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Generation and control of spin-orbit entanglement in atomic pairs
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We propose a method for producing entangled spin and orbital states in pairs of atoms resulting from the
dissociation of diatomic molecules. The method employs the interference between a one-photon and a two-photon
process to break the backward-forward symmetry of the dissociation processes. The spin entanglement of distant
atom pairs makes use of excited spin-orbit-coupled (molecular) intermediate states. When the dissociating
molecules are confined to a one-dimensional optical lattice, the method can be used to generate long sequences
of (spin- and orbit-) entangled pairs of atoms.
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I. INTRODUCTION

The controlled generation of entangled states, which is
essential for many quantum information applications such
as superdense coding, quantum teleportation, quantum com-
puting, and quantum cryptography [1–4], is a challenging
task. High-order entanglements, which involve either many
particles [5], multiple dimensions [6], or many degrees of
freedom [7], are even more difficult to produce. Previous works
have primarily concentrated on, in addition to two-level atomic
systems, cavity QED systems [8], exitons in semiconductor
microcrystallites [9], two-atom autoionizating systems [10],
three-spin chain systems [11], nonlinear quantum scissors
devices based on Kerr-like systems [12], trapped ions [13],
linear optical models [14], quantum-dot systems [15], and
microcavities [16].

In general we can categorize entangled states as being
composed of states of the same degree of freedom |i〉 ⊗ |j 〉
or being composed of states belonging to different degrees
of freedom. Trapped-ion W states [17,18], in which one
correlates between quantum bits of different ions associated
with the same type of state, are an example of the former.
States composed of spin and orbital angular momenta of the
same particle are an example of the latter. Such states are the
Sz(1) ⊗ Sz(2) ⊗ Pz(1) ⊗ Pz(2) states that have been realized
for photons [19].

In this paper we propose and develop a method for
producing both types of entangled states in atoms (or ions).
The method employs the interference between a one-photon
and a two-photon dissociation process [20–24] to produce a
Greenberger-Horne-Zeilinger (GHZ) type of state [25], such as
|0000〉 + |1111〉, involving spin and orbital angular momenta
of different atoms. In such states a measurement of Sz of one
particle yields, on top of the spin state of the other particle, the
orbital information of both particles.

In the present scenario the one-photon process is used to
execute a spin-conserving excitation to a dissociative state,
while the two-photon process is used to excite the molecule
to a spin-orbit-coupled (molecular) intermediate state, from
which it is transferred to a dissociative state of different
spin compared to the ground state. Lacking the directional
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information, the above two pathways of producing the final
photofragments interfere, allowing for coherent control of the
directionality of the entangled states. We aid in the control
of the makeup of these states by using an additional laser
that changes the two-photon phase by ac Stark shifting the
position of the intermediate states. In the context of molecules
dissociated in an optical lattice [26,27], this method can
produce arbitrarily long chains of pairs of entangled GHZ
atoms.

II. THEORY

We consider the interaction of a system, composed of |E0〉,
the initial bound state of energy E0; |Ei〉, an intermediate
bound state of energy Ei ; and |E,n−〉 (n = 1, . . . ,N), a set of
N -fold degenerate scattering states of continuous energies E,
with three external laser fields εj ≡ εj ε̂j (j = 1,2,3) where
εj is the amplitude and ε̂j is the polarization of each laser
field. The total Hamiltonian is given as H = HM + Hint, where
HM is the radiation-free material Hamiltonian and Hint =
−∑

j μ̂ · εj ε̂j is the radiation-matter interaction term, with
μ denoting the electric dipole operator. The above (nuclear
plus electronic) eigenstates of HM ,

[HM − E0]|E0〉 = [HM −Ei]|Ei〉 = [HM − E]|E,n−〉 = 0,
(1)

n = 1, . . . ,N,

are used to expand |�〉, the solution of the time-dependent
Schrödinger equation

ih̄∂|�〉/∂t = H |�〉

as

|�〉 = a0e
−iE0t |E0〉 + aie

−iEi t |Ei〉
+

∑
n

∫
dEbE,ne

−iEt |E,n−〉. (2)

The εj=1,2,3 laser fields are respectively tuned to be in
near resonance with the |E0〉 → |E,n−〉, |E0〉 → |Ei〉, and
|Ei〉 → |E,n−〉 transitions. By substituting Eq. (2) into the
time-dependent Schrödinger equation, using atomic units (h̄ =
1), and invoking the rotating-wave approximation, we obtain
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the set of coupled equations

ȧ0 = iμ0,iε2aie
−i(�2t−φ2)

+ i
∑

n

∫
dEε1e

−i(�1t−φ1)μ0,nbE,n,

ȧi = iμi,0ε2a0e
i(�2t−φ2)

(3)
+ i

∑
n

∫
dEε3e

−i(�3t−φ3)μi,nbE,n,

ḃE,n = iμn,0ε1a0e
i(�1t−φ1)

+ iμn,iε3aie
i(�3t−φ3), n = 1, . . . ,N

in which the transition dipole matrix elements are defined
as μ0,n ≡ 〈E0|μ̂ · ε̂1|E,n−〉, μi,n ≡ 〈Ei |μ̂ · ε̂3|E,n−〉 (n =
1, . . . ,N ), and μ0,i ≡ 〈E0|μ̂ · ε̂2|Ei〉. The three detuning fac-
tors are defined as �1 = E − E0 − ω1, �2 = Ei − E0 − ω2,
and �3 = E − Ei − ω3.

By invoking first- and second-order perturbation theory, we
can express the final states’ coefficients at the end of the pulse
as

bE,n = �(1)
n + �(2)

n ,

where

�(1)
n ≡ ie−iφ1μn,0(E)ε1(�1),

(4)
�(2)

n ≡ −μn,i(E)μi,0e
−iφ2−iφ3ε2,3(�2,�3), n = 1, . . . ,N,

and

ε1(�1) =
∫ ∞

t0

dtε1(t)ei�1t ,

(5)

ε2,3(�2,�3) =
∫ ∞

t0

dtε3(t)ei�3t

∫ t

t0

dt ′ε2(t ′)ei�2t
′
.

Equation (4) leads to the possible control of the relative
channel weights and phases �(1)

n /�(2)
n = |�(1)

n /�(2)
n |exp(iαn)

by tuning the laser phase difference φ1 − φ2 − φ3. The
scenario outlined here is depicted schematically in Fig. 1.

In order to illustrate the method we now study the
dissociation of the F2 molecule (Fig. 2). The electronic state
associated with |E0〉 is chosen as X 1�0g

+
and the electronic

state associated with |Ei〉 is chosen as a 3�1u. We consider four
continuum channels (n = 1,2,3,4) belonging to the the A 1�1u

and b 3�1g states. The final dissociative state is a result of two

possible quantum routes, the one-photon process X
h̄ω1−→ A

and the two-photon process X
h̄ω2−→ a

h̄ω3−→ b.
The use of n of Eq. (2) to denote (among other quantum

numbers) the physically interesting backward b and forward f

directions amounts to working with symmetry-broken states.
Such states are coupled to the initial state by both the
one-photon and the two-photon processes. In order to compute
the transition amplitudes, however, we need to correlate these
symmetry-broken states with the usual symmetry-adapted
states, e.g., the gerade and ungerade states or the spin triplet
and singlet states. The spin parts of the symmetry-adapted final
dissociative states A 1�1u and b 3�1g are given as

S(u) = [α(f )β(b) − β(f )α(b)]/
√

2,
(6)

S(g) = [α(f )β(b) + β(f )α(b)]/
√

2.

FIG. 1. (Color online) Schematic process of the controlled entan-
glement in spin and orbital angular momenta and directionality of the
dissociated atomic pairs.

The symmetry-adapted orbital part of the two dissociative
states is obtained in the asymptotic region using the linear
combination of atomic orbitals approximation

O
(
A 1�1u,� = � = 1

) R→∞−→ [|O1〉 + |O2〉]
≡ [Y1,1(f )Y1,0(b) + Y1,0(f )Y1,1(b)] (7)

for the u state and

O
(
b 3�1g,� = � = 1

) R→∞−→ [|O1〉 − |O2〉]
≡ [Y1,1(f )Y1,0(b) − Y1,0(f )Y1,1(b)] (8)

for the g state, where Yl,m(f ) and Yl,m(b) are spherical harmon-
ics about the center of the forward- and backward-scattered
atoms, respectively. Here � and � are defined as the projection

FIG. 2. (Color online) Four potentials involved in the one-photon
ω1 versus two-photon ω2 and ω3 photodissociation processes of the
F2 molecule.
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of the total 
L + 
S and orbital angular momenta 
L, respectively,
on the molecular êz axis. Note that the � = � = +1 states are
chosen specifically by applying left circularly polarized light
for the ω1 and ω2 laser fields; in contrast, the ω3 field has a
linear polarization to define both the space-fixed frame and
the body-fixed frame due to the strong field alignment effect
in the polarization direction [28]. Therefore, the correlation
between our previously defined symmetry-broken states in
Eq. (2) and these symmetry-related states can be described
as

|E,1−〉 R→∞−→ |E〉{Y1,1(f )Y1,0(b)α(f )β(b)}
= |E〉{[O(u) + O(g)][S(u) + S(g)]},

|E,2−〉 R→∞−→ |E〉{Y1,0(f )Y1,1(b)β(f )α(b)}
= |E〉{[O(u) − O(g)][S(u) − S(g)]},

(9)
|E,3−〉 R→∞−→ |E〉{Y1,1(f )Y1,0(b)β(f )α(b)}

= |E〉 {[O(u) + O(g)][S(u) − S(g)]} ,

|E,4−〉 R→∞−→ |E〉{Y1,0(f )Y1,1(b)α(f )β(b)}
= |E〉{[O(u) − O(g)][S(u) + S(g)]},

where |E〉 is a plane wave of energy E describing the free
relative motion of the two nuclei after dissociation. The
final dissociative part of the system’s wave function in the
asymptotic region can thus be expressed as

ψ =
∫

dEe−iEt {bE,1|E,1−〉 + bE,2|E,2−〉 + bE,3|E,3−〉
+ bE,4|E,4−〉}. (10)

In the absence of (coherent) control, all four dissociative
components exist. As a result, as in a W -state case, a
measurement of the electronic spin state of the forward-going
atom determines only the spin state of backward-going atom.
However, we can exercise coherent control on the coefficients
of the four dissociative components of Eq. (10) by varying
the relative phases and the relative magnitudes of �(1)

n (E) and
�(2)

n (E) of Eq. (4),

Pn =
∫

dE
{∣∣�(1)

n

∣∣2 + ∣∣�(2)
n

∣∣2 + 2
∣∣�(1)

n �(2)
n

∣∣ cos(αn)
}
,

(11)
n = 1, . . . ,4,

by tuning relative phases αn. In more detail, Pn can be
controlled using two experimental knobs: the relative phase
between the laser fields φ1 − φ2 − φ3, which directly controls
αn, and the ratio of electric field strengths ε1/ε2ε3, which
directly controls the |�(1)

n |/|�(2)
n | ratio, as shown in Eq. (4). It

follows from Eq. (11) that �
(m)
1 (m = 1,2) are not completely

independent of one another. In fact, �
(m)
1 = −�

(m)
2 , �

(m)
3 =

−�
(m)
4 , and α1 = α2 = α3 + π = α4 + π . Hence it follows

from Eq. (11) that P1 = P2 and P3 = P4.

In spite of the above limitation we can still control the
makeup of the spin-orbit GHZ (SOGHZ) states. It follows

from Eq. (11) that for α1 = 0,

|ψ〉 → ψA =
∫

dEe−iEtbE |E〉[Y1,1(f )Y1,0(b)α(f )β(b)

−Y1,0(f )Y1,1(b)β(f )α(b)],

and for α1 = π ,

|ψ〉 → ψB =
∫

dEe−iEtbE|E〉[Y1,0(f )Y1,1(b)α(f )β(b)

−Y1,1(f )Y1,0(b)β(f )α(b)]. (12)

This is a remarkable result because we generate in this
method multiple entanglements in which, contrary to ordinary
spin entangled states (e.g., the spin Bell states), where a
measurement of the spin of one atom does not reveal the orbital
state of either atom, measurement of the spin of one atom yields
information of the spin and orbital states of both atoms.

To demonstrate the controllability that can be attained,
we compute the branching ratio for producing different
SOGHZ states (P1 + P2)/(P1 + P2 + P3 + P4) for ψA and
(P3 + P4)/(P1 + P2 + P3 + P4) for ψB, as a function of the
experimental knobs. We study first the periodic dependence
of the branching ratio on α1, which is directly determined by
φ1 − φ2 − φ3, with fixed laser intensities and zero detuning
�2 = 0. We note that the two-photon resonance condition
ω1 = ω2 + ω3 must be satisfied in order to ensure that
the two quantum pathways are indistinguishable from one
another. Figure 3 depicts a case where I1 = 3 × 109 W/cm2,
I2 = I3 = 2 × 1011 W/cm2, and the temporal width is 1 ps.
When α1 = 0, due to destructive interference, P3 and P4

are suppressed to a minimum, thereby giving rise to the
ψA entangled state of Eq. (12). When α1 = π , P1 and P2

are suppressed to a minimum and the ψB in Eq. (12) is
formed. By tuning α1 over the [0 − π ] range, the branching
ratio (P1 + P2)/(P1 + P2 + P3 + P4) is seen to vary between
4.6% and 95.4%, an essentially complete controllability.

A different parameter, which is related to the intensities of
the optical fields used, is defined as

R = S/S0 ≡ (I1/I2I3)/(I10/I20I30), (13)

FIG. 3. (Color online) Branching ratios for the multiple-
entanglement states ψA and ψB; I10 = 3 × 109 W/cm2, I20 = I30 =
2 × 1011 W/cm2, and �t = 1 ps.
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FIG. 4. (Color online) Two-dimensional contour plots for the
branching ratios of the ψA entangled state; log10(S/S0) is defined
by Eq. (13).

where I10, I20, and I30 are given in Fig. 3. This parameter,
which is directly related to the �(1)

n /�(2)
n ratio, describes

the strength of the two competing routes. A two-dimensional
contour plot of (P1 + P2)/(P1 + P2 + P3 + P4) as a function
of α1 and log10(R) = log10(S/S0) is given in Fig. 4. When
S/S0 ≈ 1, the two-photon pathway becomes comparable in
strength to the one-photon pathway, thus enabling maximal
interference and hence the most extensive range of control.

The creation of the above states can be observed experimen-
tally by applying a Stern-Gerlach splitter to the dissociated
atoms. If the two pathways are not controlled, four product
states result, leading the jz (= ms + ml) quantum numbers to
assume the ±1/2 and ±3/2 values. However, when the process
is controlled by tuning φ1 − φ2 − φ3 such that α1 = 0, only
two possible jz values survive, −1/2 and 3/2, leading to the
appearance of only two beams in the Stern-Gerlach machine.

A natural extension of the current theory is to form an
array of entangled atom pairs in a one-dimensional optical
lattice [26,27]. In order to vary the makeup of the entangled
states from one site to another an additional control knob must
be applied [27]. One option is to vary the molecular phase α1 by
inducing a nonzero detuning �2 with a spatial dependence by
ac Stark shifting the energy of the intermediate state |Ei〉. Us-
ing second-order perturbation theory, it is easy to see that when
�2 is larger than the energy bandwidth of the laser fields, the
phase of �(2)

n is flipped by π , �(2)
n (�2 > 0) = −�(2)

n (�2 < 0).
The spatial variation of the detuning �2 thus changes α1 and
switches the final dissociation direction from f to b. Changing
phases of internal transitions has been proved to be an effective
method to control molecular dynamics externally [26,27,29].
The result of such an additional knob is the ability to control the

FIG. 5. (Color online) Controlled formation of arrays of entan-
glement by utilize the ac Stark shift to control �2 and thus α1.

makeup of each entangled state in a long sequence of
dissociated atom pairs, as shown in Fig. 5.

III. CONCLUSION

In this study we have developed a means to produce
multiple-entanglement states in atomic pairs. This states
entangle both spin and orbital angular momenta of different
atoms. The makeup of these states is controlled by using the
interference between one-photon and two-photon pathways.
By breaking in this manner the spatial symmetry and using
spin-orbit-coupled excited molecular states, we attain a full
entanglement of spin and orbital angular momenta and direc-
tionality of different atoms. By ac Stark shifting the energy
of intermediate states, we can also control the makeup of
long chains of atom-pair entangled states in one-dimensional
optical lattices.
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