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Sympathetic cooling of mixed-species two-ion crystals for precision spectroscopy
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Sympathetic cooling of trapped ions has become an indispensable tool for quantum-information processing
and precision spectroscopy. In the simplest situation a single Doppler-cooled ion sympathetically cools another
ion which typically has a different mass. We analytically investigate the effect of the mass ratio of such an
ion crystal on the achievable temperature limit in the presence of external heating. As an example, we show
that cooling of a single Al+ with Be+, Mg+, and Ca+ ions provides similar results for heating rates typically
observed in ion traps, whereas cooling ions with a larger mass perform worse. Furthermore, we present numerical
simulation results of the rethermalization dynamics after a background gas collision for the Al+-Ca+ crystal for
different cooling laser configurations.
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I. INTRODUCTION

Sympathetic laser cooling of trapped ions is an impor-
tant experimental tool in diverse fields, such as quantum-
information processing, chemistry, and precision spec-
troscopy. In quantum-information processing, a sympathetic
cooling ion can be used to cool the qubit ions in a multi-
plexed trap architecture [1], without affecting the quantum-
information store in the internal states of the qubit ions
[2,3]. Sympathetic cooling of atomic and molecular ions
enables studies of chemical reactions at cold and ultracold
temperatures [4–6]. A major interest in sympathetic cool-
ing of clouds of ions stems from spectroscopy of atomic
[7–9] and molecular ion species [10–13] with a complex
internal level structure that cannot be laser cooled directly.
Precision spectroscopy of single or few spectroscopy ions
sympathetically cooled by a well-controllable cooling or logic
ion in a linear ion trap can be performed using quantum
logic spectroscopy (QLS) [14,15]. Here the laser-cooled
logic ion not only provides sympathetical cooling, but also
assists in the readout process of the spectroscopy ion after
interrogation. After its successful implementation in optical
frequency standards based on aluminum ions [16,17], several
experiments including spectroscopy of molecular ions [18,19],
highly charged ions [20–22], superheavy ions [23], and metal
ions [24] using this technique have been proposed. One of the
requirements for these applications is efficient Doppler-laser
cooling of small linear ion crystals, which in its simplest form
consists of two ions of (in general) unequal mass. Doppler-
laser cooling has first been experimentally demonstrated with
trapped magnesium ions [25]. It was soon realized that the
strong mutual electrostatic interaction between a laser cooled
ion species and another species not interacting with the cooling
laser, allowed sympathetic cooling of the latter in large clouds
of ions [26,27]. Crystallized linear chains of up to 15 ions
have been sympathetically cooled with a single cooling ion
of similar mass [28–30]. Sympathetic Doppler and even
ground-state cooling of two-ion crystals with a mass ratio
of up to three has been successfully implemented [15,31].
Cooling of even larger mass ratios has been proposed by
trapping the two species in separate potential wells [32,33].
The structure, dynamics, and cooling of linear ion crystals

composed of ions with unequal mass have been investigated
theoretically mostly in the context of quantum-information
processing [34–38], with particular emphasis on the mode
structure and the cooling rates. For applications, such as optical
frequency standards requiring high spectroscopic accuracy, the
lowest achievable temperature during Doppler cooling will
determine relativistic and trapping-field induced shifts [17,39].
Motional heating of the ions in the trap due to electric field
fluctuations [20,40,41] significantly modifies the achievable
Doppler-cooling temperature.

Here we develop an analytical model to study the achievable
motional energy using sympathetic cooling in linear two-
species two-ion crystals within the pseudopotential approx-
imation in the presence of external motional heating. The
achievable cooling limit strongly depends on the strength of
the external electric field fluctuations, the mass ratio between
cooling and spectroscopy ions, and the trap parameters. We
show that in particular, the Doppler cooling temperature in
radial direction is much more sensitive to a mass mismatch
compared to the axial direction. We use this model to
investigate the second-order Doppler shift for Doppler cooled
ion crystals in an 27Al+ quantum logic clock with different
logic ion species. We show that next to the obvious choice
of 25Mg+ ions which excel because of their almost perfect
mass match, 40Ca+ ions will perform similarly and in some
situations even better than the Mg ions, owing to the lower
achievable Doppler-cooling temperature. Besides the cooling
limit, the required cooling time after, for example, a collision
with the hot background gas, is an important aspect. We
numerically simulate the cooling dynamics of a Ca+-Al+-ion
crystal after such a collision event. Before crystallization of the
two-ion crystal, the cooling rate is comparable to the single-ion
case. After crystallization, the motion of the ions is described
in normal modes and the cooling rate is limited by modes that
are only weakly cooled by the logic ion.

In Sec. II we briefly recall the low-temperature dynamics
of the two-ion crystal and introduce analytic formulas for the
six mode frequencies and the modal amplitudes. In Sec. III
we expand the standard Doppler cooling model to the two-ion
crystal case and investigate the effect of external heating on the
temperature limit. In Sec. IV we describe our cooling dynamics
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simulation and discuss the results before summarizing in
Sec. V.

II. NORMAL MODES OF A TWO-ION CRYSTAL

In linear Paul traps the confinement of charged particles is
realized by two distinct electric fields [42]. The first is a rapidly
oscillating two-dimensional (2D) electric quadrupole in the
radial (xy) plane and the second is a static three-dimensional
(3D) quadrupole field providing confinement along the trap
(z) axis. While the first is assumed to be purely radial and
have no field components in the axial direction, the latter must
have components in the radial directions additionally to its
axial field in order to satisfy Laplace’s equation. Following
the notation of Ref. [43] the total trap potential is given by

�(x,y,z,t) = V0

2
cos �T t

(
1 + x2 − y2

R′2

)

+ κU0

(
z2 − αx2 − (1 − α)y2

d2

)
, (1)

where V0 and U0 are the applied rf and dc voltages, R′ ≈ R

and d are the radial and axial trap dimensions, respectively, κ

is a geometric factor [44], 0 < α < 1 is a parameter indicating
the radial asymmetry of the static field, and �T is the angular
frequency of the rapidly oscillating rf field (see Fig. 1). In the
pseudopotential approximation, a single ion of mass m and
charge e in this trap will experience a potential of the form [45]

U (x,y,z) = 1
2mω2

xx
2 + 1

2mω2
yy

2 + 1
2mω2

zz
2. (2)

In this potential the ωx,y,z denote the single-ion trap
frequencies, that is, the frequencies of the ion’s secular motion
along the different axes. They are given by

ωz =
√

2eκU0

md2
, (3)

ωx =
√

ω2
p − αω2

z , (4)

ωy =
√

ω2
p − (1 − α)ω2

z , (5)

FIG. 1. Schematic of a linear ion trap. The trap consists of four
blade-shaped electrodes of which two opposing ones are connected
to an rf voltage while the other two are connected to ground. It also
includes two endcap electrodes that are connected to a positive dc
voltage. The line through the two endcaps defines the trap axis z and
the other two axes (x, y) are chosen such that two blades lie on each
axis.

where ωz, ωx , and ωy are the axial and two radial trap
frequencies, respectively, and

ωp = eV0√
2�T mR′2

describes the contribution of the rf potential to the radial
trap frequencies [43]. Introducing a factor ε = ωp/ωz as in
Ref. [36] simplifies the radial trap frequencies to

ωx =
√

ε2 − α ωz, ωy =
√

ε2 − (1 − α) ωz. (6)

From the known trap frequencies, the α and ε parameters
for a given ion with mass m = m1 in a given trap can be
derived. This allows the computation of frequencies for ions
with different masses m2 in the same trap. While the axial trap
frequencies simply scale with the square root of the mass, the
radial trap frequencies additionally depend on ε and α:

ωz,2 =
√

m1

m2
ωz,1, (7)

ωx,2 =
√

m1

m2

√
m1
m2

ε2 − α

ε2 − α
ωx,1, (8)

ωy,2 =
√

m1

m2

√
m1
m2

ε2 − (1 − α)

ε2 − (1 − α)
ωy,1. (9)

For the remainder of this work we assume α = 1/2 to simplify
the algebra.

If two ions are simultaneously trapped in the same linear
Paul trap and strongly cooled to near 0 K temperature, they
will eventually crystallize at equilibrium positions along the
trap axis, equally spaced at a distance z0 = ( ed2

32U0πε0
)1/3 from

the trap center [20,35]. The remaining motion of ions 1 and
2 can then be described as small, coupled oscillations q1,q2

around these equilibrium positions. Along every principal axis
the motion consists of a superposition of an out-of-phase mode
(o) where the two ions always move in opposite directions and
an in-phase mode (i) where the two ions move in the same
direction. Following the approach of Ref. [36], the oscillations
along a chosen direction are given by

q1(t) = zib1 sin(ωit + φi) + zob2 cos(ωot + φo), (10)

q2(t) = zib2√
μ

sin(ωit + φi) − zob1√
μ

cos(ωot + φo), (11)

where ωi,o,φi,o are the angular eigenfrequencies and phases of
the in-phase and out-of-phase modes, respectively, and b1,2 are
the components of the normalized eigenvector of the in-phase
mode, satisfying b2

1 + b2
2 = 1, in a coordinate system where

the motion of the second ion is scaled by a factor of 1/
√

μ with
μ = m2/m1. The zi,o are the modal amplitudes [see Eqs. (19)
and (20)]. The calculation of the modal frequencies and the
b1,2 parameters can be performed similarly to, for example,
[36]: For every ion the sum of the trap pseudopotential and
the Coulomb potential due to repulsion from the other ion is
developed around the equilibrium positions and the coupled
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FIG. 2. (Color online) Normal mode frequencies and normalized amplitudes for a two-ion two-species crystal. The square of the normalized
amplitude (b2

1) and the in-phase (ωi) and out-of-phase (ωo) trap frequencies normalized to the axial trap frequency of a single ion of mass m1

are shown for the axial and radial direction for different mass ratios μ = m2/m1 and ε parameters.

equations of motions are solved in lowest order, neglecting
higher order nonlinear couplings [20,46]. The results of this
calculation for ions with different mass ratios μ and different
ε parameters are given by

ωi,z =
√

1 + μ −
√

1 − μ + μ2

μ
ωz, (12)

ωo,z =
√

1 + μ +
√

1 − μ + μ2

μ
ωz, (13)

b2
1,z = 1 − μ +

√
1 − μ + μ2

2
√

1 − μ + μ2
, (14)

ωi,x,y =
√

−μ + μ2 − ε2(1 + μ2) − a

2μ2
ωz, (15)

ωo,x,y =
√

−μ + μ2 − ε2(1 + μ2) + a

2μ2
ωz, (16)

b2
1,x,y = μ − μ2 + ε2(−1 + μ2) + a

2a
, (17)

where the parameter

a =
√

ε4(μ2 −1)2 − 2ε2(μ−1)2μ(1 + μ) + μ2[1+ (μ−1)μ]

(18)

was introduced. The b2 parameters calculate as b2 =
√

1 − b2
1.

Figure 2 shows the calculated eigenmode amplitudes and
frequencies in axial and radial directions. The heavier of the
two ions has the largest amplitude for the mode with the
lowest frequency, which is the axial in-phase mode and radial
out-of-phase mode. It is worthwhile noting that the radial
mode amplitudes are much more sensitive to a change in the
mass ratio. As a consequence, the radial motion of the ions
is nearly decoupled for ion species with mass ratios μ < 0.25
or μ > 4 for typical traps, that is, for one mode ion 1 has
a large normal mode amplitude and ion 2 has a small one,
whereas for the other mode the situation is reversed. The
radial curves end at mass ratios where the radial out of phase
mode frequencies reaches zero because for higher mass ratios
the ion crystal turns from a linear axial configuration to a
linear radial configuration [47,48].

In this notation, the total energies of the two modes (i.e.,
kinetic plus potential energy) along one direction (valid for
radial and axial directions) are given by

Ei = 1
2m1z

2
i ω

2
i and (19)

Eo = 1
2m1z

2
oω

2
o. (20)
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III. COOLING LIMITS

A. Doppler cooling of an isolated system

In the following we will briefly outline the usual derivation
of the Doppler cooling limit [49–51] before expanding the
model to take into account an additional heating rate in the
next section. The model differs from the standard derivation
in so far as it takes into account the modal structure of the
two-ion crystal right from the beginning.

Doppler cooling of all modes is achieved by exposing ion
1 to laser radiation of intensity I and an angular frequency
ω = ω0 + 
 detuned by 
 from ion 1’s cooling transition
with angular frequency ω0, FWHM linewidth �, and saturation
intensity I0. The k vector of the radiation is given by k =
(lx,ly,lz)k = (lx,ly,lz)ω0/c with the unit vector (lx,ly,lz).

Every scattering event of the radiation with the cooling ion
will on average change the momentum of the system by h̄k.
Due to the red detuning (
 < 0) of the cooling light, this is
more likely to happen when the cooling ion moves toward
the laser such that on average energy is removed from the
ion crystal. The average energy loss rate can be calculated by
averaging the momentum change over the periods of both
oscillatory modes in each direction. For sufficiently cold
ions (|lxkq̇1| � �) in the weak binding regime (� � ωi,o),
these can (exemplarily in the x direction) be shown to be
(see Appendix A)

dEi

dt

∣∣∣∣
cool

≈ h̄l2
xk

2 I

I0

2
/�

[1 + I/I0 + (2
/�)2]2
z2
i b

2
1ω

2
i , (21)

dEo

dt

∣∣∣∣
cool

≈ h̄l2
xk

2 I

I0

2
/�

[1 + I/I0 + (2
/�)2]2
z2
ob

2
2ω

2
o. (22)

The competing heating rate (considering the statistical dis-
tribution of the momentum changes due to both the absorption
and the spontaneous emission of the cooling photons) is given
by (see Appendix A)

dEi

dt

∣∣∣∣
heat

≈ h̄2
(
3l2

x + 1
)
k2 I

I0

�

12m1

b2
1

1 + I/I0 + (2
/�)2
,

(23)

dEo

dt

∣∣∣∣
heat

≈ h̄2
(
3l2

x + 1
)
k2 I

I0

�

12m1

b2
2

1 + I/I0 + (2
/�)2
.

(24)

The cooling rate is a function of the ion’s scattering rate and
proportional to the square of the k-vector component (l2

x) of
the cooling light along the considered mode direction, times
the square of the motional amplitude of the cooling ion for
that mode (z2

i b
2
1, z2

ob
2
2). In contrast, the heating rate has a

component from the isotropic photon emission in addition to
directed absorption from the cooling laser beam.

The steady state solution is obtained from a balance
between cooling and heating rates

dEi,o

dt

∣∣∣∣
heat

+ dEi,o

dt

∣∣∣∣
cool

= 0. (25)

FIG. 3. (Color online) Dependence of the cooling limits on the
angle of the cooling laser. k‖/ktotal denotes the component of the laser
radiation parallel to the investigated axis. The other two axes are
assumed to be cooled equally.

The resulting cooling limit can be expressed as

Elimit = h̄[4
2 + �2(1 + I/I0)]
(
1 + 3l2

x

)
48|
|l2

x

(26)

for both modes. The cooling limit is independent of the mode
eigenvectors b1,2 since the heating and cooling processes
act in the same way on the motion of the ion crystal. As
a consequence, modes with a small eigenvector component
experience cooling and heating rates that are reduced by the
same amount and will limit the time it takes to reach the steady-
state temperature (see Sec. IV). In the case of very low cooling
intensity (I/I0 → 0), optimum detuning (
 = −�/2), and a
laser that cools all directions symmetrically (lx = ly = lz =
1/

√
3), this results in the well known Doppler-cooling limit

ED = h̄�/2. (27)

Very low cooling intensity leads to the lowest theoretical
cooling limit at the expense of long cooling times since
the cooling rate gets very small. In practice, cooling intensities
close to the saturation intensity are typically used. A larger
cooling rate renders the system more robust if exposed to
additional external heating. The maximum cooling rate is
achieved at I = 2I0 and 
 = −�/2. However, this choice
of parameters increases the cooling limit by a factor of 2.

Aligning the cooling beam along the direction of a partic-
ular set of modes, cooling below the Doppler-cooling limit
given by Eq. (27) in this direction is possible. However, the
cooling limit in the other directions will be strongly increased
as can be seen in Fig. 3 and has been discussed in Ref. [52].
This is a direct consequence of the cooling rate of a specific
mode being dependent only on the k-vector projection along
this direction, whereas the heating rate has a contribution from
the isotropic spontaneous emission heating.

Precision spectroscopy and atomic frequency standards
based on trapped ions require small kinetic energies to achieve
small second-order Doppler shifts, which is particularly impor-
tant for light ions such as 27Al+. This shift is given by Ref. [53]


ν

ν
= −〈v2〉

2c2
, (28)
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where 〈v2〉 is the average value of the square of the ion’s
velocity and c is the speed of light. This relation allows a
direct mapping between cooling limits and corresponding
relativistic Doppler shifts. In the absence of external heating
rates, both ions will have the same energy given by Eq. (27)
and the second-order Doppler shift of the clock ion is


ν

ν
= − h̄�

4m2c2
. (29)

In the case of 27Al+ sympathetically cooled by 40Ca+, this
results in shifts of 9.2 × 10−19 for each of the three directions.
For the radial modes, this number has to be multiplied by a
factor of roughly 2 (see Appendix A) to account for the kinetic
energy in the intrinsic micromotion of the radial motion of the
clock ion which follows from generalization of the results of
Ref. [54]. The only influence the selected cooling ion species
has on this result is the linewidth of its cooling transition.
Furthermore, the mass ratio determines the time it takes to
reach steady state, but has no influence on the cooling limit.
This changes as soon as external heating rates are included in
the model.

B. Doppler cooling with external heating rates

External heating rates of cooled ion crystals are assumed
to be mostly due to stochastic electric field fluctuations
[41,43,55,56]. If the characteristic distance between the elec-
trodes and the ions is much larger than the distance between the
ions in the crystal, the electric field across the ion crystal can be
assumed constant and the heating rate due to field fluctuations
can be written as [36]

dEi

dt

∣∣∣∣
fluct

= q2SE

4m1

(
b1 + 1√

μ
b2

)2

, (30)

dEo

dt
afluct = q2SE

4m1

(
b2 − 1√

μ
b1

)2

. (31)

Here SE = SE(ω) denotes the electric field spectral density,
which is assumed to be spectrally constant for the relevant
ωi,o. The homogeneous field fluctuations will only couple to
center of mass motion and therefore much more strongly to the
in-phase mode than the out-of-phase mode. In fact for μ = 1 it
follows that b1 = b2 and the out-of-phase mode is not heated
at all. The total energy injected in one direction of motion is
obtained by adding the in-phase and out-of-phase heating rates,
which turns out to be proportional to m−1

1 + m−1
2 , showing the

advantage of heavy cooling and clock ions.
The cooling limit in the presence of external heating is

obtained by including the heating rates Eqs. (30) and (31) in
the steady state condition Eq. (25). The steady state energy
limit for the in-phase mode (substitute b1 by b2 and b2 by −b1

for the out-of-phase-mode) is given by

Elimit,i = �(1 + (2
/�)2 + I/I0)2

48|
|h̄I/I0l2
xk

2

[
�h̄2I/I0

(
3l2

x + 1
)
k2

1 + (2
/�)2 + I/I0

+ 3

b2
1

(
b1 + 1√

μ
b2

)2

q2SE

]
. (32)

The additional heating modifies the steady state solution for
Doppler cooling Eq. (26) by breaking the symmetry between
cooling and heating processes: The photon-induced heating
and cooling rates have the same dependence on the mode
amplitudes, resulting in a Doppler limit independent of this
parameter. The external heating rate has no cooling component
and a more complex dependence on the mode amplitudes,
resulting in a cooling limit that is a sensitive function of the
modal amplitudes and therefore the ε and μ parameters. As
a result, modes where the cooling ion has a large relative
amplitude are cooled more efficiently than modes where it has
a small amplitude.

The two terms in the square bracket in Eq. (32) give
the contribution of the photon and the external heating rate
to the total heating rate, respectively. It is instructive to
investigate the two extreme cases, in which either one of
the contributions dominate. Defining an electric field spectral
density SE0 = �h̄2k2/12q2 [57] for which the two heating
rates in a symmetric (μ = 1) ion crystal and symmetric
cooling in all three directions (lx = 1/

√
3) equal dEi

dt
|fluct =

dEi

dt
|heat(
 = −�/2,I = 2I0), the two cases are
(1) SE � SE0: In this case the photon heating rate at the

point of maximum cooling is much larger than the external
heating and the latter can therefore be neglected. By choosing
the intensity 0 < I/I0 < 2 optimally, the cooling limit of
Eq. (26) is recovered:

h̄�/2 < Elimit < h̄� (33)

(2) SE � SE0: In this regime the photon heating rate
can be neglected and the cooling limit will proportionally
depend upon the electric field spectral density and the mode
amplitudes. Here the optimum intensity is that of maximum
cooling rates (I = 2I0).

Elimit,i =
q2SE

(
b1+ 1√

μ
b2

)2
�[1 + (2
/�)2+I/I0]2

16b2
1|
|h̄l2

xk
2I

/
I0

, (34)

Elimit,o =
q2SE

(
b2− 1√

μ
b1

)2
�[1 + (2
/�)2+I/I0]2

16b2
2|
|h̄l2

xk
2I

/
I0

. (35)

In both regimes the best cooling performance is always
achieved at a detuning of 
 = −�/2. In the remainder of this
paper we will look at external heating rates of up to SE =
0.2SE0 that are typical for macroscopic ion traps.

For the evaluation of the second-order Doppler shift due to
motion along one spatial direction, it is not the total kinetic
energy in a certain mode that is of interest, but rather the
total kinetic energy in the secular motion of the clock or
spectroscopy ion. This energy is given by the sum of the
energies in both modes along that spatial axis, weighed by
the relative fraction of clock ion energy to the total energy in
the respective mode:

Ec = (
b2

2Ei + b2
1Eo

)
. (36)

Figure 4 shows a plot of Ec as a function of the mass ratio
μ for axial motion. The y axis is normalized to the energy
of the clock ion at the Doppler-cooling limit without external
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FIG. 4. (Color online) Normalized axial clock ion energy plotted
against the mass ratio μ of the ion crystal. The energy Ec of the clock
ion is the sum of the clock ion energy in both modes. The calculations
were performed for varying electric field spectral densities SE . The
cooling laser intensity I/I0 has been optimized for each value of SE .
The dashed lines show different logic ion species for an Al+ clock.

heating and the electric field spectral densities SE are given
as multiples of SE0. In this figure, the intensity was optimized
for each data point to achieve the lowest energy in the clock
ion. The minimal clock ion energy for different electric field
heating rates is always achieved at a mass ratio of μ = 8/11.
This plot is independent of � and the actual values of m1,m2.

However, the normalization factor and therefore the absolute
value for the cooling limit depends on the linewidth of the
cooling ion. This doubles all cooling limits for Mg+ with
respect to all other ions, owing to its twice as large cooling
transition linewidth compared to the other ions. The figure
shows that the axial clock ion kinetic energy is only a weak
function of the mass ratio. This is a direct consequence of
the weak dependence of the axial mode amplitudes on this
parameter, as shown in Fig. 2.

Figure 5 shows the normalized clock ion energies in one
of the radial directions for varying mass ratios and different
ε parameters, assuming a radially symmetric trap (α = 1/2).
The stated ε is always that of a single clock ion in the trap.
The shaded regions in the graphs show the areas in which the
crystal is not stable (see Sec. III) and hence can be ignored.
The graphs show that mass ratios slightly larger than 1 always
result in the lowest possible clock ion kinetic energy. For a
given mass ratio, the energy of the clock ion in the presence
of external heating is lowest when operating the trap close to
instability of the linear axial configuration. The reason for this
is that the larger the radial confinement, the more the modal
amplitude in the radial modes tend toward b1 ≈ 1, b2 ≈ 0
or vice versa [see Eq. (17) and Fig. 2]. In that case, the mode
with negligible motion of the cooling ion will cool very poorly,
leading to an elevated steady state temperature in the presence
of external fields. In this regime, the comparison of Figs. 4 and
5 (the y axes are normalized to the same energies) shows that

FIG. 5. (Color online) Normalized radial clock ion energy plotted against the mass ratio μ of the ion crystal for radial modes. The energy
Ec of the clock ion is the sum of the clock ion energy in both radial modes. The shaded region indicates parameters for which the ion crystal is
no longer linear in axial direction. The cooling laser intensity I/I0 has been optimized for each value of SE .
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FIG. 6. (Color online) Total clock ion energy (secular energy +
micromotion energy) of a clock ion in a Doppler-cooled crystal along
one radial direction. Here the mass ratio μ and the ε parameters were
varied and the energy was normalized to the Doppler-cooling energy
ED. The absence of external heating was assumed. Due to large
micromotion contributions, the total energy diverges at the points
where the crystal becomes instable.

the heating-induced radial clock ion energy is larger than the
axial clock ion energy and will therefore dominate the clock
frequency shifts.

Choosing an ε parameter close to the instability regime
improves the cooling limits, but at the same time increases
the intrinsic micromotion amplitude of the radial modes (see
Appendix B). Figure 6 shows the normalized total kinetic
energy (equal to the sum of secular and micromotion kinetic
energy) of the clock ion in an ion crystal that has been cooled
to the Doppler cooling limit (i.e., without external heating)
plotted against the crystal mass ratio.

Since the micromotion kinetic energy contributes to the
second-order Doppler shift in the same way the secular energy
does, it is not advisable to perform spectroscopy in a trap oper-
ating close to the unstable regime. The operation in a trap with
very strong radial confinement is equally bad because of the
inefficient cooling of the weakly damped radial mode. For best

cooling performance it is therefore advisable to optimize the
ε parameter according to the observed heating rate in the trap.

A comparison of the total second-order Doppler shift
(including the scaling factors due to micromotion for the
radial modes) in a linear ion trap for Al+-X+-ion crystals
with different possible cooling ions X+ is shown in Fig. 7.
The y axis gives the normalized electric field spectral density
SE/SE0,Ca [57]. A value of SE/SE0 = 0.02 corresponds to a
radial heating rate of a single Ca+ ion in a trap with radial trap
frequencies of 2.5 MHz of roughly 1500 quanta per second and
can be regarded as an upper limit for most ion traps used for
spectroscopy. The ε2 value as well as the Doppler laser detun-
ing 
 and intensity I/I0 were optimized for each value of SE .

The graph shows that an Al+-Mg+ crystal suffers the least
from external heating since its mass ratio is very close to 1.
However, for traps with fairly low heating rates, the Doppler
shift in Al+-Ca+ and Al+-Be+ traps will be lower than that of
Mg+ systems because the linewidth of the cooling transition
of Mg+ ions is approximately a factor of 2 larger than that of
Ca+ and Be+ ions. The two other species Yb+ and Sr+ suffer
from their small mass ratios and require traps with very small
heating rates to reach comparable performance.

At this point it should be noted that not the absolute value
of the Doppler shift, but rather its uncertainty, is relevant for
the clock performance. However, since this uncertainty can be
assumed to scale with the absolute shift, a reduction of the
latter will result in a reduction of the former and therefore lead
to better clock performance. If Doppler cooling is turned off
during spectroscopy, careful modeling or measurement of the
heating process is required to establish the uncertainty.

IV. COOLING TIMES

An atomic clock will reach its maximum performance in
terms of stability if the clock transition is probed without
any dead time between consecutive readings [58–60]. One
contribution to the dead time is the time it takes to cool the ion
crystal in case a collision with a hot background gas particle
occurred. The large energy transfer to the ion crystal leads
to typical temperatures on the order of room temperature,

-

-

z

FIG. 7. (Color online) Comparison of secular motion-induced second-order Doppler shifts for Al+-X+ crystals with different cooling ions
X+ = {Be+, Mg+, Ca+, Sr+, Yb+} in the presence of external heating with an electric field spectral density of SE . The right figure shows
the parameters ε and I/I0 for best cooling performance for an Al+-Ca+ crystal. Those optimum parmaters for a spectral energy density of
S = 0.005SE0 are given by 2.63,0.40, 3.17,0.05, 1.12,0.87, and 1.04,1.61 for the Be, Mg, Sr, and Yb crystals, respectively.
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resulting in the decrystallization of the ion crystal. As a
consequence, it is necessary to take the nonlinear contributions
of the Coulomb forces into account to evaluate the cooling
dynamics at these high temperatures. The nonlinearities are
usually neglected in the small oscillation approximation used
to describe the low-temperature dynamics of the system that we
have used in the previous sections. The dynamics of small ion
crystals during laser cooling in various temperature regimes
have first been studied in the context of phase transitions and
chaos theory [61,62].

Here we numerically solved the equations of motion
resulting from the complete ponderomotive two ion potential

V (x1,y1,z1,x2,y2,z2)

= 1

2
m1

(
ω2

x1x
2
1 + ω2

y1y
2
1 + ω2

z1z
2
1

)
+ 1

2
m2

(
ω2

x2x
2
2 + ω2

y2y
2
2 + ω2

z2z
2
2

)
+ e2

4πε0

1√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

, (37)

where ωkj is the trap frequency of ion j in direction k ∈ x,y,z.
and kj are the position coordinates. For the simulations,
the rf potential was neglected. However, we expect only
minor modifications to the results presented here when
micromotion is included in the treatment [63]. We used
an adaptive Runge-Kutta method where the step size was
reduced significantly every time the ions got close enough to
explore the high nonlinearities of the 1/r-Coulomb potential.
Cooling was incorporated into the calculation by multiplying
the instantaneous scattering rate R at every time step with the
instantaneous step size dt at the same step and comparing the
resulting value with a random number Nrandom(0,1) between
0 and 1 from a pseudo-random-number generator [64]. A

scattering event that changed the velocity v1 of the cooling ion
according to the momentum change due to both absorption
and spontaneous emission was therefore calculated whenever
the condition

R dt = �

2

I/I0

1 + I/I0 + [2(
 − k · v1)/�]2
dt < Nrandom(0,1)

(38)

was fulfilled.
With a small enough step size the simulation turned out to

be very robust and reproduced two-ion cooling limits as well
as theoretical curves for the cooling duration of single ions
(e.g., [65]).

A typical collision event with the background gas will be an
elastic collision of a hydrogen molecule with either one of the
two cold ions in the crystal. The maximum energy that can be
transmitted in an elastic collision of two particles with masses
m1,m2 if one of them initially at rest is given by 4m1m2

(m1+m2)2 times
the kinetic energy of the hot particle. In case of the collision
of a cold aluminum ion and a hydrogen molecule at 300 K this
means that a maximum energy of ≈0.26 × 3/2kB × 300 K
can be transferred to the aluminum ion. Here kB denotes the
Boltzmann constant. This corresponds to a temperature of the
ion crystal of ≈19.3 K. Cooling an ion crystal from these
high temperatures is aided by adding a far detuned laser beam
additionally to the standard cooling beam at 
 = −�/2. This
enhances the scattering rate of the rapidly moving cooling ion
with large Doppler detuning. The optimum detuning of the
second laser was found by simulating the cooling time for an
Al-Ca-ion pair starting at a temperature of 19.3 K as a function
of the detuning. The results are shown in Fig. 8.

Both lasers were assumed to be directed onto the ion from
the (1,1,1) direction and both had one saturation intensity

-

FIG. 8. (Color online) Time needed to cool an Al+-Ca+-ion pair from 19.3 K to 1000 Doppler limits (∼800 mK). The x axis shows the
detuning of a second laser at saturation intensity that is cooling the ion crystal in addition to the standard −�/2-detuned beam.
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FIG. 9. (Color online) Cooling evolution of an Al+-Ca+-ion pair after a collision event with an H2 molecule (blue line). The red line shows
the cooling evolution of a single Ca+ ion in the same trap with the same initial energy. The horizontal dotted lines denote the Doppler-cooling
limit and the inset shows the energies of the calcium and aluminum ion before and after crystallization occurred at around 7 ms.

at the position of the ion. To compare the performance of
the different detunings, the time to reach a crystal energy
of 1000 Doppler cooling limits was simulated. This energy
roughly corresponds to the energy at which the ions crystallize.
Fastest cooling was achieved at a detuning of ∼−100 MHz.
This optimum detuning of the second laser beam proved to
be very robust against changes in the cooling parameters,
such as a change in linewidth of the cooling transition, the
intensity of the cooling laser, or the mass of the cooling ion.
Since these changes mostly affect the scattering rate, the times
needed to cool vary strongly. The general characteristics of
the curve with the minimum close to −100 MHz, however,
stays the same. This can be explained by the fact that in a
well-thermalized regime the cooling ion will carry half the
crystal energy and the optimal detuning should only depend
on the average cooling ion velocity in the direction of the
incoming laser. This is independent of the transition linewidth
or the intensity of the cooling light. The change of mass of
the cooling ion to smaller values shifts the optimal detuning to
slightly higher values. This is because a lighter cooling ion has
higher average velocities if it has the same energy as a heavier
ion.

The difference in cooling dynamics between a two- and a
single-ion system is shown in Fig. 9. Besides the Al+-Ca+
pair, the results for a single Ca+ ion in the trap with the second
laser detuned by 140 MHz is shown. This slightly higher
optimum detuning arises since a single ion will on average
have higher velocities than the cooling ion in a two-ion system
since the latter can exchange energy with the clock ion. For
the simulation, the starting energy of the single Ca+ ion was
set to the same value as that of the two-ion pair, although
a collision with a hydrogen molecule would lead to a lower
initial temperature.

At the beginning of the cooling process (the first 7 ms), the
cooling rates for the Al+-Ca+ crystal and for the single Ca+ ion
match extraordinarily well. This is because both ions are still

fairly hot and collide regularly. This results in almost instant
thermalization of all motional modes. At around 7 ms the ion
pair crystallizes, meaning that the ions freeze-out around their
equilibrium positions and collisions cease to occur. This leads
to heavily reduced cooling rates of the ion crystal owing to the
weakly damped modes which are no longer thermalized with
the well cooled modes. This transition between collisionally
coupled and isolated motional modes manifests itself in the
emerging difference between the energies of the aluminum
and calcium ions (see inset of Fig. 9). For a theoretical
description of the crystallization see for example [62] for a
measurement of the damping of the weakly cooled modes see
the supplementary material of Ref. [16].

Summarizing the simulation results of Figs. 8 and 9, an
optimum cooling strategy after a background gas collision can
be derived: The fastest cooling is achieved by ramping the laser
detuning according to the actual energy of the ion crystal, such
that maximal scattering rates are maintained. Additionally, the
intensity of the cooling laser should be large to increase the
rates even further. Once crystallization occurs, the laser should
be ramped to a detuning and an intensity for which the lowest
energies are achieved (typically 
 ≈ �/2, I ∼ I0).

In our simulations the time needed to cool an Al+-Ca+
crystal to two Doppler-cooling limits is roughly 90 ms (which
corresponds well to previous studies [66,67]), while the time
it takes to reach crystallization is only 7 ms. The total cooling
time might be reduced to roughly the crystallization time
by coupling the well-damped to the poorly damped modes
by a static radial electric field as has been demonstrated in
Ref. [16]. Given typical cycle times of 230 ms in optical
clocks [17], even Doppler cooling times as long as 100 ms
will not compromise the stability of the clock significantly,
provided a suitable vacuum environment under which the
time between collisions is longer than 100 s. It is, however,
necessary that the collision events are detected and actions are
taken to ensure fast recrystallization.
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V. SUMMARY

In this paper we examined the steady state sympathetic
cooling limits with and without external heating of different
two-ion two-species ion crystals with an emphasis on second-
order Doppler shifts that pose a limit to precision spectroscopy.
We find that in the absence of external heating the Doppler-
cooling limit can be reached in all six normal modes of the ion
crystal, independent of the mass ratio between the two ions.
However, with additional external heating, the cooling limit
becomes a sensitive function of the normal mode amplitudes.
The modes where the cooling ion has a large amplitude are
cooled most efficiently and reach a low cooling temperature.
We find that operating the trap close to instability with respect
to a flip of the linear-axial to the linear-radial orientation
enhances the amplitudes of the critical radial modes. This
effect has to be balanced with the increased micromotion in
this regime. Specifically, we find that three logic ion species
candidates, 25Mg+, 9Be+, and 40Ca+, are most suitable as
sympathetic cooling ions for an aluminum ion clock, even in
the presence of moderate external heating rates. The former is
a good choice because its mass ratio relative to aluminum is
close to one which means that no poorly damped modes exist
that would make the crystal vulnerable to high external heating
rates. The latter two have a cooling transition with a smaller
linewidth than the 25Mg+ transition resulting in lower Doppler
limits and therefore lower second-order Doppler shifts. For
traps with very low heating rates, even heavier sympathetic
cooling ions, such as 88Sr+ will perform well. Furthermore, we
investigated the cooling time of the 40Ca+-27Al+ unequal mass
ion crystal after a collision with background gas. Monte Carlo
cooling simulations taking into account the ponderomotive
trap potentials and the Coulomb potentials revealed cooling
times of roughly 100 ms, which would not pose a limitation for
the clock stability. However, these events should be detected
immediately and counteracted by applying a second (further
detuned) laser beam for rapid recrystallization. We therefore
believe that an 40Ca+-27Al+ quantum logic clock will lead to a
similar clock performance as 25Mg+-27Al+ clocks and might
even outperform them in terms of second-order Doppler shifts
for ion traps with low heating rates. Furthermore, the presented
results are relevant for high precision spectroscopy of other
sympathetically cooled ion species, such as highly charged or
molecular ions.
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APPENDIX A: DERIVATION OF THE COOLING
AND HEATING RATES

The cooling rate of a two-ion crystal mode can be calculated
by determining the energy change in this mode for every

scattering event. According to Eq. (19) the energy change in
an in-phase mode (analogously for out-of-phase modes) with
modal amplitudes zi before and z′

i after the absorption of a
cooling photon is given by


Ei = 1
2m1ω

2
i

(
z′2
i − z2

i

)
. (A1)

z′
i can be calculated by expressing the modal amplitude zi as a

function of the positions q1,q2 and velocities v1 = q̇1,v2 = q̇2

along the axis of the relevant modes of the two ions before the
absorption

zi =
√

(
√

μb2v2 + b1v1)2 + ω2
i (

√
μb2z2 + b1z1)2

ω2
i

(A2)

and then adding the velocity change dv = lxh̄k/m1 (exemplar-
ily for the x direction) to the cooling ion velocity

z′
i =

√
[
√

μb2v2 + b1(v1 + dv)]2 + ω2
i (

√
μb2z2 + b1z1)2

ω2
i

.

(A3)

Substituting these equations into Eq. (A1) 
Ei gives


Ei = 1
2m1b

2
1dv2 + m1b1dv(b1v1 + √

μb2v2) (A4)

= 1
2m1b

2
1dv2 + m1b1dvωizi cos (ωit + φi). (A5)

The first term of this equation is a constant heating that is
taken care of in the heating rate. The second term corresponds
to mode cooling if cos (ωit + φi) is negative and heating if it is
positive. The rate R at which scattering events occur is given
by Eq. (38). The cooling rate is computed by averaging the
product R × (
Ei − 1

2m1b
2
1dv2) over the oscillation periods

of all six crystal modes

dEi

dt

∣∣∣∣
Cooling

= 1

(2π )6

∫∫∫∫∫∫ 2π

0
R

(

Ei − 1

2
m1b

2
1dv2

)
d3φi d

3φo.

(A6)

The integration over all six modes is necessary because the
scattering rate depends on the product k · v1 and therefore
on the cooling ion velocity in all three spatial dimensions.
This integral cannot be solved in general but for cold crystals,
where |kv1| � � in all three dimensions, the integrand can be
expanded and higher order terms in kv1/� can be neglected,
leading to Eq. (21).

The heating rate computes similarly by averaging the
product R × 1

2m1b
2
1dv2 over the six modes which leads in

first order to a velocity independent term

h̄23l2
xk

2 I

I0

�

12m1

b2
1

1 + I/I0 + (2
/�)2
. (A7)

To this heating due to the absorption of the photons one has to
add a contribution of the spontaneous emission. This is exactly
as large as the absorption effect but does not depend on the
direction of the cooling laser. Assuming an isotropic emission
it is given by

h̄2k2 I

I0

�

12m1

b2
1

1 + I/I0 + (2
/�)2
(A8)
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so that the sum of Eqs. (A7) and (A8) gives the total heating
rate as in Eq. (23).

APPENDIX B: DOPPLER-SHIFT CONTRIBUTION
OF INTRINSIC MICROMOTION

To calculate the amplitude of the micromotion in the radial
modes of the two-ion crystal, we generalize the derivation for
single ions given in Ref. [54]. The force on a single ion in radial
direction (we exemplarily us the x direction in the following)
is given by

Fx = −∂xe�(x,y,z,t) = 2xα
eU0

d2
− x

eV0

R2
cos �tt, (B1)

where �(x,y,z,t) from Eq. (1) was used. In two-ion crystals
an additional force arises due to the Coulomb potential UC

between the two ions

UC(x1,x2,y1,y2,z1,z2)

= e2

4πε0

1√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

. (B2)

The Coulomb force in x direction is given by

FC,x = −∂xUC(x1,x2,y1,y2,z1,z2)

= e2

4πε0

1√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

3

× (x1 − x2). (B3)

We now assume that the ion crystal is cold enough so that
the ions oscillate with small amplitudes around their equi-
librium positions x(0)

1 = (0,0,z0), x(0)
2 = (0,0,−z0), where

z0 = ( ed2

32U0πε0
)1/3 (see for example [35]). Linearizing of

Eq. (B3) in (x1 − x2) around x(0)
1 ,x(0)

2 gives

FC,x ≈ e2

4πε0

1√
(2z0)2

3 (x1 − x2) = eU0

d2
(x1 − x2). (B4)

If we now consider only a single mode (i.e., the in-phase or the
out-of-phase mode), we can write the x motion of the second

ion as a constant factor β times the motion of the first ion

x2 = βx1, (B5)

where β = b2/(
√

μb1) for in-phase and β = −b1/(
√

μb2) for
out-of-phase modes as follows from Eqs. (10) and (11).

Replacing x2 in Eq. (B4) and adding the Coulomb force to
the force due to trap potentials, the total force Gx on the ion is
given by

Gx = Fx+FC,x

= x1
eU0

d2
(2α+1 − β)−x1

eV0

R2
cos �tt. (B6)

Introducing the ax = − 8αeU0

m1d2�2
T

and qx = 2eV0
m1R2�2 as in Ref. [54],

the equation of motion for x1 can be given in typical Mathieu
form

ẍ1 +
[
ax

(
1 + 1 − β

2α

)
+ 2qx cos(�T t)

]
�2

T

4
x1 = 0. (B7)

Compared to the equation of motion for a single ion {ẍ1 +
[ax + 2qx cos(�T t)]�2

T

4 x1 = 0}, the only difference is that the
ax is varied by a factor [1 + (1 − β)/(2α)] in the case of a
two-ion crystal mode. Accordingly the first order solution [68]
{valid for qx � 1, ax[1 + (1 − β)/(2α)] � 1} of the single-
ion equation is still valid, if that factor is included:

x1(t) ≈ xib1 sin ωx,i t + φx,i

[
1 + qx

2
cos(�T t)

]
. (B8)

In this equation the amplitude xib1 of the oscillation was
already chosen to comply with Eq. (10). ωx,i denotes the
in-phase mode frequency and is given by

ωx,i = 1
2�T

√
ax[1 + (1 − β)/(2α)] + 1

2q2
x . (B9)

FIG. 10. (Color online) Relative micromotion energy of the clock ion in the in-phase and out-of-phase radial modes. The energy is
normalized to the secular energy of the clock ion in the respective mode. In this graph the absence of external heating was assumed. The dashed
lines denote the asymptotic behavior for very large radial confinement (ε → ∞).
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The average squared velocity of this motion is given by

〈
ẋ2

1

〉 = 1

2
(xib1)2

(
ω2

x,i + 1

8
q2

x�
2

)

= 1

2
(xib1)2ω2

x,i

(
1 + q2

x

q2
x + 2ax

(
1 + 1−β

2α

)
)

= 1

2
(xib1)2ω2

x,i

(
1+ 2ε2

2ε2−2α−(1−β)

)
, (B10)

where in the last step the qx and ax were substituted by the ε2 =
−αq2

x

2ax
factor that is used throughout this paper. Equation (B10)

shows that for the radial modes the average squared velocity
is not just given by the secular motion but that a micromotion
term of the same order of magnitude has to be considered as
well. For strong radial confinement ε2 � 1, the micromotion
contribution approximately equals the contribution from the
secular motion. However, for weak confinement, it can become
much larger.

Figure 10 shows a plot of the relative kinetic energy of the
micromotion of the clock ion compared to its secular energy

for one pair of radial modes and for different ε-parameters
(again the stated ε is that of a single clock ion) in the absence
of external heating. The graph shows that the out-of-phase
fractional micromotion energy contribution can get very large,
when the trap is operated close to the instability limit.

The micromotion contribution factor for the second ion
(which is in this paper the clock ion and therefore the
interesting one), can be calculated identically but the ε2 =√

m1/m2ε and β2 = 1/β parameters for the second ion have
to be used. Expressed in terms of the ε and b1,b2 parameters,
the average squared velocity of the clock ion is therefore given
by〈
ẋ2

2,i

〉 = 1

2μ
(xib2)2ω2

x,i

(
1 + 2ε2/μ

2ε2/μ− 2α − (1 − √
μb1/b2)

)
,

(B11)

〈
ẋ2

2,o

〉 = 1

2μ
(xob1)2ω2

x,o

(
1 + 2ε2/μ

2ε2/μ− 2α − (1 + √
μb2/b1)

)
(B12)

for the in-phase and out-of-phase mode, respectively.
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Phys. Rev. A 68, 042302 (2003).

[32] D. J. Heinzen and D. J. Wineland, Phys. Rev. A 42, 2977 (1990).
[33] T. Hasegawa, Phys. Rev. A 83, 053407 (2011).

043412-12

http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1103/PhysRevA.79.050305
http://dx.doi.org/10.1103/PhysRevA.79.050305
http://dx.doi.org/10.1126/science.1177077
http://dx.doi.org/10.1039/b813408c
http://dx.doi.org/10.1063/1.3505142
http://dx.doi.org/10.1103/PhysRevLett.100.243003
http://dx.doi.org/10.1103/PhysRevLett.100.243003
http://dx.doi.org/10.1103/PhysRevA.53.122
http://dx.doi.org/10.1103/PhysRevLett.94.053001
http://dx.doi.org/10.1103/PhysRevLett.94.053001
http://dx.doi.org/10.1103/PhysRevLett.98.220801
http://dx.doi.org/10.1103/PhysRevLett.98.220801
http://dx.doi.org/10.1103/PhysRevA.62.011401
http://dx.doi.org/10.1103/PhysRevLett.95.183002
http://dx.doi.org/10.1103/PhysRevLett.95.183002
http://dx.doi.org/10.1088/0953-4075/39/19/S30
http://dx.doi.org/10.1103/PhysRevA.74.040501
http://dx.doi.org/10.1103/PhysRevA.74.040501
http://dx.doi.org/10.1126/science.1114375
http://dx.doi.org/10.1126/science.1154622
http://dx.doi.org/10.1103/PhysRevLett.104.070802
http://dx.doi.org/10.1103/PhysRevA.71.032505
http://dx.doi.org/10.1088/0953-4075/44/2/025402
http://dx.doi.org/10.1088/0953-4075/44/2/025402
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.1103/PhysRevLett.86.636
http://dx.doi.org/10.1103/PhysRevLett.98.180801
http://dx.doi.org/10.1140/epjd/e2007-00162-1
http://dx.doi.org/10.1103/PhysRevLett.40.1639
http://dx.doi.org/10.1103/PhysRevLett.40.1639
http://dx.doi.org/10.1007/BF00901058
http://dx.doi.org/10.1007/BF00901058
http://dx.doi.org/10.1103/PhysRevLett.57.70
http://dx.doi.org/10.1103/PhysRevLett.82.2071
http://dx.doi.org/10.1088/1464-4266/3/1/357
http://dx.doi.org/10.1088/1464-4266/3/1/357
http://dx.doi.org/10.1103/PhysRevA.65.040304
http://dx.doi.org/10.1103/PhysRevA.68.042302
http://dx.doi.org/10.1103/PhysRevA.42.2977
http://dx.doi.org/10.1103/PhysRevA.83.053407


SYMPATHETIC COOLING OF MIXED-SPECIES TWO-ION . . . PHYSICAL REVIEW A 85, 043412 (2012)

[34] V. A. Alekseev, D. D. Krylova, and V. S. Letokhov, Phys. Scr.
51, 368 (1995).

[35] D. F. V. James, Appl. Phys. B 66, 181 (1998).
[36] D. Kielpinski, B. E. King, C. J. Myatt, C. A. Sackett, Q. A.

Turchette, W. M. Itano, C. Monroe, D. J. Wineland, and W. H.
Zurek, Phys. Rev. A 61, 032310 (2000).

[37] G. Morigi and H. Walther, Eur. Phys. J. D 13, 261 (2001).
[38] T. Hasegawa and T. Shimizu, Phys. Rev. A 67, 013408 (2003).
[39] T. Rosenband, D. B. Hume, L. Lorini, P. O. Schmidt, T.

M. Fortier, S. A. Diddams, N. R. Newbury, W. C. Swann,
W. H. Oskay, W. M. Itano et al., in Proceedings of the XVIII
International Conference: ICOLS 2007: Telluride, Colorado,
USA, 24–29 June 2007, p. 297.

[40] D. Leibrandt, B. Yurke, and R. Slusher, Quantum Inf. Comput.
7, 52 (2007).

[41] A. Safavi-Naini, P. Rabl, P. F. Weck, and H. R. Sadeghpour,
Phys. Rev. A 84, 023412 (2011).

[42] P. Ghosh, Ion Traps (Clarendon, Oxford, 1995).
[43] D. J. Wineland, C. Monroe, W. M. Itano, B. E. King,

D. Leibfried, D. M. Meekhof, C. Myatt, and C. Wood, Fortschr.
Phys. 46, 363 (1998).

[44] M. Raizen, J. Gilligan, J. Bergquist, W. Itano, and D. Wineland,
J. Mod. Opt. 39, 233 (1992).

[45] W. Paul, Rev. Mod. Phys. 62, 531 (1990).
[46] X. R. Nie, C. F. Roos, and D. F. James, Phys. Lett. A 373, 422

(2009).
[47] R. Rafac, J. P. Schiffer, J. S. Hangst, D. H. Dubin, and D. J.

Wales, Proc. Natl. Acad. Sci. 88, 483 (1991).
[48] J. P. Schiffer, Phys. Rev. Lett. 70, 818 (1993).
[49] P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N.

Watts, and C. I. Westbrook, J. Opt. Soc. Am. B 6, 2084 (1989).
[50] D. J. Wineland and W. M. Itano, Phys. Rev. A 20, 1521 (1979).
[51] T. Haensch and A. Schawlow, Opt. Commun. 13, 68 (1975).
[52] J. Javanainen, Appl. Phys. 23, 175 (1980).

[53] F. Riehle, in Atomic and Molecular Frequency References
(Wiley-VCH, Berlin, 2005), pp. 117–165.

[54] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and
D. J. Wineland, J. Appl. Phys. 83, 5025 (1998).

[55] Q. A. Turchette, Kielpinski, B. E. King, D. Leibfried, D. M.
Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood,
W. M. Itano et al., Phys. Rev. A 61, 063418 (2000).

[56] L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger,
J. Sterk, and C. Monroe, Phys. Rev. Lett. 97, 103007 (2006).

[57] SE0,Ca ≈ 1.26 × 10−9 V2/m2Hz for Ca+ ions with � ≈ 140 ×
106 s−1 and k ≈ 2π

397 nm .
[58] G. J. Dick, in Proc. 19th Annual Precise Time and Time Interval

(PTTI) Application and Planning Meeting (1988), p. 133.
[59] G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. Dick, and

A. Clairon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45,
887 (1998).

[60] E. Peik, T. Schneider, and C. Tamm, J. Phys. B 39, 145 (2006).
[61] R. Blümel, J. M. Chen, E. Peik, W. Quint, W. Schleich, Y. R.

Shen, and H. Walther, Nature (London) 334, 309 (1988).
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