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Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen
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We study the total cross section and angular distribution in Rayleigh scattering by hydrogen atom in the ground
state, within the framework of Dirac relativistic equation and second-order perturbation theory. The relativistic
states used for the calculations are obtained by making use of the finite basis-set method and expressed in terms
of B splines and B polynomials. We pay particular attention to the effects that arise from higher (nondipole) terms
in the expansion of the electron-photon interaction. It is shown that the angular distribution of scattered photons,
while symmetric with respect to the scattering angle θ = 90◦ within the electric dipole approximation, becomes
asymmetric when higher multipoles are taken into account. The analytical expression of the angular distribution
is parametrized in terms of Legendre polynomials. Detailed calculations are performed for photons in the energy
range 0.5 to 10 keV. When possible, results are compared with previous calculations.
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I. INTRODUCTION

Rayleigh scattering (also called coherent scattering) de-
notes the elastic scattering of photons by bound electrons and
is usually mentioned in order to explain the blue sky and the
red sunset [1,2].

Rayleigh scattering, apart from being a subject of theoreti-
cal study by itself, also has interesting applications to different
fields. Recently, with the availability of x-ray polarization
detectors as well as synchrotron and FEL sources, new
experimental information is emerging in the x-ray regime;
consequently, the demand for accurate theoretical predictions
is arising [3–5].

The total cross section for Rayleigh scattering has been
widely investigated during the past decades, both within rela-
tivistic and nonrelativistic frameworks [6–10]. For instance, in
2007 Nganso and Njock presented analytical results for Raman
and Rayleigh scattering in hydrogenlike ions based on fully
relativistic wave functions and the Sturmian expansions of the
Dirac-Coulomb Green function [11]. More recently, Costescu
et al. analyzed Rayleigh scattering amplitudes in ions and
neutral atoms by using the independent particle model [12].

In contrast to the total cross section, less attention has
been paid to the angular distribution of the scattered photons
(i.e., the angle-differential cross section) as well as to their
polarization properties. To the best of our knowledge, a fully
relativistic treatment of the angular distribution in Rayleigh
scattering by hydrogen atom based on the Dirac equation has
not been performed yet [13–17]. Hydrogen atom, although is
not, perhaps, the best choice for experimental investigation,
is the most abundant element in the universe and therefore
of great interest in astrophysics. In the extended atmosphere
around a giant star, for example, near-ultraviolet photons can
be significantly scattered by atomic hydrogen [18].
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In the present work, we study the total cross section and
the angular distribution of the scattered photons in Rayleigh
scattering by atomic hydrogen in the ground state. The
calculations are carried out within a relativistic framework
through the use of finite basis sets for the Dirac equation
constructed from B splines and B polynomials. The angular
distribution is furthermore parametrized in terms of Legendre
polynomials, and the resulting coefficients are plotted against
the photon energy. The photon energy range we investigate
is 0.5 to 10 keV. By comparing with previous works, good
agreement is found in analyzing the total cross section in the
whole energy range. We show that higher multipoles in the
expansion of the electron-photon interaction operator play an
important role both in the total cross section and, especially, in
the angular distribution of the scattered photons. While for the
total cross section, the nonrelativistic dipole approximation is
adequate for energies below ∼3 keV, in the angular distribution
nondipole effects become important for photon energies
�500 eV.

This article is structured as follows. In Sec. II, we present
the geometry we consider for the scattering process and the
notation used. In Sec. III, the essential theoretical background
needed for the calculations is presented together with a detailed
explanation of the theoretical quantities that we intend to
investigate, namely, the total cross section and the angular
distribution. In Sec. IV, we explain the numerical method
we use in order to obtain the total cross section and the
angular distribution. In Sec. V, we present our results by
showing the impact that high multipoles in the expansion of
the electron-photon interaction have. Finally, a summary is
given in Sec. VI, together with a few perspectives for further
theoretical studies.

II. ATOMIC SYSTEM AND GEOMETRY

To explore the cross section and the angular distribution in
Rayleigh scattering, let us first introduce the atomic system
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FIG. 1. (Color online) The adopted geometry for the scattering
process is displayed. The scattering angle θ uniquely defines the
direction of the outgoing photon in the scattering (xz) plane. The
hydrogen atom is placed at the origin of the coordinate axes.

and the geometry under which the distribution of scattered
photons is considered.

Our system consists of a hydrogen atom in the ground
state which is irradiated by light, as shown in Fig. 1. Incident
(scattered) light has energy Eγ1(2) = h̄ω1(2), propagation vector
k1(2), and polarization vector ε̂1(2), where h̄ is the Planck
constant and ω is the angular frequency of light. Here and
in the following, Â denotes the unit vector A/|A|, for any
vector A.

We adopt the quantization (z) axis along the direction of
the incident light (k1). As we will see in Sec. III B, such a
choice of quantization axis simplifies the multipole expansion
of the electron-photon interaction operator. The scattered light
propagates along the direction k2 at angle θ with respect to the
z axis. The scattering plane (xz) is defined by the incoming
and outgoing photon directions.

Now that we have explained the adopted geometry and
notation, we are ready to present the theory of Rayleigh
scattering.

III. THEORY

A. Evaluation of the transition amplitude

There has been a lot of theoretical studies on the calculation
of the transition amplitude in Rayleigh scattering both in
nonrelativistic and relativistic regimes [6–11]. In those studies,
the analysis of the scattering cross section is usually traced
back to the second-order bound-bound transition amplitude.
The procedures to derive such an amplitude are explained
in standard textbooks of quantum mechanics [19,20] and are
based on second-order time-dependent perturbation theory.
With some straightforward algebraic manipulation, the tran-
sition amplitude for Rayleigh (and Raman) scattering can be
cast in the form

M−γ γ (i → f )

=
∑

ν

〈f | α · ε̂∗
2 e−ik2·r |ν〉 〈ν| α · ε̂1 eik1·r |i〉

ωνi − ω1

+
∑

ν

〈f | α · ε̂1 eik1·r |ν〉 〈ν| α · ε̂∗
2 e−ik2·r |i〉

ωνi + ω2
,

(1)

Absorption First Emission First

k1, ˆ1 k2, ˆ2

|i f

|ν

k1, ˆ1 k2, ˆ2

|i f

|ν

FIG. 2. (Color online) Feynman diagrams which correspond to
the first and second terms of the transition amplitude (1), respectively.

where ωνi = (Eν − Ei)/h̄ is the transition frequency be-
tween states |ν〉 and |i〉, α is the vector of Dirac matrices,
and Eν(i) is the energy of the intermediate (initial) atomic
bound state. Here, the transition operator ε̂1,2e

ik1,2·r describes
the relativistic electron-photon interaction. As indicated in
Eq. (1), the summation over the intermediate states runs over
the complete one-particle spectrum |ν〉, including a summation
over the discrete part of the spectrum as well as the integration
over the positive and negative energy continua. The initial state
|i〉 and final state |f 〉 of atomic hydrogen have well-defined
angular momentum j , angular momentum projection mj , and
parity (−1)l , where l is the orbital angular momentum of the
larger component of the Dirac spinor. In the following, we
will rewrite them, respectively, as |βi,ji,mji

〉 and |βf ,jf ,mjf
〉,

where β is a collective label used to denote all the additional
quantum numbers needed to specify the atomic states but for j

and mj . In particular, β refers to n (principal quantum number)
and l.

The transition amplitude in Eq. (1) can be interpreted in
the language of Feynman diagrams from quantum electrody-
namics theory. The whole scattering process can be described
by the two Feynman diagrams shown in Fig. 2, which will
be hereinafter called “absorption first” and “emission first,”
respectively [21]. The middle lines in the diagrams refer to a set
of virtual intermediate states that represent both electron and
positron states. The absorption first diagram corresponds to the
first term of the transition amplitude (1) while the emission first
diagram corresponds to the second term.

Due to the conservation of energy, the quantities Eγ1,2 and
Ef,i are simply related by the equation

Ef − Ei = Eγ1 − Eγ2 . (2)

Since Rayleigh scattering is an elastic process, the initial and
final states are the same, |i〉 = |f 〉, and, thus, Eq. (2) simplifies
to Eγ1 = Eγ2 ≡ Eγ .

For gaining deeper insights into the transition amplitude
(1), in the next subsection we shall decompose the electron-
photon interaction operator in terms of its spherical tensor
components.

B. Multipole decompositions of the photon fields

Since we want to study the angular properties of the
scattered photons, we need to rewrite the vector plane
wave ε̂eik·r in terms of elements with well-defined angular
momentum properties. This can be done by using the multipole
decomposition of the vector plane wave in terms of spherical
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tensors [22]. Such a decomposition reads

ε̂eik·r =
√

2π

+∞∑
L=1

L∑
M=−L

∑
p=0,1

iL[L]1/2(iλ)p ap

LM (k,r)

×DL
Mλ(ϕk,θk,0), (3)

where

ap

LM (k,r) =
{

A(m)
LM (k,r) if p = 0,

A(e)
LM (k,r) if p = 1,

(4)

with λ being the photon helicity. We have defined
[L1,L2, . . . ,Ln] = (2L1 + 1)(2L2 + 1) · · · (2Ln + 1) for the
sake of simplicity. Each term ap

LM (k,r) has angular momentum
L, angular momentum projection M, and parity (−1)L+1+p.
The standard notation A(e,m)

LM is used to denote the electric (e)
and magnetic (m) multipole fields. Each of these multipoles
can be expressed in terms of the spherical Bessel functions
jL(kr) and the vector spherical harmonics TM

JL(r̂) of rank L as

A(m)
LM (k,r) = jL(kr)TM

LL(r̂),
(5)

A(e)
LM (k,r) = jL−1(kr)

√
L + 1

2L + 1
TM

LL−1(r̂)

− jL+1(kr)

√
L

2L + 1
TM

LL+1(r̂),

where TM
JL(r̂) is defined as

TM
JL(r̂) =

1∑
m=−1

〈L,M − m,1,m|J,M〉YM−m
L (ϕr,θr ) ξ̂m.

(6)

The spin spherical tensor ξ̂m is defined by

ξ̂m =

⎧⎪⎨
⎪⎩

+ 1√
2
(x̂ − i ŷ) if m = −1,

ẑ if m = 0,

− 1√
2
(x̂ + i ŷ) if m = +1.

(7)

As seen from Eq. (3), the angular dependence of the photon
emission results from the Wigner (rotation) matrices. The
Wigner matrices transform the multipole fields, with original
quantization axis along the photon propagation direction, into
the fields with quantization axis along the ẑ||k1 direction.
Such a choice of quantization axis allows us to describe
the second photon direction by means of a single polar
angle θ . On account of this, we will consider D

L2
M2λ2

(k̂2 →
ẑ) = d

L2
M2λ2

(θ ) and D
L1
M1λ1

(k̂1 → ẑ) = δM1,λ1 in evaluating the
transition amplitude (1).

In the following subsection, by substituting the multi-
pole decomposition (3) into the transition amplitude (1),
we shall show how the total cross section and the angu-
lar distribution can be obtained in terms of the transition
amplitude.

C. Total cross section and angular distribution

The general form of the relativistic transition amplitude
for Rayleigh scattering is described by Eq. (1). Such an
amplitude contains the whole information on the properties of
the scattered radiation. For instance, the angular distribution
function can be written in terms of the squared transition
amplitude as (SI units)

dσ

d�
≡ 1

2π

dσ

d cos θ
= α2c2

2(2ji + 1)

∑
mji

,mjf

λ1,λ2

|M−γ γ (i → f )|2,

(8)

where α (α = e2

4πε0h̄c
≈ 1

137 ) is the electromagnetic coupling
constant and c is the speed of light in vacuum. Since we do
not investigate polarizations in the present article, in Eq. (8)
we have summed over the final and averaged over the initial
atom and photon polarizations. By combining Eqs. (1), (3),
and (8) and by employing the Wigner-Eckart theorem [23],
the transition amplitude can be written as

M−γ γ (i → f ) = 2π
∑
L1,L2
M2

∑
p1p2

(+i)L1−L2+p1+p2 [L1,L2]1/2(−1)λ2 (λ1)p1 (λ2)p2d
L2
M2−λ2

(θ )

×
∑
jν

(−1)−jν
1

(2jν +1)1/2

(
�jν (1,2)Sjν (1,2) + �jν (2,1)Sjν (2,1)

)
. (9)

The reduced (second-order) matrix element is given by

Sjν (1,2)

=
∑
βν

〈βi,ji ||α · ap1
L1

(k1,r)||βν,jν〉〈βν,jν ||α · ap2
L2

(k2,r)||βi,ji〉
ωνi + ω2

(10)

and Sjν (2,1) is obtained from (10) by (i) interchanging the label
1 with 2 and (ii) replacing the positive sign in the denominator
with a negative sign. This latter replacement is given by the

fact that while the second photon is emitted, the first photon is
absorbed by the atom.

Following the notation used in Ref. [24], we have further-
more defined

�jν (1,2) =
∑
mjν

(−1)mjf
+mjν (2jν + 1)1/2

×
(

jf L1 jν

−mjf
λ1 mjν

) (
jν L2 ji

−mjν
M2 mji

)
,

(11)
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where �jν (2,1) is obtained from Eq. (11) by replacing L1 ↔
L2 and λ1 ↔ M2.

The transition amplitude (1) formally includes the infinite
summation over all the multipole combinations p1L1 p2L2,
where p = 1 (0) refers to E (M). Using standard notation, we
may write

M−γ γ (i → f )  E1E1 + E1M1 + M1M1

+M1E1 + E2E1 + · · · . (12)

However, according to parity and angular momentum selection
rules, the number of allowed (i.e., nonzero) terms in the
summation is restricted to certain combinations of the indices
L1, L2, p1, and p2. Since the atomic (initial and final)

state that we consider for the calculations is 1s1/2 (the
ground state), the allowed multipole terms are the ones
with equal parity and |L1 − L2| � 1. More explicitly, the
multipoles that must be considered are E1E1, M1M1, E1M2,
M2E1, . . ..

Finally, integrating (8) over the second photon directions,
we get the total cross section as (SI units)

σ = α2c2

2(2ji + 1)

∑
mji

,mjf

λ1,λ2

∑
L2M2

|M̃−γ γ (i → f )|2, (13)

where

M̃−γ γ (i → f ) = 4π
√

π
∑
L1

∑
p1p2

(+i)L1+p1+p2 [L1]1/2(λ1)p1 (λ2)p2

×
∑
jν

(−1)−jν
1

(2jν + 1)1/2

(
�jν (1,2)Sjν (1,2) + �jν (2,1)Sjν (2,1)

)
. (14)

Comparing Eqs. (13) and (8), we note that the summation
over the multipoles of the outgoing photon (L2, M2), while
inside the modulus squared in the angular distribution, comes
outside the modulus squared in the total cross section. By using
the notation introduced in Eq. (12), we may better underline
the consequences of this fact: Interference terms of the type
(E1E1)(M1M1)∗ or (M1M1)(E1E1)∗ are forbidden in the
calculation of the total cross section, while they are allowed
in the calculation of the angular distribution. Thus, higher
(nondipole) multipoles will start giving nonzero contributions
in the angular distribution at lower photon energies than
in the total cross section. This effect will be analyzed in
detail in Sec. V, where expressions (8) and (14) will be
used to explore the total cross section as well as the angular
distribution in the Rayleigh scattering by hydrogen atom.
However, prior to doing that, we shall explain how the
reduced matrix elements (10) are calculated in the present
work.

IV. COMPUTATION

During the past decade, various methods have been in-
vestigated for calculating the reduced second-order amplitude
(10) as well as the transition amplitude (1) [11–13,25–27]. In
practice, of course, the summation over the complete spectrum
contained in Eq. (10) is difficult to be performed explicitly.
Several approaches and approximation techniques have been
proposed to perform such a summation. Among them, the
Coulomb-Green function approach has been widely used for
investigating both decay of and scattering by atoms and ions
[28,29].

An alternative approach is the finite basis-set method
[30–35]. The finite basis-set method is based on the supposition
that the ion (or atom) is enclosed in a finite cavity with a

radius R large enough to get a good approximation for the
wave functions. Such a restriction leads to a “discretized”
continuum part of the atomic or ionic spectrum, and hence
to a representation of the Dirac wave functions in terms of
pseudo basis-set functions. This basis set forms a complete set
of orthonormal functions [31].

In the present work, we calculate the transition amplitude
(10) by using B splines and B polynomials as finite basis sets.
The B splines are one of the most commonly used families
of piecewise polynomials, since they are well adapted to
numerical tasks [31]. The B polynomials, or the Bernestein
polynomials [32], are a good alternative to the B splines since
they allow for analytical finite basis-set calculations. These
are polynomial functions of the nth degree that are used to
obtain the solution of some linear and nonlinear differential
equations [32]. The details of these basis sets, as well as a
comparison between them, can be found in Ref. [37]. Thus, we
restrict ourselves to describing the characteristic parameters
used in this work.

The parameters of the B splines basis set are the radius of
the cavity (Rbs), the number of B splines (nbs) and their degree
(k). As for the B polynomials, the parameters are the radius of
the cavity (Rbp) and the number of B polynomials (nbp) (the
degree of the B polynomials is nbp − 1).

The parameters used in both basis sets were optimized in
order to obtain stability and agreement of six digits between
the results of both basis sets. The optimal parameters are Rbs =
60 a.u., nbs = 60, k = 9, Rbp = 50 a.u., and nbp = 40. Such
a set of parameters was already obtained for the case of two-
photon emission in Refs. [37,38].

The finite basis-set method has been widely used during the
past years to explore the two-photon decay of the metastable
2s1/2 state in heavy hydrogenlike ions [24,36]. In contrast to
the two-photon decay process, to our knowledge no one has
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ever applied this method to calculate the transition rate for
Rayleigh scattering.

V. RESULTS AND DISCUSSION

With the formalism developed above, we can now ad-
equately analyze the total cross section and the angular
distribution in Rayleigh scattering by hydrogen atom. The
initial and final state considered for the calculations is 1s1/2.

In Fig. 3, we plot the total cross section in the photon energy
range 0.5 to 10 keV as given by Eq. (13). Calculations obtained
within the electric dipole approximation (E1E1) and by
including all multipoles are separately displayed. Furthermore,
results from Veigele’s work [39] have been interpolated and
are also shown. Our cross section practically coincides with
Veigele’s, indicating that there is good agreement between
the two calculations. Moreover, it can be seen that for high
photon energies the electric dipole approximation deviates
from our results and the results of Veigele obtained with the
account of all multipoles. For photon energy ≈3 keV, the
electric dipole approximation underestimates the cross section
by about 3%, while for photon energy �6 keV, it is lower by
a factor of 2 or more. Indeed, this result is not unexpected:
in the low photon energy range, the first (dipole) term E1E1
dominates the transition amplitude, while for higher photon
energy (such that kr � 1, where r is the atomic radius), higher
multipoles play an important role, as it is evident from Eqs. (3)
and (5). For a detailed comparison, our results for the
total cross section are presented in Table I together with
those of Veigele [39] and NIST (National Institute of Stan-
dards and Technology) [40], for selected photon energy
values.

In addition to the total cross section, we analyze the
angular distribution of the scattered photons. In Fig. 4, we
display the angular distribution as obtained from Eq. (8),
for the three photon energy values Eγ = 500 eV, 2 keV, and
5 keV. Calculations have been performed within the electric
dipole approximation and by taking into account all multipoles
that have a contribution greater than 1%. As seen from the

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

E
γ
 (keV)

σ 
(b

ar
n)

 

 

  Veigele
  all multipoles
  E1E1

FIG. 3. (Color online) Total cross section in Rayleigh scattering
by atomic hydrogen, as a function of the photon energy. Calculations
obtained within the electric dipole approximation (red dashed line)
are compared with those including all of the allowed multipoles (black
solid line) and with those from Veigele [39] (blue dot-dashed line).

TABLE I. Different calculations for the total cross section for
Rayleigh scattering by hydrogen in the ground state, for selected
values of the photon energy. The results are compared with Veigele
[39] and NIST [40]. Cross sections are given in barn.

Eγ (eV) Veigele NIST This calculation

500 0.642 n.a. 0.6465
1000 0.579 0.5805 0.5812
2000 0.414 0.4141 0.4142
3000 0.277 0.2760 0.2764
5000 0.135 0.1341 0.1341
8000 0.0618 0.0612 0.0609
10 000 0.0416 0.041 21 0.040 30

figure, the angular distribution for low photon energy values
is well described by the electric-dipole approximation and
by the expression ∼1 + cos2 θ [6], as expected from the
nonrelativistic theory. For photon energy values ≈ 2 keV,
forward scattering becomes dominant, compared to backward
scattering, and leads to an asymmetric angular distribution.
For even higher photon energy values (�5 keV), the backward
scattering is strongly suppressed and ≈90% of scattered
photons are found within the interval 0 � θ � 60◦. This effect
is known from previous calculations and experiments on other
ions and atoms. See, for instance, Ref. [7].

By comparing Figs. 3 and 4, we notice that the angular
distribution is much more sensitive to nondipole effects than
the total cross section: While for the total cross section,
nondipole effects are suppressed below ∼3 keV, in the angular
distribution they become already important for photon energies
�500 eV. As discussed previously [see Eq. (14) and the
paragraph afterwards], this is a direct consequence of the
different structure of the amplitudes M and M̃ displayed
in Eqs. (9) and (14), respectively. In particular, following
the notation used in Eq. (12), the main contribution for
the asymmetric shape of the angular distribution comes
from the (E1E1)(M1M1)∗ and (M1M1)(E1E1)∗ terms,
which are forbidden in the calculation of the total cross
section.

Figure 4 displays the angular distribution for just three
specific energy values. To present the angular distribution in
the whole energy range, we make an expansion of dσ/d� in
terms of Legendre polynomials and we normalize it to the total
cross section σ :

dσ

d�
= σ [β0P0(cos θ ) + β1P1(cos θ ) + · · ·], (15)

where βi are real numbers called anisotropy coefficients [41].
The results for the β coefficients are displayed in

Fig. 5, within the considered energy range. The first coefficient
β0 is constant for any photon energy and therefore is not
displayed; β0 ≈ 0.0796. The red dashed curves are obtained by
including only the electric and magnetic dipole contributions
(E1E1 + M1M1), while the black solid curves are obtained
by taking into account the multipoles with L1 � 4 and L2 � 4.
Those multipoles are nothing but dipole, quadrupole, octopole,
and hexadecapole moments of each photon field, both of
electric and magnetic type. From the figure, one immediately
notices that, as expected, the lower the photon energy is, the
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FIG. 4. (Color online) Angular distribution in Rayleigh scattering by atomic hydrogen in the ground state as a function of the scattering
angle θ . Results are calculated within the exact relativistic theory (solid black line) and within the electric dipole approximation (red dashed
line), for three selected photon energies.

fewer coefficients are needed for an adequate description of
the angular distribution.

As seen from Fig. 5, for low photon energies we have
β0 ≈ 2β2 and βi ≈ 0 for i �= 0,2. By explicitly writing the
definitions of Legendre polynomials, one can easily check that
the well-known shape ∼1 + cos2 θ for the angular distribution
is obtained within the (nonrelativistic) Thomson limit. In
contrast, for higher photon energies, higher-order Legendre
polynomials must be invoked to well describe the shape of
the angular distribution, as the number of multipoles that
contribute to it increases.

1 2 3 4 5
0

0.05

0.1

0.15

β 1

1 2 3 4 5
0

0.05

0.1

0.15

β 2

1 2 3 4 5
0
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β 3

1 2 3 4 5
0
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β 4
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0
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Eγ (keV)

β 5

1 2 3 4 5
0
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0.1

0.15
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β 6

E1E1 + M1M1

all multipoles
with L ≤ 4

FIG. 5. (Color online) The anisotropy coefficients βi of Eq. (15)
are plotted against the photon energy. Results obtained within the
electric and magnetic dipole approximation (red dashed line) are
compared with results obtained by taking into account all photon
multipoles with L1 � 4 and L2 � 4 (black solid line), which are
dipole, quadrupole, octopole, and hexadecapole moments of each
photon field, both of magnetic and electric type.

Although the calculations have been performed for hy-
drogen atom, the behavior of the angular distribution for
hydrogenlike ions can be qualitatively predicted, at least for
photon energies far from the ionization threshold. The angular
part of the Dirac wave function remains unchanged when
the atomic number Z is increased, while the radial part gets
contracted: The mean radius, r , of the electronic ground state
gets shrunk and scales like r  r0/Z, where r0 denotes the
radius of hydrogen atom [42]. The transition operator in Eq. (5)
contains both the angular operator r̂ and the radial operator
kr . Thus, while the action of the former will be the same for
hydrogenlike ions as for hydrogen atom, the action of the latter
will scale as kr  kr0/Z = (k/Z)r0. Eventually, therefore, for
energies far from the ionization threshold, the whole angular
distribution will scale in the energy domain with a factor of
1/Z. More explicitly, we approximately obtain the angular
distribution of photons which scatter by hydrogenlike atoms
with atomic number Z by taking the angular distribution for
hydrogen atom and replacing k → k/Z.

VI. SUMMARY AND OUTLOOK

In summary, we studied the total cross section and angular
distribution in the Rayleigh scattering of photons by hydrogen
atom, based on the Dirac relativistic equation and second-order
perturbation theory. We decomposed the transition amplitude
in terms of spherical tensors and (radial) reduced amplitudes,
where the latter include a summation over the whole atomic
spectrum. This summation was performed by means of the
finite basis-set method. The multipole expansion of the photon
fields allowed us to investigate nondipole effects both in the
total cross section and in the angular distribution. As for the
total cross section, we compared our results with previous
calculations and good agreement has been found. We then
studied the angular distribution of photons in the energy range
500 eV to 5 keV. Here we found that nondipole effects become
important at much lower energies than for the total cross
section. As discussed, this has to be attributed to the different
structure of the transition amplitude for angular distribution
and total cross section. Finally, in order to give a more practical
account of the angular distribution function, we expanded
it with Legendre polynomials and we plotted the resulting
coefficients against the photon energy, noticing an evident
convergence.

Owing to recent advances in detector technology [43],
photon polarization studies in atomic processes have lately
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become important [44–46]. Further studies are in progress to
investigate the polarization properties of the scattered photons.
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