − m)ω2
, (10)

�ij,kl =
∑
s1 �=n

∑
s2 �=m

ηij (n,m)ηkl(s1,s2)

(s1 − n)ω1 + (s2 − m)ω2
. (11)

At the exact resonance, while all the dynamic Stark shifts
become 0, matrix A is reduced to the real symmetric matrix
H given by Eq. (1); then the analytical solution to Eq. (6)
is found by applying the approach of Laplace transform
when the generalized Rabi frequency is much less than the
electromagnetic waves periods. The analytical solution for the
system situated initially in state |1〉 is
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aj (t) = ρj1 exp

[(
2

1
3 α

2
3 − 6γ

)
t

3 × 2
2
3 α

1
3

]

+ ρj2 exp

{[ − 2
1
3 α

2
3 + 6γ − √

3
( − 6�2

12 + 2
1
3 α

2
3 + 6γ

)
i
]
t

6 × 2
2
3 α

1
3

}[
cos

(√
3�2

12t

2
2
3 α

1
3

)
− i sin

(√
3�2

12t

2
2
3 α

1
3

)]
(12)

− ρj3 exp

{
[(−1)

2
3 2

1
3 α

2
3 + 3γ + 3

√
3(−�2

12 + γ )i]t

3 × 2
2
3 α

1
3

}[
cos

(√
3�2

12t

2
2
3 α

1
3

)
+ i sin

(√
3�2

12t

2
2
3 α

1
3

)]
,

j = 1,2,3,

where we have introduced the following parameters:

δ = �12�13�23, (13)

γ = �2
12 + �2

13 + �2
23, (14)

β =
√

−27δ2 + γ 3, (15)

α = 54δi +
√

−2196δ2 + 108γ 3 (16)

and

ρ11 = 2
4
3
[
(−2γ + 3�23)α

2
3 + 3 × 2

2
3 γ 2 + 2

1
3

√
3βα

1
3 + 9 × 2

1
3 δα

1
3 i

]
2

2
3 α

4
3 − 6 × 2

1
3 α

2
3 γ + 36γ 2

, (17)

ρ12 = 2
4
3

√
3
{
2α

2
3
(
2γ − 3�2

23

) + (−1)
1
3 6 × 2

2
3 γ 2 + 2

1
3 α

1
3 [

√
3(β + 9δ) − 3(β − 3δ)i]

}
(2

1
3 α

2
3 + 6γ )[2

1
3 α

2
3 (

√
3 − 3i) − 6γ (

√
3 + 3i)]

, (18)

ρ13 = 2
4
3

√
3
{ − 2α

2
3
(
2γ − 3�2

23

) + 6 × (−2)
2
3 γ 2 − 2

1
3 α

1
3 [

√
3(β − 9δ) + 3(β + 3δ)i]

}
√

3(2
1
3 α

2
3 + 6γ )2 + 3(2

2
3 α

4
3 − 36γ 2)i

, (19)

ρ21 = −6 × 2
1
3 �13�23α

2
3 + 108�12δ − 6�12

(
2
√

3β − 2
2
3 α

1
3 γ

)
i

2
2
3 α

4
3 − 6 × 2

1
3 α

2
3 γ + 36γ 2

, (20)

ρ22 = 12
√

3
(
2

1
3 �13�23α

2
3 + 9�12δ + 3�12β

) − 12�12
[
3β + (−2)

2
3

√
3α

1
3 γ − 27δ

]
i√

3(2
1
3 α

2
3 + 6γ )2 − 3(2

2
3 α

4
3 − 36γ 2)i

, (21)

ρ23 = 12
√

3
[
3�12β − 2

1
3 �13�23α

2
3 − (−1)

5
6 2

2
3 �12α

1
3 γ

] + 36�12(9δ + β)i√
3(2

1
3 α

2
3 + 6γ )2 + 3(2

2
3 α

4
3 − 36γ 2)i

, (22)

ρ31 = −2
1
3 �12�23α

2
3 + 18�13δ − �13

(
2
√

3β − 2
2
3 α

1
3 γ

)
i

1
6 × 2

2
3 α

4
3 − 2

1
3 α

2
3 γ + 6γ 2

, (23)

ρ32 = 6 × (−2)
2
3

√
3�13α

1
3 γ − 162�13δ + 18�13β + 6

√
3
(
3�13β + 2

1
3 �12�23α

2
3 + 9�13δ

)
i

{√3[(−1)
1
6 2

1
3 α

2
3 + 3γ i] − 9γ }(2 1

3 α
2
3 + 6γ )

, (24)

ρ33 = 12
√

3
{
2

1
3 �12�23α

2
3 + �13

[ − 3β + (−1)
5
6 2

2
3 α

1
3 γ + 9δ

]} + 108
√

3�13δ − 36�13(9δ + β)i√
3(2

1
3 α

2
3 + 6γ )2 + 3

(
2

2
3 α

4
3 − 36γ 2

)
i

. (25)

The analytical solution, Eq. (12) describes oscillations of the probability amplitudes for the ringlike three-level system analogously
to ordinary Rabi oscillations.
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III. NUMERICAL RESULTS AND DISCUSSION

In this section, we show that the ringlike three-level con-
figuration can be realized using Stark states of highly excited
potassium interacting with two-mode microwave fields. To do
this, it is essential to examine the reliability of the predictions
obtained from our ringlike three-level model. We test the model
by numerical experiment. Therefore, we focus on the study of
the transient dynamics of the ringlike three-level configuration.
Calculations of the population of the three states using both
the analytical solution, Eq. (12) and numerical simulations
are performed. As an example, we take the three Stark states
of highly excited potassium: |1〉 = (21,0), |2〉 = (19,3), and
|3〉 = (19,4). The Stark electric dipole moments are the bridge
leading to quantitative comparison between analytical results
and corresponding numerical results. In numerical simula-
tion, we employ the time-dependent close-coupling (TDCC)
method to solve the time-dependent Schrödinger equation.
The details of the TDCC method used in the simulations are
given in Refs. [26–31]. For the numerical simulations reported
here, we use both the three-state approximation (TSA) of
TDCC and the multistate description (MSD) of TDCC. In
TSA, only the three essential states, (21,0), (19,3) and (19,4),
are included. The results of the MSD are the calculated Rabi
frequencies of the multiphoton resonances from the (21,0)
to the (19,2 ∼ 18) Stark states; the grand total of 18 states
that straddles the (21,0), (19,3), and (19,4) states is included
in the calculation. The MSD is considered to rely more
on the real behavior of the potassium atom. The analytical
simulations are performed under our excitation conditions for
the corresponding numerical simulations; the Stark electric
dipole moments used to calculate the coupling strength are
determined by the Stark state wave functions ψ

(s)
k . Within

the electric dipole approximation, the Stark electric dipole
moment dij may be written in the following form [30,31]:

dij = 〈
ψ

(s)
i

∣∣P (1)
∣∣ψ (s)

j

〉 = 〈
ψ

(s)
i

∣∣rC(1)
0

∣∣ψ (s)
j

〉
(26)

The Stark states wave functions are obtained by the diagonal-
izing the Stark Hamiltonian with the B-spline basis [30,31]. In
Table I, we list the values of Stark electric dipole moments
for the (21,0), (19,3), and (19,4) Stark states of highly
excited potassium with a static electric amplitude equal to
286.32 V/cm.

Figure 2 shows the temporal evolution of the three
states’ populations at ω1/2π = 9.0 GHz, F1 = 10 V/cm
and ω2/2π = 26.16 GHz, F2 = 10 V/cm, with a static-field
amplitude equal to 286.32 V/cm. Both the results of the MSD
and the results of the analytical solution, Eq. (12) are displayed.
In Fig. 2(c), the results of the TSA are also displayed. In
the analytical simulations, the generalized Rabi frequencies
are decided by Eq. (9) and the dynamic Stark shifts are

TABLE I. Calculated Stark electric dipole moments |dij |, in
atomic units.

i = 1 i = 2 i = 3

j = 1 44.564 8.604 3.026
j = 2 8.604 467.607 12.158
j = 3 3.026 12.158 399.948

FIG. 2. (Color online) Comparison of the populations of
(a) (21,0), (b) (19,3), and (c) (19,4) states between the numerical
solution of the time-dependent Schrödinger equation using the MSD
of TDCC [solid (red) line], the TSA [dotted (green) line], and
the analytical solution [dashed (blue) line] at ω1/2π = 9.0 GHz,
F1 = 10 V/cm, and ω2/2π = 26.16 GHz, F2 = 10 V/cm, with a
static field amplitude equal to 286.32 V/cm.

calculated by Eqs. (10) and (11). All related values are listed in
Table II. As show, the dynamic Stark shifts are much less than
the generalized Rabi frequencies. In order to check whether
the dynamic Stark shifts can be safely neglected, we solve
Eq. (6) numerically with the dynamic Stark shifts included by
using the Runge-Kutta algorithm; comparison with the results
of the analytical solution, Eq. (12) show that dynamic Stark
shifts can be safely neglected. One can note that the Rabi
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TABLE II. Calculated generalized Rabi frequencies and dynamic
Stark shifts (in MHz) and amplitudes of microwave fields F1 and F2

(inV/cm).

(n,m) = (1,1) (n,m) = (2,1)
F1 = 10 F1 = 15
F2 = 10 F2 = 6

�12 5.198 × 101 5.594 × 101

�13 6.349 × 100 3.684 × 100

�23 7.760 × 101 4.570 × 101

�12 1.177 × 10−3 −1.170 × 10−2

�13 5.245 × 10−3 5.640 × 10−3

�23 5.418 × 10−1 4.444 × 10−1

�13,23 4.433 × 10−2 3.582 × 10−2

�12,23 3.629 × 10−1 5.440 × 10−1

�23,13 6.410 × 10−2 6.997 × 10−2

�12,13 4.294 × 10−2 8.565 × 10−2

�23,12 1.757 × 10−3 −9.565 × 10−3

�13,12 1.438 × 10−4 −7.709 × 10−4

oscillation behaviors predicted by our analytical solution agree
quantitatively with those of the numerical results of the MSD.
The dotted (green) curve in Fig. 2(c) shows the results of the
TSA. The Rabi oscillation patterns are consistent qualitatively
despite the apparent quantitative differences between the MSD
and the TSA results. Usually, the MSD of TDCC is considered
more accurate compared to the TSA of TDCC. Here, we show
that the results of the TSA are also reliable. All the above
results and analyses allow us to predict that two-photon two-
color resonance at frequency � = nω1 + mω2, with n = 1,
m = 1, occurs between the (21,0) and the (19,4) Stark states
of highly excited potassium.

Figure 3 displays the temporal evolution of the three
states’ populations at ω1/2π = 4.5 GHz, F1 = 15 V/cm and
ω2/2π = 26.16 GHz, F2 = 6 V/cm, with a static electric field
amplitude equal to 286.32 V/cm; the results of the analytical
solution are also displayed. The generalized Rabi frequencies
and dynamic Stark shifts are also listed in Table II. We see
apparent quantitative differences, however, our analytic results
agree, qualitatively at least, with the numerical results. In this
situation, it allows us to predict that three-photon two-color
resonance at frequency � = nω1 + mω2, with n = 2, m = 1,
occurs between the (21,0) and the (19,4) Stark states of highly
excited potassium.

In Figs. 2 and 3, we find that the population oscillations
exhibit an additional envelope and nodes compared to the
oscillatory behavior of a three-level cascade system [20]. The
oscillation patterns strongly resemble the collapse and revival
effect known from quantum optics due to field quantization.
The main difference between the ringlike three-level system
and the cascade-type system is the existence of |1〉 ←→ |3〉
multiphoton two-color resonance. It is just the |1〉 ←→ |3〉
multiphoton two-color resonance that leads to the appearance
of the additional envelope and nodes or the collapse and revival
phenomena. Therefore, the nature of the collapse and revival
phenomena is different from that of the Jaynes-Cummings
model.

Figure 4 displays the dependence of the Rabi oscilla-
tions of three-photon two-color resonance for our ringlike

FIG. 3. (Color online) Comparison of the populations of
(a) (21,0), (b) (19,3), and (c) (19,4) between the numerical solution
of the time-dependent Schrödinger equation using the MSD of TDCC
[solid (red) line] and the analytical solution [dashed (blue) line]
at ω1/2π = 4.5 GHz, F1 = 15 V/cm and ω2/2π = 26.16 GHz,
F2 = 6 V/cm, with a static field amplitude equal to 286.32 V/cm.

three-level system on the amplitudes of the microwave field.
For these simulations, keeping F1 = 15 V/cm fixed and setting
ω1/2π = 4.5 GHz, and ω2/2π = 26.16 GHz, we obtain the
Rabi oscillation behavior for various amplitudes of F2. The
oscillation behavior of the three levels is calculated using
Eq. (6), while dynamic Stark shifts are neglected. The coupling
strengths �ij = ηij (n,m) (i,j = 1,2,3) are calculated using
the Stark electric dipole moments listed in Table I. At the lower
amplitudes of F2, only resonance between the (21,0) and the
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FIG. 4. (Color online) Contour plot of the population as a function
of the amplitude of the driving microwave field F2 and the tome.
Parameters employed are F1 = 15 V/cm, ω1/2π = 4.5 GHz, and
ω2/2π = 26.16 GHz. (a) Oscillations for the (21,0) state, which
is connected to the initial state; corresponding simulations for the
(b) (19,3) and (c) (19,4) states.

(19,3) states occur, giving no resonant transition of (19,3) →
(19,4) and (21,0) → (19,4). At higher amplitudes of F2 (e.g.,
4–12 V/cm), either (21,0) → (19,3) or (19,3) → (19,4) and
(21,0) → (19,4) transitions occur. With an increase in the
amplitudes of F2, all the resonances finally disappear. The
distinct feature is that there is a banded structure in Fig. 4 for
the ringlike three-level system. The banded structure for (21,0)
and (19,4) states reflects the the collapse and revival behavior.

Thus the multiphoton two-color resonance between the (21,0)
and the (19,4) states plays a critical role in determining the
character of the banded structure. However, Figs. 2(b) and 3(b)
show that there are almost no additional envelope and nodes
or collapse and revival behavior for (19,3) state. Accordingly,
there is no banded structure in Fig. 4(b) for the (19,3) state.
Note that the corresponding results for two-photon two-color
resonance are similar to those for three-photon two-color
resonance. Therefore, the ringlike three-level configuration
can be realized only for a narrow range of parameters.

Note that the resonance condition can also be satisfied by
diverse pairs of photon numbers; if the microwave frequency
is far less than the separation between the levels, then there are
many channels of resonance transitions and one should take
into account all possible transitions. In this case, it is difficult
to show quantitative agreement between analytic results and
numerical simulations. Thus, we restrict our simulations to the
situation of single-channel resonance.

The ringlike three-level model exists and is valid because
it has given results in accord with numerical simulations. The
validity can be further checked in the following way. If the
coupling strength �23 equals 0 in Eq. (12), then our analytical
solution can be reduced to the analytical solution for the vee-
configuration three-level system. This is also true for the �

and cascade configurations when the coupling strength �12 or
�13 equals 0 in Eq. (12).

IV. CONCLUSION

In this paper we have proposed a ringlike three-level
model. We have studied the Rabi oscillations of multiphoton
transitions in the ringlike three-level system interacting with
two-mode microwave fields both numerically and analytically.
The analytical solution for the description of the time-
dependent atomic population of the three states for the ringlike
three-level system is found by using the nonperturbative
resonant approach and the method of Laplace transform.
We make numerical simulations by directly solving the
time-dependent Schrödinger equation, Eq. (5) using both
the MSD of the TDCC method and the TSA of the TDCC
method. In the numerical simulations, the ringlike three-level
system consists of the (21,0), (19,3), and (19,4) Stark states
of highly excited potassium. Our analytic results for two-
photon two-color resonance agree quantitatively with those
of numerical solutions of the time-dependent Schrödinger
equation. For the case of three-photon two-color resonance,
qualitative agreement is observed. The results show that the
Rabi oscillation patterns of the ringlike three-level system are
completely different from those of the �, vee, and cascade
systems: they exhibit additional envelope and nodes compared
to the oscillatory behavior of the three-level cascade system;
in other words, collapse and revival phenomena exist. The
|1〉 ←→ |3〉 multiphoton two-color resonance at frequency
� = nω1 + mω2 leads to the appearance of the collapse and
revival phenomena. The contour plot of populations as a
function of the amplitude of the driving microwave field F2 and
the time exhibits banded structures which reflect the collapse
and revival phenomena of the system populations. Again, the
origin of the banded structures is the multiphoton two-color
resonance between the (21,0) and the (19,4) states.
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Our results allows us to conclude that the ringlike three-
level configuration can be realized using Stark states of highly
excited potassium for a narrow range of parameters. The
ringlike three-level configuration may be found and studied
in other, more accessible systems. The validity of any model
resides in its agreement with experiment. Equation (12) forms
part of a new three-level configuration; we hope that our
ringlike three-level model stimulates experiments.
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