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Resonances in photoionization: Cross sections for vibrationally excited H2
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Multichannel quantum defect theory is used to calculate photoionization cross sections for vibrationally excited
diatomic hydrogen. The calculations are based on the state-of-the-art clamped-nuclei potential energy curves and
electronic dipole transition moments of Wolniewicz. The calculations indicate that, in contrast to what had been
assumed previously, autoionization resonances dominate the cross section.

DOI: 10.1103/PhysRevA.85.043411 PACS number(s): 33.80.Eh, 33.20.Wr, 33.50.Dq, 33.80.Gj

I. INTRODUCTION

Diatomic molecular hydrogen is the most abundant
molecule in interstellar molecular clouds [1]. The modeling [2]
of these environments relies on accurate cross sections for
the various relevant processes. Among them, photoionization
plays a major role in the kinetics and in the energy exchanges
involving H2. The recent discovery of vibrationally excited
molecular hydrogen in extragalactic environments [3] and
toward HD37903 [4,5] suggests that photoionization of molec-
ular hydrogen arising from vibrationally excited levels by
photons of 13.6 eV or less is possible and should be introduced
in the modeling of interstellar photon dominated regions.

The only comprehensive experimental and theoretical
results concerning bound-bound radiative processes in H2

are currently available in the MOLAT database [6], where
the relevant R, Q, and P transition energies involving
vibrationally excited levels are listed. Abgrall et al. [7–10]
provided theoretical spontaneous emission probabilities for
these transitions. The MOLAT database is limited to excited
electronic states with n � 3 (B, C, B ′, and D states),
which are the only ones accessible below the Lyman cutoff
when excitation from the vibrational ground level of H2 is
considered. However, excitation, for instance, from v′′ = 4
with radiation λ � 91 nm populates the full Rydberg manifold
of H2 and leads to photoionization as well.

Only a limited amount of theoretical work on photoion-
ization from vibrationally excited molecular hydrogen has
been carried out. In 1975 Ford, Docken, and Dalgarno [11,12]
published photoionization cross sections based on a correlated
initial-state electronic wave function, while employing simple
one-center hydrogen atom Coulomb functions for the con-
tinuum final state. In 1977 Flannery, Tai, and Albritton [13]
published extensive tables of vibrationally resolved photoion-
ization cross sections in which the initial state was described
in a more primitive manner than in Ref. [11], but where a more
realistic two-center representation was used for the continuum
wave function of the final state. A more elaborate calculation
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was published in 1978 by ONeil and Reinhardt [14] who used
correlated wave functions for both the initial and the final state.
In all these calculations bound-to-continuum electronic dipole
transition moments were employed, evaluated as functions of
the internuclear distance. The calculations of Refs. [11–14] all
predict the background photoionization cross section (direct
ionization), but none of them takes account of resonant
(autoionizing) structures. These early results are still used by
the astrophysical community when photoionization needs to be
included in the kinetic models. This is the case, for instance, in
the very recent paper by Coppola et al. [15] on the vibrationally
resolved kinetics for molecular hydrogen and its cation in the
primordial universe chemistry.

In the present paper we address the topic of calculating
photoionization cross sections for excitation from excited
vibrational levels of the ground state. Our calculations are
based on multichannel quantum defect theory (MQDT) which
allows us to take account of the full manifold of Rydberg states
and their interactions with the electronic continuum. We show
that the photoionization cross section is actually dominated
by resonance effects, in the sense that autoionizing resonances
produce a major fraction of the averaged cross section. We
exemplify this here by focusing on the particular case of the
Q(1) transitions (�N = 0, N total molecular angular momen-
tum exclusive of spins) originating from the v′′ = 1,N ′′ = 1
ground-state level. The main conclusions, however, which we
reach here, remain valid also for excitation from other v′′,N ′′
initial levels. Indeed, the theoretical photoabsorption and pho-
toionization spectra displayed in Fig. 1 below for v′′ = 1 and
5 demonstrate the generic character of those plots, in that for
v′′ �= 1 the same spectral structures occur, albeit with different
intensities and a shifted abscissa scale. Analogous results
dealing with the P and R optical dipole transitions (�N = −1
and +1, respectively) will be published subsequently, and
a detailed compilation of the transition energies, Einstein
A coefficients as well as photoionization cross sections for
various v′′,N ′′ values will also be published later [16].

II. THEORETICAL APPROACH

A. Background

Absorption transitions to the 3pπD 1�u state of the H2

molecule have recently been reinvestigated with different tech-
niques on two synchrotron installations. Absolute absorption
cross sections have been obtained with the 10-m normal
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FIG. 1. (Color online) Upper frame: cross sections and line
intensities for the Q(1) transitions from the X 1�+

g , v′′ = 1 ground
state of the H2 molecule. The vertical dotted lines represent the
vibrational ionization thresholds, starting with v+ = 0 and ending
with v+ = 14. The vertical continuous line (blue online) indicates the
position of the H + H (n = 3) dissociation limit of H2. (a) Continuum
photoabsorption cross section. (b) Spontaneous emission coefficients
for the transitions listed in Table I, equivalent to the resonant part
(n = 3–6) of the cross section. (c) Photoabsorption. Continuous
black lines: background cross section σ (background)(E). Dashed lines
(red online): averaged full cross section. (d) Photoionization. [Same
symbols as in (c).] Lower frame: the same for v′′ = 5. The dashed
vertical line (magenta online) indicates the energy corresponding to
the Lyman cutoff.

incidence scanning monochromator at the BESSY II syn-
chrotron (Berlin) [17]. These results were exploited by
Glass-Maujean and co-workers [18–20] to obtain quantita-
tive information on competing ionization, dissociation, and
intramolecular fluorescence decay for the D 1�u vibrational
series. The positions and absolute intensities of the higher
npπ 1�−

u (n = 2–30) ← X 1�+
g ,v′′ = 0 Q(N ) (N = 1–4) ab-

sorption transitions of H2 were also obtained and interpreted
with the help of MQDT calculations. Quite recently the Fourier
transform spectrometer operating in the vacuum ultraviolet
wavelength range of the DESIRS beamline at the SOLEIL
synchrotron (Saclay, France) has been used for recording
absorption spectra and measure line positions and profiles with
significantly increased spectral resolution [21].

These papers demonstrated that the new synchrotron
frequency measurements approach the accuracy of the best

traditional spectrographic measurements which are known
to be better than a fraction of a wave number unit. All the
published new experimental data turn out to be in very good
agreement with the ab initio multichannel quantum defect
theory (MQDT) calculations, both with regard to transition
frequencies, absolute line intensities, and the competition
between the various decay processes. In particular the MQDT
calculations provide energy-level positions which are globally
correct to better than ≈1 cm−1.

Building on this earlier work [18–20] we study here the
photoexcitation of vibrationally excited H2. We compute
energy levels, wave functions, spontaneous emission Einstein
coefficients, and photoionization cross sections using the same
MQDT techniques [22–24] and the same input parameters used
in the preceding papers [18–20]. This approach guarantees
that the computed cross sections will be of the same quality
as obtained before for v′′ = 0, despite the fact that for
v′′ > 0 much less experimental information for comparison
and checks is available. In particular, no absolute intensity
measurements exist for v′′ > 0. In the following we briefly
review the main procedures and steps of the computations.
Standard (SI) units are used throughout, except when explicitly
stated otherwise.

B. Multichannel quantum defect theory

The manifold of 1�u excited states of H2 is assumed to
represent a single unperturbed npπ Rydberg series converging
to the X 2�+

g ground state of H2
+. The quantum defects may

thus be extracted directly from the clamped-nuclei (Born-
Oppenheimer) potential energy curves (PEC) by use of the
one-channel Rydberg equation, written here in atomic units as
a geometry-dependent function:

Un(R) = U+(R) − 1

2 [n − μn(R)]2 . (1)

A comment concerning the validity of the single-channel–
single-partial-wave approximation employed here appears
necessary. Rydberg states of ungerade symmetry associated
with the higher partial waves f π and hπ have been identified
by infrared Fourier transform spectroscopy years ago and
their energies have been determined to high precision [25].
However, transitions to these states have never been identified
in the absorption spectrum from the ground state despite
repeated searches by one of the present authors (Ch.J.), nor
have they been seen in excitation from the 2s EF 1�+

g excited
state [26], obviously because of the weakness of the corre-
sponding electronic transitions. Indeed, the quantum-chemical
dipole transition moment computations of Ref. [27] predict
that for instance for n = 4 at equilibrium (R = 1.4 a.u.), the
X → 4f π excitation cross section is 2.8 × 104 times weaker
than X → 4pπ and may therefore be safely neglected. The
state-of-the-art excited potential energy curves [28] which we
shall use below to determine the quantum defects functions
that appear in Eq. (1), have been computed in a sophisticated
scheme in which large numbers of optimized singly and doubly
excited configurations are superposed which correspond to
higher parent ion states than the H2

+ 2�+
g ground state which is

taken into account explicitly in this work. Their contributions
are absorbed here into the quantum defect functions which
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therefore to some extent have an effective character. It is clear
that this simplified approach is limited to energies not too
far above the first electronic ionization threshold, and will
eventually fail when high energies are considered, e.g., near the
second electronic ionization threshold corresponding to H2

+

A 2�+
u . In such a situation more channels and their interactions

must be included explicitly in the quantum defect treatment.
The index n of the quantum defect μ in Eq. (1) indicates

that this quantity may vary slightly with the principal quantum
number n, i.e., it is energy dependent. This energy dependence
is formally parametrized as an expansion in terms of the
electron binding energy ε (in a.u.):

μ(ε,R) = μ(0)(R) + εμ(1)(R) + 1

2
ε2μ(2)(R) + m

M
μspec(R).

(2)

The three coefficients μ(k)(R), k = 0,1,2 that appear in Eq. (2)
are determined by means of Eq. (1) from the three clamped
nuclei PEC, Un(R), of the npπ,n = 2,3,4 Rydberg states
computed by Wolniewicz and co-workers [27–29], combined
with the PEC, U+(R), of the ion ground state X 2�+

g [30]. The
clamped-nuclei electron binding energy is given for each R-
value by the difference ε = ε(R) = Un(R) − U+(R). μspec(R)
is related to the mass polarization term arising from the cross
term H ′

3 = −(m/4M)∇1∇2 of the molecular Hamiltonian [31]
(m electron mass, M nuclear reduced mass). H ′

3(R) has also
been evaluated ab initio by Wolniewicz and co-workers [29].

The electronic dipole transition moments constitute a
second set of input data required for the description of
radiative electronic transitions. Energy-dependent clamped-
nuclei electronic channel transition moments are parametrized
in analogy with Eq. (2) as

d(ε,R) = d (0)(R) + εd (1)(R) + 1
2ε2d (2)(R). (3)

These quantities are energy normalized and have the dimension
(length) × (energy)−1/2. The coefficients d (q)(R), q = 0,1,2,
may be derived directly from the ab initio clamped-nuclei
dipole transition moments of Wolniewicz and co-workers
[27,29]; see Ref. [18].

Upper state energy levels and/or continuum states and the
rovibronic dipole transitions leading to them are computed
using standard MQDT techniques [22–24]. The transition of
the excited electron from the molecule-fixed reference frame
to the space-fixed frame is described by a frame transformation
which takes account of the nonadiabatic effects. In the case of
the Q(N ) spectral lines corresponding to upper states of pure
1�−

u symmetry there is no rotational nonadiabatic coupling
so that, neglecting spin-orbit and hyperfine effects, the frame
transformation reduces to evaluating integrals involving the
initial- and final-state vibrational wave functions:

μ
(q,N,d)
v+N+,v+′N+′ =

∫
χv+N+ (R)μ(q)(R)χv+′N+′(R)dR, (4)

for the vibronic quantum defect, and

d
(q,N,d)
v+N+,v′′N ′′ =

∫
χv+N+ (R)d (q)(R)χv′′N ′′ (R)dR, (5)

for the vibronic transition moments. Here q = 0,1,2 as in
Eqs. (2) and (3). The Q(N ) transitions studied here require that

the total angular momenta of the molecule N ′,N ′′ and of the
molecular ion N+,N+′ all be equal, i.e., N = N+ = N+′ =
N ′′. d refers to the Kronig’s symmetry label, designating levels
that have total parity −(−1)N .

The energy dependences of the vibronic quantum defects
and dipole moment matrix elements of Eqs. (4) and (5) have the
same functional form as those given in the Eqs. (2) and (3), with
the difference that instead of ε one must use a vibrationally
averaged value, ε. For the quantum defects the appropriate
choice is ε = 1

2 [(E − E+
v+N+ ) + (E − E+

v+′
N+′ )] [24], where E

denotes the total energy and E+
v+N+ are the vibration-rotation

levels of the ion ground state. For the transition moments one
chooses ε = (E − E+

v+N+ ) [24]. Once the rovibronic quantum
defects have been evaluated they must be converted into the
so-called S and C matrices which are related to the reaction
matrix K according to K = SC−1. This is achieved by means
of procedures described in Refs. [32,33]. The “eigen-channel”
formulation of MQDT [24] rewrites these matrices in the
form S = U sin πμUT and C = U cos πμUT, where U is the
eigenvector matrix of the reaction matrix K, while tan πμα

are its eigenvalues and their arguments μα are the associated
eigenquantum defects. [The indices α indicate that these
quantities are not to be confused with the quantum defects
that appear in Eqs. (2) and (4).]

Applying the asymptotic boundary conditions to the total
wave function, one arrives at the generalized eigenvalue system
[24]:

�B = tan β�B, (6)

where

�ii ′ = sin βiCii ′ + cos βiSii ′ , i ∈ closed

ii ′ = 0, i ∈ closed

�ii ′ = Sii ′ , i ∈ open
(7)

ii ′ = Cii ′ , i ∈ open

βi = −πνi, i ∈ closed

βi = +πτi, i ∈ open.

If bound levels and discrete line intensities are to be evaluated
(because there are no open channels or because open channels
are neglected), Eq. (7) reduces to a homogenous set of linear
equations, namely

∑
k

[cos(πνj )Sjk + sin(πνj )Cjk]Bk(E) = 0, (8)

where νj (E) =
√

−Rhc/(E − E+
j ) are the channel effective

quantum numbers, Bk are the channel mixing coefficients, and
R is the Rydberg constant. The indices j and k run over all
vibrational channels v+N+ corresponding to the given N+
value. By searching for zeros of Eq. (8) one finds the energies
En of the bound levels and the corresponding channel mixing
coefficients. The former, in wave number units and defined
relative to the ionization thresholds, are

[(En − E+
v+N+ )/hc] = RH2

[νv+N+ (E)]2
. (9)

RH2 here is the mass-corrected Rydberg constant.
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Line intensities are computed here for weak radiation fields
as appears appropriate for astrophysical applications. The
effective transition moment to the bound Rydberg state n is
given by the following superposition of channel amplitudes:

Dn = 1

N
∑

k

dkk′′(En)Bk(En), (10)

where k stands for the ionization channels v+N+ and k′′
stands for the lower state v′′N ′′, respectively. dkk′′ (En) is
the frame transformed vibronic dipole moment. N is the
overall normalization factor of the bound-state wave functions;
see Ref. [24]. It has the dimension (energy)−1/2 which
compensates the dependence (energy)−1/2 contained in the
channel moments dkk′′ . The transition moment Dn for each
spectral line is finally converted into an upper state emission
probability according to [34]:

An→v′′N ′′ = 4mc2α5

h̄

(
1

2N ′ + 1

)(
En − Ev′′N ′′

2Rhc

)3∣∣∣∣Dn

a0

∣∣∣∣
2

,

(11)

where α here denotes the fine-structure constant.
In order to calculate the photoabsorption and photoioniza-

tion cross sections, σa and σi , we have to consider the open
ionization channels in addition to their closed counterparts.
The quantization condition for an open channel j , see Eqs. (6)
and (7), reads [24]∑

k

[cos(πτρ)Sjk − sin(πτρ)Cjk]B(ρ)
k (E) = 0, (12)

where πτρ is an open-channel ionization eigenphase and ρ is
a solution index. In all, there are as many eigenphases as there
are open channels, NP , and there is a set of channel mixing
coefficients, B(ρ)

k , corresponding to each particular eigenphase.
The total intensity is expressed in terms of a set of real dipole
amplitudes which replace Eq. (10):

D(ρ)(E) =
∑

k

dkk′′(E)B(ρ)
k (E) . (13)

The apparent disagreement between Eqs. (10) and (13) reflects
the different normalization of the discrete and continuum wave
functions: D(ρ)(E) in Eq. (13) gives the dipole amplitude
per unit energy and has dimension (length) × (energy)−1/2.
The total photoabsorption cross section, σa (equal to the
photoionization cross section σi when no competing decay
channels are present), becomes [34]

σa(E) = 4π2α

2N ′′ + 1
(E − E+

v+N+ ) [D(E)]2 , (14)

where [D(E)]2 = ∑NP

ρ=1[D(ρ)(E)]2.

C. Numerical details

The quantum defects and electronic dipole moments have
been extracted from the clamped-nuclei (Born-Oppenheimer)
potential energy curves and dipole moment functions of
Refs. [27–29] as described in Sec. II B. The rovibrational wave
functions were evaluated in the adiabatic approximation using
the ion ground-state potential energy curve of Wind [30] and
the adiabatic correction terms of Bishop and Wetmore [35].

The corresponding ion levels are those of Wolniewicz and
Orlikowski [29], evaluated including the nonadiabatic and
relativistic interactions in addition to the adiabatic corrections.
These ion level energies do not include the hyperfine interac-
tions, but their accuracy—as well as that of the potential curves
and adiabatic corrections—is largely sufficient in the present
context. We used for the theoretical ionization limit the value
of Wolniewicz [28], i.e., 124 417.491 cm−1, and the different
ionization thresholds are the vibrational levels of the molecular
ion. The ground-state vibrational wave function was evaluated
with the potential energy curve and adiabatic corrections of
Wolniewicz [29], while the ground-state rovibrational energy
levels were taken from the work of Pachucki and Komasa [36].
The vibrational wave functions were integrated from R = 0.1
out to Rc with Rc in the range ≈10 to 12.5 a.u. Typical values
of the vibrational basis were 0 � v+ � 40. In some cases
the basis was increased up to v+ = 60 in order to check the
convergence. Up to v+ = 19 the vibrational basis represents
the 20 bound levels of the ion. For larger values v+ it depends
on the value of Rc and represents the discretized vibrational
continuum.

The calculations were performed in two steps. A calculation
of bound states was carried out first, in which the open
channels were ignored. This provided the energies of the
bound Rydberg levels and the corresponding spontaneous
emission coefficients of the upper levels. In the second step
the open channels were also included. The step size of the
energy grid was chosen to correspond to 0.1 cm−1. In the
neighborhood of the bound Rydberg levels (known from the
preliminary bound state calculation) the grid was chosen to
correspond to 5 × 10−6 cm−1, necessary in order to map out the
photoabsorption (photoionization) cross section in full detail.
Just below each vibrational ionization thresholds v+,N+ = 1
the Rydberg level density becomes large and we used a step
size of 10−3 cm−1. We calculated states up to neff ≈ 70, leaving
an energy gap of 20 cm−1 below each ionization threshold.

III. RESULTS

A. MQDT calculations

The first series of calculations in which open channels
were omitted yielded upper state energy levels, transition
energies, wave functions, and spontaneous emission Einstein
coefficients. Table I contains a selection of the strongest calcu-
lated lines (v′′ = 1). In the second series of calculations open
channels were included and Eq. (6) in its most general form
was solved, providing the continuum phase shifts, channel
mixing coefficients, effective transition moments, and, as the
final result, the cross section for the photoabsorption process
as a function of the transition energy. Figure 1(a) (upper frame)
displays the corresponding continuous distribution for v′′ = 1,
while the lower frame of the same figure is organized in
exactly the same way and shows the analogous distribution
for v′′ = 5. Photoabsorption eventually results in ionization
and/or fluorescence and dissociation, but since at this stage the
two additional decay channels dissociation and fluorescence
have been neglected, the spectrum of Fig. 1(a) represents,
strictly speaking, the theoretical photoabsorption spectrum,
broadened by interaction with the open ionization continua. A
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TABLE I. Properties of the peaks characterized as resonances connected to vibrational levels of the different electronic states lying above
the ionization limit for Q(1) transitions of H2. The notation (n,v′) refers to the principal and vibrational quantum numbers of the upper
state, e.g., (3,7) = 3pπD(v′ = 7). νn/c and ν(obs)/c are the calculated and observed transition frequencies in cm−1, and [νn − ν(obs)]/c is
their difference (where available). The corresponding energies, En, of the upper state levels above v′′ = 0,N ′′ = 0 are obtained by adding
4273.7371 cm−1 [36]. � are the calculated autoionization widths, A is the spontaneous emission probability, and �A/A the relative difference
of the present calculation and the earlier calculations of Abgrall et al. [8]. A/Aapprox is the ratio of the Einstein coefficients calculated with
Eqs. (11) and (16), respectively. Horizontal gaps are indicative of the positions of the vibrational ionization thresholds v+,N+ = 1. Threshold
stands for the closest higher vibrational level of the ion. The relative contribution is defined by Eq. (17).

Ionization Absorption

Upper state νn/c [νn − ν(obs)]/c � A Threshold Relative Total vs Relative Total vs
(n,v′) (cm−1) (cm−1) (10−4 cm−1) (106 s−1) �A/A A/Aapprox (v+) contrib. backgr. contrib. backgr.

(5,2) 120 227.40 131.0 0.25 0.95 0.01 0.01
(6,2) 121 490.07 668.8 2.48 0.86 0.13 0.05
(3,7) 121 603.97 0.55 0.05 27.36 0.11 0.96 1 <10−2 5.9 0.59 15.1
(4,4) 121 678.08 − 0.22 1.0 0.94 0.98 0.01 0.02
(5,3) 122 163.19 58.1 0.13 0.97 0.01 <10−2

(3,8) 122 974.34 − 0.29 0.2 24.17 0.08 0.97 <10−2 0.32
(4,5) 123 387.07 − 0.03 0.5 6.52 0.97 <10−3 <10−2

(6,3) 123 437.68 349.8 0.22 0.97 2 0.03 1.9 <10−2 15.9
(5,4) 123 988.41 47.7 1.26 0.97 0.13 0.02
(3,9) 124 222.40 − 0.44 0.02 20.44 0.08 0.97 0.01 0.56

(4,6) 124 983.98 75.2 9.96 0.97 0.50 0.24
(6,4) 125 256.71 1399.6 0.74 0.97 0.05 0.02
(3,10) 125 347.34 − 0.36 0.04 16.20 0.06 0.97 3 <10−3 4.2 0.19 9.5
(5,5) 125 695.41 141.0 3.32 0.97 0.19 0.09
(3,11) 126 344.18 0.09 0.2 14.89 0.2 0.97 <10−2 0.35

(4,7) 126 465.82 161.0 8.53 0.97 0.28 0.17
(6,5) 126 962.52 1455.0 2.15 0.98 0.07 0.04
(3,12) 127 210.28 0.54 0.7 10.50 0.13 0.97 4 0.01 8.1 0.19 13.5
(5,6) 127 286.68 437.5 4.59 0.97 0.16 0.10
(4,8) 127 832.24 294.8 6.76 0.96 0.26 0.17
(3,13) 127 937.70 0.01 6.39 − 0.05 0.90 <10−4 0.20

(3,14) 128 517.85 5.0 5.65 0.16 0.97 0.05 0.16
(6,6) 128 549.49 4742.2 3.89 0.98 0.12 0.08
(5,7) 128 764.12 530.2 5.47 0.98 0.19 0.13
(3,15) 128 945.03 0.3 3.80 0.2 0.97 5 <10−2 7.5 0.08 11.4
(4,9) 129 084.76 25.8 7.17 0.98 0.18 0.16
(3,16) 129 236.87 0.05 2.20 0.3 0.97 <10−4 0.03
(3,17) 129 518.49 0.1 2.82 0.89 0.97 <10−4 0.06

(6,7) 130 026.52 4673.8 5.07 0.98 0.09 0.09
(5,8) 130 126.23 775.0 6.32 0.98 0.14 0.14
(4,10) 130 223.83 0.3 4.27 0.93 6 0.08 12.8 0.08 12.8
(4,11) 131 227.70 0.6 7.17 0.99 0.13 0.13
(5,9) 131 379.37 234.5 3.90 0.98 0.07 0.07
(6,8) 131 403.42 231.3 0.10 0.98 <10−2 <10−2

(4,12) 132 127.86 200.4 5.14 0.98 0.39 0.39
(5,10) 132 519.02 456.2 3.92 0.98 7 0.09 10.7 0.09 10.7
(6,9) 132 646.95 1124.5 2.37 0.98 0.06 0.06
(4,13) 132 900.34 15.3 3.20 0.98 0.07 0.07

(4,14) 133 524.11 300.3 5.05 0.98 0.20 0.20
(5,11) 133 559.46 139.2 0.02 0.97 8 <10−3 6.2 <10−3 6.2
(6,10) 133 784.08 2710.9 1.92 0.98 0.07 0.07
(4,15) 134 044.90 10.7 1.58 0.98 0.07 0.07

(4,16) 134 408.39 166.0 0.01 0.95 <10−3 <10−3

(5,12) 134 449.51 1261.1 1.58 0.98 0.07 0.07
(4,17) 134 691.00 71.0 1.03 0.97 9 0.04 6.6 0.04 6.6
(6,11) 134 811.36 2512.8 1.85 0.99 0.07 0.07
(5,13) 135 230.90 251.7 1.58 0.98 0.06 0.06

(6,12) 135 720.24 3038.8 1.50 0.99 0.07 0.07
(5,14) 135 895.98 257.1 0.10 0.98 10 0.01 5.3 0.01 5.3
(5,15) 136 418.16 669.1 0.68 0.98 0.05 0.05
(6,13) 136 511.85 1067.1 1.02 0.99 0.05 0.05

(5,16) 136 804.28 437.0 0.70 0.98 11 0.06 4.3 0.06 4.3
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logarithmic intensity scale has been used in Fig. 1(a) in order
to highlight the density of autoionization structures that arise
in the cross section.

The plot of Fig. 1(a) demonstrates that the cross section is
dominated by the presence of resonance structures correspond-
ing to excitation of various vibrational levels of quasibound
electronic states which lie above the ionization threshold.
By representing every discrete upper level by a sharp line
with the intensity corresponding to its spontaneous emission
probability one obtains the spectrum as a sequence of Feshbach
resonances. This can be seen in Fig. 1(b). This figure and
Table I only contain the lines corresponding to states up to
n = 6, whereas the total photoabsorption cross section shown
in Fig. 1(a) contains the states with higher n quantum numbers
as well.

Comparison of the two frames of Fig. 1, corresponding
respectively to v′′ = 1 and v′′ = 5, highlights the fact that
while the transition moments are different for excitation
from different vibrational lower levels, the resonant structures
dominate the spectrum in the same way. In the following
subsections we discuss in turn various aspects of the results
contained in Table I and the upper frame of Fig. 1.

B. Fluorescence and dissociation processes

Once the theoretical photoabsorption spectrum has been
calculated further steps are required in order to get the “true”
photoionization cross section which is corrected for dissocia-
tion and fluorescence processes. To this effect we have used
the data from Refs. [19,20], where absolute cross sections for
the competing decay-channels fluorescence, dissociation, and
ionization of photoexcited long-lived superexcited H2 molec-
ular levels have been reported from the ionization threshold of
H2 up to the H(1s) + H (n = 3) dissociation limit. In that work
total and partial natural widths of superexcited 1�−

u levels have
been determined experimentally and also by first-principles
calculations carried out using multichannel quantum defect
theory, and good agreement between experiment and theory
was found. Figure 8 of Ref. [20] displays the photoionization,
photodissociation, and fluorescence yields for the 3pπ D,
4pπ D′, and 5pπ D′′1�−

u levels with N = 1, 2, and 3. These
results showed that fluorescence dominates for n = 3 (D state)
and is also present in the n = 4 and 5 (D′ and D′′ states).
Photodissociation is significant (≈15 to 20%) for n = 3, but is
absent for n = 4 and 5. Photoionization is dominant for n � 5.
For n = 4 ionization varies substantially as a function of the
vibrational quantum number and of the rotational quantum
number N , whereas for n = 3 it is a minor channel.

We proceed on the assumption that in the energy range
considered here dissociation and fluorescence processes affect
only the resonances but not the continuous background
absorption. We further assume that the three competing decay
processes are slow (typically of the order of more than a
nanosecond in the resonances studied here [20]), so that the
coupling between them can be neglected, no interference
occurs, and consequently they are additive. It is known, as
for instance has been demonstrated by the detailed model
study of Watson [37] (and references therein), that partial
decay widths combine additively for sharp resonances, while
this is not the case for broad resonances where interference

effects occur. The resonances studied here are extremely sharp
as they have widths of the order of 10−5 or less in natural
(Rydberg) units. Our procedure thus consists in renormalizing
the photoabsorption cross section σa by multiplying each
resonance profile with its corresponding photoionization yield
taken from Ref. [20], and thus obtain the photoionization cross
section σi . This is further discussed in the following Sec. III C.

C. Average cross sections

Figures 1(c) and 1(d) are designed to demonstrate the
remarkable importance of resonances in the Q(1) photoion-
ization cross section. The black solid line represents the
background cross section, σ (background)(E), obtained when all
closed channels are excluded in the calculation and hence all
resonances disappear from the spectrum. This is equivalent to
the approximation made, e.g., in the earlier Refs. [11,12]. The
background cross section increases by a step at each vibra-
tional threshold, whereby each step height is approximately
proportional to the Franck-Condon factor 〈v+|v′′〉2 between
the initial vibrational state and the newly opened channel v+.
The vibrational thresholds are marked by dotted vertical lines
in Fig. 1. Notice how these steps do not stand out at all in the
full photoabsorption spectrum shown in Fig. 1(a).

In order to assess the importance of the resonances we
have for each vibrational interval calculated the averaged
photoabsorption and photoionization cross sections according
to

σ̄a(v+) =
∫ Ev++1
Ev+ σa(E)dE

Ev++1 − Ev+
. (15)

The averaged photoionization cross section, σ̄i(v+), and back-
ground cross sections, σ̄

(background)
i (v+) = σ̄

(background)
a (v+),

were evaluated in an analogous manner. Note that the depen-
dence of the averages on the ionization thresholds shows that
the averaging was done between two consecutive thresholds
[dotted vertical lines in Figs. 1(c) and 1(d), respectively]. The
averaged cross sections σ̄a and σ̄i are indicated in Figs. 1(c)
and 1(d) by dashed horizontal lines (red online), respectively.

We found that at lower photon energies, near threshold, the
resonance enhancement exceeds the background cross section
by more than one order of magnitude, while at higher energies
it is still more than a factor of 2 larger than the latter. Table I
lists for each ion core vibrational interval (v+,v+ + 1) the
quantity σ̄i or a / σ̄

(background)
i or a giving the ratio of the total versus

the background (total vs backgr.) for ionization (i) and for
absorption (a).

D. Characteristics of individual resonances

Table I lists the characteristics of the vibronic Rydberg
levels (n,v′) = npπ 1�−

u ,v′,N ′ = 1 with n = 3–6 that lie
above the ionization threshold and are excited via Q(1)
transitions from X 1�+

g (v′′ = 1). In the table are listed the
calculated transition frequencies νn/c and widths � (full width
at half maximum) for each level. The transitions are referred
to the ground-state level v′′ = 1,N ′′ = 1 which lies 4273.7371
cm−1 above the ground level [36]. The table further lists
the deviations of the differences between the observed and
calculated frequencies, [νn − ν(obs)]/c, as well as the relative
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differences, where available, of the spontaneous emission
probabilities obtained here for each upper level and the earlier
calculation of Abgrall et al. [8], which have been derived
without any coupling. The positions and autoionization widths
have been determined for each resonance from the resonance
profile and phase shift sum.

As a check of the correctness of the MQDT calculations the
Einstein A coefficient may also be extracted for each resonance
from the calculated integrated cross section. Assuming a
Lorentzian resonance shape one finds that the Einstein coeffi-
cient is related to the integrated cross section as follows [38]:

Aapprox ≈ 4π2c

(
2N ′ + 1

2N ′′ + 1

) (
En − Ev′′N ′′

hc

)2 (
�

hc

)
σmax,

(16)

with σmax the peak value of the resonance profile and �

its width. Recall that for Q transitions N ′ = N ′′. The ratios
A/Aapprox of the two Einstein coefficients are given in Table I. It
may be seen that the two ways of calculating the A coefficients
agree to within less than 10%. The values derived from
Eq. (16), however, are systematically a few percent larger
than those obtained with Eq. (11), no doubt because the profile
asymmetry (Fano q parameter) has not been taken into account
in the expression (16).

Table I also lists the relative contributions, Ri and Ra , of
each of the listed resonances to the total photoionization or
photoabsorption, respectively, in the corresponding vibrational
interval, viz.

Ri or a =
∫ E0+ε

E0−ε
σi or a(E)dE∫ Ev++1

Ev+ σi or a(E)dE
. (17)

The integration range 2ε around each resonance was chosen
large enough, ε � m�, m > 10, such as to contain the bulk of
the resonance.

IV. DISCUSSION

One of the interesting features emerging from our
calculations—which confirms the findings of the earlier
Refs. [19,20]—is the fact that the resonances associated with
the 3pπ D Rydberg state—the electronically least excited state
present in the energy range studied here—are characterized by
the smallest widths. This is borne out by the results listed in
Table I, and, indeed, is the reason why dissociation and fluo-
rescence are able to compete with autoionization in the 3pπ D

state levels. As n increases, the widths initially increase also,
and the broadest resonances which we have encountered are
associated with the 6pπ D′′′ state. Levels with higher n again
have smaller widths. This at first sight surprising behavior may
be traced back to the double dependence on n and v of the
nonadiabatic discrete-continuum interactions. The (squared)
electronic Rydberg-state–continuum coupling has an overall
dependence proportional to n∗−3, whereas the interconversion
of electronic and vibrational energy is favored when the
difference v+ − v′ is small [cf. Eq. (4)]. The low-n states have
the highest v′ values among the resonances anywhere above
the ionization potential, so that their coupling to the continua is

TABLE II. Relative contributions of the resonances associated
with the n = 3–6 electronic states to the photoabsorption and
photoionization cross sections for H2, v′′ = 1, and Q(1) transitions.

Ionization Absorption

Upper Number of Overall Total vs Overall Total vs
state resonances contrib. backgr. contrib. backgr.

3pπ D 11 0.01 0.16
4pπ D′ 14 0.23 6.2 0.10 8.1
5pπ D′′ 15 0.12 0.06
6pπ D′′′ 12 0.08 0.04

weak despite their low electronic excitation. The two opposing
tendencies produce the trends visible in Table I.

Our calculations further indicate that the 3pπ D levels
contribute most strongly to the photoabsorption cross section,
whereas the 4pπ D′ levels are the most prominent contributors
to the photoionization cross sections. Indeed, in some energy
intervals the n = 3 and 4 levels produce nearly the totality
of the predicted photoabsorption and photoionization cross
section. For instance, in the energy range between the v+ = 1
and v+ = 2 thresholds the contribution of the two 3pπ D

levels with v′ = 8 and 9 accounts for almost 90% of the
photoabsorption cross section (see Table I). Table II gives
the overall contribution of the vibrational levels of the lowest
four excited electronic states, n = 3–6, compared to the total
photoionization and/or photoabsorption cross section. Thus,
while Table I compares the total and background cross sections
in the ranges between consecutive ionization thresholds, we
have summed up in Table II the contributions of individual
electronic states over the whole interval under study. It turns
out that more than 42% of the total photoionization cross sec-
tion and more than 35% of the photoabsorption cross section
are produced by the four lowest electronic states. We conclude
the discussion by pointing to the fact that once the excitation
energy exceeds the H(1s) + H (n = 3) dissociation limit
[indicated by a vertical full line (blue online); cf. Figs. 1(c)
and 1(d)], the absorption and ionization cross sections become
equal and eventually tend toward the background cross section.

V. CONCLUSION

This paper is the first of a series intended to provide
theoretical data concerning photoabsorption and photoioniza-
tion from vibrationally excited diatomic hydrogen, H2. We
believe that our MQDT approach is reliable as it has been
tested previously by extensive comparison with experimental
results concerning photoexcitation from the vibrational ground
state of the molecule [18–20]. One might argue that a
weakness of our approach is that we have used clamped-nuclei
transition moments evaluated [29] for excitation to relatively
low electronically bound states (n = 3–5) that do not pertain
to the continuum. Indeed, we have used MQDT methodology
to determine the energy dependence of the corresponding
energy-normalized channel transition moments (Sec. II B), and
we hence extrapolated to the electronic continuum. On the
other hand, it appears that the possible error associated with
this extrapolation must be largely compensated by the fact that
the photoionization cross section is dominated by quasibound
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autoionization resonances and not by the electronic continuum
itself; in other words, the resonances—the calculated intensi-
ties of which are known to be highly accurate—carry far more
intensity than the structureless background.

We finally wish to emphasize the possible relevance of
the present work for the physics of the interstellar medium.
For excitation of ground state H2 from v′′ = 5, the Lyman
limit lies higher than the v+ = 0 and 1 ionization thresholds
as shown by the lower frame of Fig. 1, so that the resonance
phenomena which have been the subject of this paper should
become fully effective.
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