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Phase effects in laser-induced electron-positron pair creation
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Probability rates of electron-positron pair creation in collisions of a relativistic nucleus with a two-color
laser field are calculated using the S-matrix approach. The case when both components of the laser field have
commensurate frequencies and comparable strengths is considered. Pronounced interference effects are observed
in angular distributions of created particles as well as in the total probability rates of pair production. These
interference effects show a significant phase dependence of the pair-creation process.
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I. INTRODUCTION

Recent technological progress leading to development of
ultrashort laser pulses with well-defined temporal characteris-
tics makes it possible to study and to effectively control laser-
induced processes. Strategies for controlling photoprocesses
utilize different properties of laser radiation. One of them
is the so-called coherent phase control which originally was
suggested as means to manipulate molecular reactions (for a
review, see [1]). It appeared that by applying a bichromatic
laser field such that the phase difference of both color fields
is varied, the efficiency of photoprocesses could be actively
manipulated (for a review, see [2]). The same can be achieved
by changing the carrier-envelope phase of a single laser pulse
or, similarly, of a laser pulse train. With such techniques it
becomes possible, for instance, to control the photoionization
probability yields, the electron dynamics in strong magnetic
fields, the fragmentation and space orientation of molecules,
and the efficiency of high-harmonic generation. The purpose of
the present paper is to investigate how the properties of another
laser-induced process, the so-called nonlinear Bethe-Heitler
electron-positron pair-creation process, depend on a phase
coherence of a driving laser field. Here, in particular, the
emphasis will be put on similarities and differences with
strong-field ionization.

The nonlinear Bethe-Heitler process, in which electron-
positron pairs are created in collisions of a superintense
laser beam with a beam of relativistic targets, has been
considered by many authors for a monochromatic plane-wave
laser field (for a review, see, for instance, Ref. [3], and
also Refs. [4–26]). We find interesting to generalize these
investigations by introducing a second component of the laser
field. More precisely, we shall consider two plane-wave fields
of commensurate frequencies which propagate in the same
direction but, in general, that are shifted in phase. A similar
situation has been considered for the pair-creation process by
a nonlaser photon, in which case strong interference effects
were observed [27–30]. It is the purpose of the present paper
to investigate similar effects and their dependence on the
relative phase between both component fields for the nonlinear
Bethe-Heitler process. In addition, we shall model a laser
pulse train as a bichromatic laser field, in which case the
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carrier-envelope phase effects in the pair-creation process can
also be studied.

This paper is organized as follows. In Sec. II, we present the
theory of the nonlinear Bethe-Heitler process by a two-mode
laser field, which accounts for nuclear recoil of target particles.
In Sec. III, the angular distributions of created particles are
studied as a function of the relative phase between both
color fields. In Sec. IV, we discuss possibility of applying
the presented theory to account for a train of laser pulses.
For the chosen four-vector potential describing such a laser
pulse train, three different representations are investigated.
The results for the total probability rates of pair production for
different representations of the laser pulse train are presented
in Sec. V. Finally, we summarize our results and discuss our
conclusions in Sec. VI.

II. THEORY

In the following, we keep the notation and mathematical
convention introduced in our recent works on the multiphoton
electron-positron pair creation [21,25,26]. In particular, we
present formulas in which we put h̄ = 1; however our
numerical results are presented either in relativistic units such
that c = me = 1, where me is the electron mass, or in arbitrary
units. By convention, we write a · b = aμbμ (μ = 0,1,2,3) for
a product of any two four-vectors a and b, and a/ = γ · a =
γ μaμ where γ μ are the Dirac gamma matrices; here and in
what follows, the Einstein summation convention is used.

We consider a two-color laser field represented by the four-
vector potential,

Aμ(k · x) =
2∑

i=1

A
μ

i (k · x), (1)

such that each component A
μ

i describes an elliptically polar-
ized plane wave field,

A
μ

i (k · x) = Ai0
[
ε

μ

i1 cos δi cos(nik · x + χi)

+ ε
μ

i2 sin δi sin(nik · x + χi)
]
. (2)

Here, Ai0 denotes the strength of the ith vector potential, while
the polarization four-vectors are εij = (0,εij ) (j = 1,2), such
that, for each wave, ε2

i1 = ε2
i2 = −ε2

i1 = −ε2
i2 = −1 and εi1 ·

εi2 = −εi1 · εi2 = 0. In addition, δi is an angle describing
the ellipticity of the ith field and χi describes its phase. k =
(ω/c)(1,n) is the wave four-vector, with ω being the angular
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frequency of the laser-field oscillations and n being the laser
field propagation direction. Since, for the vector potential given
by Eqs. (1) and (2), it holds that k · A1 = 0 = k · A2 and also
k2 = 0, one can derive exact relativistic solutions of the Dirac
equation coupled to the electromagnetic field.

A. Volkov waves

For a spin 1
2 particle of mass m and charge Ze (where

Z is related to the atomic number Z such that |Z| = Z, and
where e < 0 is the electron charge) that is embedded in the
electromagnetic field, the Dirac equation has the form

(i∂/ − ZeA/ − mc)ψ (β)
p,λ(x) = 0, (3)

where the solutions ψ
(β)
p,λ(x) are the so-called Volkov waves

[31]. In our case, the Volkov solutions are labeled by three
indices; while p and λ refer to the particle momentum outside
the laser focus and to its spin projection, respectively, β

distinguishes between positive- and negative-energy states
that correspond to a particle (β = +1) or to an antiparticle
(β = −1). In the most general form, these solutions are given
by (see, Ref. [21])

ψ
(β)
p,λ(x) =

√
mc2

V E p

(
1 − βZe

2k · p
A/k/

)
u

(β)
p,λe

−iβS
(β)
p (x), (4)

where u
(β)
p,λ are four-spinors satisfying the field-free equation,

(p/ − βmc)u(β)
p,λ = 0, while the phase factor is

S(β)
p (x) = p · x +

∫ k·x [
βZe

A(φ) · p

k · p
− (Ze)2 A2(φ)

2k · p

]
dφ.

(5)

In the present case, when the four-vector potential is rep-
resented by a superposition of monochromatic waves [see,
Eqs. (1) and (2)], the phase (5) can be rewritten as

S(β)
p (x) = p̄ · x + Q(β)

p (k · x), (6)

where the so-called dressed four-momentum of a particle in a
bichromatic laser field has been introduced,

p̄ = p +
2∑

i=1

(ZeAi0)2

4k · p
k. (7)

Moreover, the laser-dressed four-momentum p̄ satisfies the
effective-mass on-shell relation p̄2 = (m̄c)2, where the effec-
tive mass m̄ equals

m̄2 = m2 + 1

2
m2

eZ2
2∑

i=1

μ2
i , (8)

with μi defining the normalized amplitude of each color field,

μi = |eAi0|
mec

, i = 1,2. (9)

At this point, let us also introduce the normalized amplitude
of the two-color field,

μ =
√√√√ 2∑

i=1

μ2
i , (10)

with μi defined above. In Eq. (6), we have also introduced the
function Q

(β)
p (k · x) which, for our choice of the four-vector

potential, equals

Q(β)
p (k · x)

= β

2∑
i=1

ZeAi0

ni

εi1 · p

k · p
cos δi sin(nik · x + χi)

−β

2∑
i=1

ZeAi0

ni

εi2 · p

k · p
sin δi cos(nik · x + χi)

+
2∑

i=1

(ZeAi0)2

8ni

1

k · p
cos(2δi) sin[2(nik · x + χi)]

+ (Ze)2A10A20

2(n1 + n2)

1

k · p
sin[(n1 + n2)k · x + χ1 + χ2]

×(ε11 · ε21 cos δ1 cos δ2 − ε12 · ε22 sin δ1 sin δ2)

− (Ze)2A10A20

2(n1 + n2)

1

k · p
cos[(n1 + n2)k · x + χ1 + χ2]

×(ε11 · ε22 cos δ1 sin δ2 + ε12 · ε21 sin δ1 cos δ2)

+ (Ze)2A10A20

2(n1 − n2)

1

k · p
sin[(n1 − n2)k · x + χ1 − χ2]

×(ε11 · ε21 cos δ1 cos δ2 + ε12 · ε22 sin δ1 sin δ2)

+ (Ze)2A10A20

2(n1 − n2)

1

k · p
cos[(n1 − n2)k · x + χ1 − χ2]

×(ε11 · ε22 cos δ1 sin δ2 − ε12 · ε21 sin δ1 cos δ2). (11)

Thus, the Volkov waves (4) can be written in the form

ψ
(β)
p,λ(x) =

√
mc2

V E p

(
1 − βZe

2k · p
A/k/

)
u

(β)
p,λ

× exp
{ − iβ

[
p̄ · x + Q(β)

p (k · x)
]}

, (12)

with the aforementioned definitions of p̄ and Q
(β)
p (k · x).

B. Four-currents

With the above Volkov solutions for the ingoing particle
(antiparticle) of four-momentum pi and spin projection λi and
the outgoing particle (antiparticle) of four-momentum pf and
spin projection λf , the four-current

jμ
pfpi

(x) = ψ̄
(βf )
pf ,λf

(x)γ μψ
(βi)
pi,λi

(x) (13)

can be evaluated explicitly. Here, βi and βf denote either
a particle or an antiparticle in the initial and final states,
respectively. Substituting the corresponding Volkov waves
(12) into Eq. (13), we obtain

jμ
pfpi

(x)

= mc2

V
√

E pf
E pi

ū
(βf )
pfλf

(
1 + βf

ZeA/k/

2k · pf

)

× γ μ

(
1 − βi

ZeA/k/

2k · pi

)
u

(βi)
piλi

exp [i(βfp̄f − βip̄i) · x]

× exp
{
i
[
βfQ

(βf )
pf

(k · x) − βiQ
(βi)
pi

(k · x)
]}

, (14)

where the last line in this equation is a periodic function of
k · x and thus can be Fourier-decomposed with respect to k · x.

043404-2



PHASE EFFECTS IN LASER-INDUCED ELECTRON- . . . PHYSICAL REVIEW A 85, 043404 (2012)

Before we do this, let us introduce coefficients,

ZeAi0

ni

(
εi1 · pi

k · pi
− εi1 · pf

k · pf

)
cos δi = ai cos ηi, (15)

−ZeAi0

ni

(
εi2 · pi

k · pi
− εi2 · pf

k · pf

)
sin δi = ai sin ηi, (16)

(ZeAi0)2

8ni

(
βi

k · pi
− βf

k · pf

)
cos(2δi) = bi, (17)

for i = 1,2 and also

(Ze)2A10A20

2(n1 + n2)

(
βi

k · pi
− βf

k · pf

)
(ε11 · ε21 cos δ1 cos δ2 − ε12 · ε22 sin δ1 sin δ2) = c12 cos ξ12, (18)

− (Ze)2A10A20

2(n1 + n2)

(
βi

k · pi
− βf

k · pf

)
(ε11 · ε22 cos δ1 sin δ2 + ε12 · ε21 sin δ1 cos δ2) = c12 sin ξ12, (19)

(Ze)2A10A20

2(n1 − n2)

(
βi

k · pi
− βf

k · pf

)
(ε11 · ε21 cos δ1 cos δ2 + ε12 · ε22 sin δ1 sin δ2) = d12 cos ζ12, (20)

(Ze)2A10A20

2(n1 − n2)

(
βi

k · pi
− βf

k · pf

)
(ε11 · ε22 cos δ1 sin δ2 − ε12 · ε21 sin δ1 cos δ2) = d12 sin ζ12, (21)

with the help of which we can explicitly write

exp
{
i
[
βfQ

(βf )
pf

(k · x) − βiQ
(βi)
pi

(k · x)
]} =

2∏
i=1

exp {−iai sin(nik · x + χi + ηi) − ibi sin[2(nik · x + χi)]}

× exp {−ic12 sin[(n1 + n2)k · x + χ1 + χ2 + ξ12] (22)

−id12 sin[(n1 − n2)k · x + χ1 − χ2 + ζ12]} .

Using the following Fourier expansions:

e−iu sin θ =
∞∑

N=−∞
JN (u)e−iNθ , (23)

e−iu sin θ−iv sin(2θ+η) =
∞∑

N=−∞
BN (u,v,η)e−iNθ , (24)

where JN (u) are the ordinary and BN (u,v,θ ) are the generalized Bessel functions, we derive the Fourier decomposition of
exp{i[βfQ

(βf )
pf (k · x) − βiQ

(βi)
pi (k · x)]},

exp
{
i
[
βfQ

(βf )
pf

(k · x) − βiQ
(βi)
pi

(k · x)
]} =

∑
N

e−iNk·xGN, (25)

where the coefficients GN are

GN =
∞∑

K=−∞

∞∑
K ′=−∞

∞∑
M=−∞

∞∑
M ′=−∞

BK (a1,b1, − 2η1)BK ′(a2,b2, − 2η2)JM (c12)JM ′(d12)e−iK(χ1+η1)

× exp [−iK ′(χ2 + η2) − iM(χ1 + χ2 + ξ12) − iM ′(χ1 − χ2 + ζ12)]δN, Kn1+K ′n2+M(n1+n2)+M ′(n1−n2). (26)

Applying the Fourier expansion (25) into the definition of the four-current (14), we find that

jμ
pfpi

(x) = mc2

V
√

E pf
E pi

∞∑
N=−∞

exp [−i(Nk + βip̄i − βfp̄f) · x]J μ

N (pf,λf,βf ; pi,λi,βi), (27)
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where the coefficients J μ

N (pf,λf,βf ; pi,λi,βi) are given by

J μ

N (pf,λf,βf ; pi,λi,βi) = ū
(βf )
pf ,λf

[
γ μGN +

2∑
i=1

ZeAi0

4
cos δi

(
βf

k · pf
ε/i1k/γ

μ− βi

k · pi
γ με/i1k/

)
(eiχi GN+ni

+ e−iχi GN−ni
)

+
2∑

i=1

ZeAi0

4i
sin δi

(
βf

k · pf
ε/i2k/γ

μ − βi

k · pi
γ με/i2k/

) (
eiχi GN+ni

− e−iχi GN−ni

)

−
2∑

i=1

βiβf (ZeAi0)2

16(k · pi)(k · pf)
cos2 δiε/i1k/γ

με/i1k/
(
e2iχi GN+2ni

+ 2GN + e−2iχi GN−2ni

)

+
2∑

i=1

βiβf (ZeAi0)2

16(k · pi)(k · pf)
sin2 δiε/i2k/γ

με/i2k/
(
e2iχi GN+2ni

− 2GN + e−2iχi GN−2ni

)

−
2∑

i=1

βiβf (ZeAi0)2

32i(k · pi)(k · pf)
sin 2δi(ε/i1k/γ

με/i2k/ + ε/i2k/γ
με/i1k/)

×(
e2iχi GN+2ni

− e−2iχi GN−2ni

)
− βiβf(Ze)2A10A20

16(k · pi)(k · pf)
cos δ1 cos δ2(ε/11k/γ

με/21k/ + ε/21k/γ
με/11k/)

× (
ei(χ1+χ2)GN+n1+n2 + ei(χ1−χ2)GN+n1−n2 + e−i(χ1−χ2)GN−n1+n2 + e−i(χ1+χ2)GN−n1−n2

)
− βiβf(Ze)2A10A20

16i(k · pi)(k · pf)
cos δ1 sin δ2(ε/11k/γ

με/22k/ + ε/22k/γ
με/11k/)

× (
ei(χ1+χ2)GN+n1+n2 − ei(χ1−χ2)GN+n1−n2 + e−i(χ1−χ2)GN−n1+n2 − e−i(χ1+χ2)GN−n1−n2

)
− βiβf(Ze)2A10A20

16i(k · pi)(k · pf)
sin δ1 cos δ2(ε/12k/γ

με/21k/ + ε/21k/γ
με/12k/)

× (
ei(χ1+χ2)GN+n1+n2 + ei(χ1−χ2)GN+n1−n2 − e−i(χ1−χ2)GN−n1+n2 − e−i(χ1+χ2)GN−n1−n2

)
+ βiβf(Ze)2A10A20

16(k · pi)(k · pf)
sin δ1 sin δ2(ε/12k/γ

με/22k/ + ε/22k/γ
με/12k/)

× (
ei(χ1+χ2)GN+n1+n2 − ei(χ1−χ2)GN+n1−n2 − e−i(χ1−χ2)GN−n1+n2 + e−i(χ1+χ2)GN−n1−n2

)]
u

(βi)
pi,λi

. (28)

From now on, we take over from our earlier works [21,25]
the derivation of probability rates of e−e+ pair creation in
laser-nucleus collisions, with an exact account for a nuclear
recoil. For the convenience of the reader, we present in the
following section the final formulas expressing the probability
rates of the process under consideration.

C. Probability rates of pair production

As has been derived in Refs. [21,25], the total probability
rates of electron-positron pair creation during the laser-nucleus
impact process W is

W ≡
∑
N

WN =
∑
N

∫
d3qfd

3pe−d3pe+
∑
{λ}

Z2α2m2
eM

2
Nc9

2π3

× |tN |2
Eq i

Eqf
E pe− E pe+

δ(4)(q̄i − q̄f − p̄e− − p̄e+ + Nk).

(29)

Similar to the monochromatic case [21,25], N is interpreted as
a net number of photons absorbed from the laser field, whereas

WN in Eq. (29) defines the N -photon partial probability rate
of pair creation. α = e2/(4πε0c) is the fine structure constant
and MN is the nucleus mass. Moreover, we keep pe− and pe+

as the electron and positron four-momenta, respectively, qi

and qf as the initial and the final nucleus four-momenta, all
of them measured outside of the laser focus. On the contrary,
p̄e− ,p̄e+ ,q̄i, and q̄f relate to the particles dressed by the laser
field; these momenta are defined by Eq. (7). Hence, the delta
function that is present in Eq. (29) determines the dressed
four-momenta conservation condition. In Eq. (29), the symbol∑

{λ} stands for averaging with respect to the initial-spin
and summation over the final-spin degrees of freedom of all
particles, ∑

{λ}
= 1

2

∑
λi=±

∑
λf=±

∑
λe−=±

∑
λe+=±

. (30)

We have also introduced there the matrix element tN ,

tN =
∑
L

Cμ

N−L(pe−λe− ,pe+λe+)D̃μν(q̄i − q̄f + Lk)

×F ν
L(qfλf,qiλi), (31)
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which is the sum over all N -photon processes in which L

laser photons are exchanged between the nucleus and the field.
Defining the matrix tN , we have used the following definitions:

Cμ

N (pe−λe− ,pe+λe+) = J μ

N (pe− ,λe− ,1; pe+ ,λe+ , − 1), (32)

Fμ

N (qfλf,qiλi) = J μ

N (qf,λf,1; qi,λi,1), (33)

where J μ

N is given by Eq. (28), and

D̃μν(q̄i − q̄f + Lk) = − gμν

(q̄i − q̄f + Lk)2
. (34)

At this point, let us note that the photon propagator (34) has
poles if only (q̄i − q̄f + Lk)2 = 0, and that these poles are
the reason the matrix tN diverges; the effect is known as
the Oleinik resonances [25,32–35]. It has been recognized,
however, in Ref. [22] that these resonances can be turned into
finite resonances if a laser pulse, instead of a plane wave, is
considered. For this reason, we modify the photon propagator
such that instead of 1/Q2 we introduce 1/(Q2 + iε) where ε

relates to the laser pulse length τ such that ε = 2k0/(cτ ). The
same regularization of the photon propagator has been used
in our most recent paper where the pair creation induced by a
monochromatic laser field was considered [26].

III. RELATIVE PHASE EFFECTS

Our foregoing investigations focus on phase effects in the
electron-positron pair-creation process by a two-mode laser
field. In this section, we shall analyze angular distributions
of product particles as they vary with the relative phase, χ ≡
χ2 − χ1, of the two-color field.

To define angular distributions of produced electrons
(positrons), let us go back to the definition of the partial
probability rates of pair creation, WN , given by Eq. (29).
This equation can be simplified due to the presence of the
corresponding delta function. As we have already shown in
our previous work [21], this leads to

WN =
∑

�

∫
dEqf

d�qf
d� pe− R

(�)
N (qf, p̂e− ), (35)

where R
(�)
N (qf, p̂e− ) is the triply differential probability rate of

pair production for the case when the value of energy transfer
from the colliding nucleus as well as orientations of the nucleus
and the created electron are fixed. We do not present here the
explicit form of R

(�)
N (qf, p̂e−); however, for further details on

derivations of R
(�)
N (qf, p̂e− ) and its final form we encourage the

reader to see Ref. [21]. At this point, let us only mention that
the triply differential probability rate of pair creation is defined
in terms of the matrix element tN (31) where the summation
over the number of photons L exchanged by the nucleus with
the e−e+ pair occurs. As we recognized in our previous works
on pair creation by a monochromatic laser field [21,25], in
many cases one can disregard the dressing of the nucleus by
the laser field. This is related to the fact that the correction to the
rest-mass energy squared of the nucleus, due to the presence
of the laser field, equals (Zμmec

2)2/2, which is much smaller
than the rest-mass energy squared of the nucleus itself. The
same argument holds for a pair creation by a bichromatic
laser field, which is considered in this paper. For this reason,

we assume that there is a zero-photon exchange between the
nucleus and the pair, L = 0. Thus, all the results presented
here are for this case.

Before we proceed with presenting numerical results, let us
remind the reader that, if the target particle is countermoving
toward the laser beam at a large Lorentz factor γ , then in its rest
frame both the laser frequency and the laser-field strength are
increased by roughly a factor of 2γ [7–9]. In other words, for
currently available ultra-intense laser pulses, the electric field
experienced by the target particle during its collision with the
laser beam approaches, in fact, the critical Schwinger value
[36,37]. This makes it promising to observe experimentally
the electron-positron pairs through the nonlinear Bethe-Heitler
scenario. To make the process more effective, in the present and
the subsequent sections, we consider the head-on configuration
of a laser beam with a relativistic target. More precisely, we
consider the situation when the laser field propagates along
the z axis, such that the wave vector is k = −(ω/c)ez, and
each component of the two-color field is linearly polarized
with the polarization vector along the x axis. For a colliding
nucleus we take a proton. From now on, all quantities are
specified in the reference frame where the proton is initially at
rest, meaning that q i = 0. Moreover, in this section we assume
that the colliding proton is reflected in the direction of the laser
field propagation, with qf = −2mecez (in the chosen reference
frame).

At this point let us make a brief comment on recoil effects in
laser-induced pair creation. We have investigated this problem
in great detail in our recent papers dealing with pair creation
by a monochromatic laser field [21,25,26]. In particular, in
Ref. [21] we have demonstrated that a zero-momentum recoil
is forbidden by the energy and momentum conservation laws.
In addition, we have noted that the most pronounced signal of
produced pairs is observed for the momentum transfer from
the colliding particle roughly between mec and 2mec, which
seems does not depend very much on the laser field parameters.
Since the same stays true for the bichromatic case that is under
investigation now, we present here numerical illustrations for
a specific choice of the proton final momentum, as specified
above. In fact, we have performed calculations for other
choices of the proton momentum transfer which still lead to
considerable signal of produced pairs. We have observed that,
for smaller values of qf and for typical parameters of the laser
field considered in this paper, the pairs are produced in a very
small cone along the propagation direction of the laser field.
For the present choice of qf we find, however, that the pairs can
be produced in any direction with respect to k, which makes
this case particularly interesting for numerical illustrations.
Here, the number of photons which are absorbed from the
laser field, N , is fixed in order to analyze the dependence
of RN (qf, p̂e− ) = ∑

� R
(�)
N (qf, p̂e− ) on the electron detection

angles, θe− and ϕe− .
Figures 1 and 2 show the angular maps of the triply

differential probability rates of pair production by 5 laser
photons (N = 5), R5(qf, p̂e−), and by 183 laser photons (N =
183), R183(qf, p̂e− ), respectively. The results are for the case
when, in the chosen reference frame, the Doppler up-shifted
frequency of the basic-color field is ω = mec

2, and where
n1 = 1, n2 = 2, whereas the strengths of each field component
are equal; μ1 = μ2 = 1 in Fig. 1 and μ1 = μ2 = 10 in Fig. 2.
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FIG. 1. (Color online) Angular maps of R5(qf, p̂e− ) for the case
when ω = mec

2 (in the chosen reference frame), n1 = 1, n2 = 2,
and μ1 = μ2 = 1. The momentum transfer from the colliding proton
is qf = (0,0, − 2mec). Each panel corresponds to a different relative
phase of both color fields. Here, the angles θe− and ϕe− are the electron
spherical angles measured in the coordinate frame such the z axis is in
the opposite direction to the laser field propagation direction, whereas
the x axis is along the polarization direction of both color fields.

The results are for chosen relative phases χ , as specified
in each panel. In both figures, one can see that angular
distributions of the created particles do depend on the relative
phase of both color fields, which is similar to strong-field
ionization in the nonrelativistic regime [2,38–40]. However,
contrary to strong-field ionization in the nonrelativistic regime,
in the case of pair creation, electrons are predominantly
created at polar angles θe− close to π , which is in the
direction of the laser field propagation. The same has been
observed for relativistic ionization [41,42] and has been

FIG. 2. (Color online) Same as Fig. 1 but for the 183-photon pair-
creation process, R183(qf, p̂e− ), and for an even stronger laser field
such that μ1 = μ2 = 10. For visual purposes, the rates R183(qf, p̂e− )
have been raised to power 1/5.

FIG. 3. (Color online) Angular maps of R5(qf, p̂e− ) (left panel)
for the case when ω = mec

2, μ1 = √
2, and μ2 = 0. The right column

shows R183(qf, p̂e− ) for the same parameters except that μ1 = 10
√

2.
In each case, the momentum transfer from the colliding proton is
qf = (0,0, − 2mec). For visual purposes, the rates R183(qf, p̂e− ) have
been raised to power 1/5.

realized to be a general feature of nonperturbative multiphoton
phenomena that involves ultrastrong laser fields. As was stated
in Refs. [41,42], while in the relativistic regime the motion
of electrons in the direction of the laser field propagation is
driven by the magnetic component of the Lorentz force, in the
nonrelativistic regime this effect is marginal. In particular, for
nonrelativistic strong-field ionization by a linearly polarized
laser field, the photoelectrons are detected in the direction of
the polarization vector. One may argue that the nonrelativistic
ionization rates are more sensitive to instantaneous value of
the electric field component than the rates of pair creation or
the rates of relativistic ionization. The former is confirmed
by the present calculations of the total probability rates of
pair creation, which appear to be independent of the relative
phase of both color fields. The total probability rates of
nonrelativistic strong-field ionization, on the other hand, do
depend on the relative phase of the bichromatic laser field
(see, for instance, [2,39,40]). We are not aware however of
any calculations for ionization by a bichromatic laser field
in the relativistic domain, which makes further comparison
impossible.

Comparing Figs. 1 and 2, one can note that created particles
are more focused around the laser field propagation direction in
Fig. 2 than in Fig. 1, which is for a bigger momentum transfer
from the laser photons. This is forced by the four-momentum
conservation condition which, for a bigger momentum transfer
from the laser beam, can be satisfied only if the created parti-
cles basically follow the propagation direction of laser photons.
In Fig. 2, one can also observe two very distinct thresholds,
which appear at θe− close to π , and which do not depend on
the relative phase χ . With similar thresholds we have dealt
in the monochromatic case considered in Ref. [21]. These
were recognized to mark borders between different sectors of
pair creation, as defined by the four-momentum conservation
condition (for more details, see [21]). Since this conservation
condition has only one solution for the parameters chosen in
Fig. 1, there is no similar threshold observed there. In fact,
results for pair creation by a monochromatic laser field are
also presented here. In Fig. 3, we show angular maps for
5-photon pair creation by a monochromatic laser field (left
panel) for the case when ω = mec

2, μ1 = √
2, and μ2 = 0.

In the right panel, we show similar results for the 183-photon
process such that μ1 = 10

√
2. The results are for the rescaled
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parameter μ1 such that the threshold energy of pair creation is
the same as in Figs. 1 or 2 (see discussion in Sec. IV). As one
can see, also in the monochromatic case there are no similar
borders for 5-photon pair production, whereas they appear
for the 183-photon process. Let us also mention that similar
sectors do not appear in nonrelativistic strong-field ionization,
since in this case the energy conservation condition has only
one solution. Moreover, the presented angular distributions for
both mono- and bichromatic cases show sidelobes, the number
of which increases with increasing the number of absorbed
laser photons. As we have already argued in Ref. [21], these
sidelobes are observed due to interference of different paths
along which the process can be realized (for an illustration, see
Fig. 2 of Ref. [21]). In addition, in the case of a bichromatic
laser field, different numbers of photons from each color-field
can be absorbed with significant probabilities. Since for
the chosen parameters characterizing the bichromatic laser
field there is fewer significant paths necessary for the same
N -photon process to occur, as compared to the monochromatic
case, fewer sidelobes in angular distributions are also observed.
This is very clear when comparing Fig. 1 and the left panel of
Fig. 3, which are for the 5-photon process. For higher-photon
processes the same stays true, although an additional structure
can also appear (see right panel of Fig. 3 as compared to Fig.
2 for the 183-photon process).

As we have already mentioned, even though the angular
distribution of pair creation does depend on the relative phase
of both color fields, the total probability rates of pair creation
practically do not depend on this phase. It is more interesting,
therefore, to analyze the carrier-envelope phase effects in the
pair-creation process, which shall be done in the following
sections.

IV. CHOICE OF SHAPE FUNCTION

In order to analyze the carrier-envelope phase effects in the
nonlinear Bethe-Heitler process we need to account for a finite
laser pulse or for a train of laser pulses. Let us concentrate on
the latter case. Thus, we describe a train of linearly polarized
laser pulses for which the four-vector potential can be written
as

Aμ(k · x) = A0ε
μf (k · x,{χ}) , (36)

with f being the shape function such that it can depend on
various phase-related parameters {χ}. Even though the theory
developed in this paper is not strictly applicable to treat pulse
trains, we will demonstrate in the next section that it can still
be used in a particular case. The case that we have in mind is
the pulse train described by the following shape function:

ftrain(k · x,χ ) = sin4(k · x) sin(k · x + χ ), (37)

where χ is the so-called carrier-envelope phase.

A. Shape function f (k · x,χ )

Let us analyze the bichromatic laser field that is linearly
polarized, meaning that δ1 = δ2 = 0 and εi1 ≡ ε (for i = 1,2)
in Eq. (2). In other words, the actual form of the four-vector
potential describing a two-color field is given by Eq. (36). More
specifically, we take the following shape function describing
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0.5
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0.1

0.2

0.3

k · x/π
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χ = 0.5π

FIG. 4. (Color online) Comparison of two shape functions
ftrain(k · x,χ ) given by Eq. (37) (red dashed line) and f (k · x,χ )
described by Eq. (38) (blue solid line) for chosen values of the
carrier-envelope phase χ [χ = 0 (upper panel) and χ = π/2 (lower
panel)].

the two-color laser field:

f (k · x,χ ) = 1
16 [6 sin(k · x + χ ) + 4 sin(k · x − χ )

− 4 sin(3k · x + χ ) − sin(3k · x − χ )], (38)

which can be also written as

f (k · x,{χ}) = f1 cos(n1k · x + χ1) + f2 cos(n2k · x + χ2),

(39)

where n1 = 1 and n2 = 3, and where

f1 = 1
8

√
1 + 24 cos2 χ, tanχ1 = −5cotχ, (40)

f2 = 1
16

√
9 + 16 cos2 χ, tanχ2 = − 5

3 cotχ. (41)

One can easily see that, in the present case, the laser field
has only the first and the third harmonics. At this point, it is
important to realize that the chosen shape function gives a good
approximation of the laser pulse train (37). In Fig. 4, we present
a comparison of the shape function f (k · x,χ ) [Eq. (38)] with
the exact shape of the laser pulse train ftrain(k · x,χ ) [Eq. (37)]
for two chosen phases χ = 0 and χ = π/2. One can see a
very good agreement between both shape functions for χ =
0 which deteriorates however for χ = π/2. In fact, one can
check that both functions (37) and (38) differ by a term,

ftrain(k · x,χ ) − f (k · x,χ ) = 1
16 sin(5k · x + χ ), (42)
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that contains the fifth harmonic. This suggests that, in order to
treat the above-mentioned pulse train (37) exactly, one would
need to develop the respective formalism for a three-color field.
This is, however, beyond the scope of the present paper.

For convenience, from now on we shall refer to Eq. (38)
rather than to Eq. (39) when discussing the shape function f .
Thus let us note that the function under consideration (38) can
be also represented as

f (k · x,χ ) =
∞∑

N=−∞
fN (χ )e−iNk·x, (43)

where the only nonzero harmonics are

f1(χ ) = f ∗
−1(χ ) = 1

32i
(−6e−iχ − 4eiχ ), (44)

f3(χ ) = f ∗
−3(χ ) = 1

32i
(4e−iχ + eiχ ). (45)

As one can understand, the temporal shape of the electric
field corresponding to this shape function depends critically
on the carrier-envelope phase χ . In general, this is the case
for any laser field characterized by a carrier-envelope phase.
Consequently, a process like ionization (see, for instance,
Ref. [43]) or a nonlinear Bethe-Heitler process depends
strongly on χ . The latter will be illustrated in Sec. V.

Except for f (k · x,χ ), let us also define the normalized
shape functions fU(k · x,χ ) and fI(k · x,χ ) such that the
ponderomotive energy of the free particle’s oscillations in
the two-color laser field or the mean intensity carried by
the two-color laser field, respectively, do not depend on the
carrier-envelope phase χ . This is particularly important when
comparing the probability rates of a given process that is
induced by different laser pulses, or by different laser-pulse
trains. Let us note that, in general, for multichromatic laser
fields with specified relative phases discussed in Sec. III, both
the ponderomotive energy and the mean laser-field intensity do
not depend on those phases. The situation is different however
for laser fields which are characterized by the carrier-envelope
phase.

B. Shape function fU(k · x,χ )

It is important to realize that the pair-creation threshold
energy depends on the ponderomotive energy of an electron
(positron) U that moves freely in a laser field. More precisely,
the threshold energy for the electron-positron pair-creation
process is 2m̄ec

2, where the dressed mass of electron is
such that (m̄ec)2 = (mec)2 + 2meU . Let us recall that the
ponderomotive energy U is the cycle-averaged energy of the
charged particle’s quiver oscillations in a laser field. For a
particle of charge Ze and a four-momentum p, one can define
it as a zero-component of the following four-vector:

Uμ =
〈
− (Ze)2A2(k · x)

2p · k

〉
ckμ, (46)

where 〈· · ·〉 stands for averaging with respect to the field
oscillations. For the electron (Z = 1), the ponderomotive
energy in its rest frame of reference is

U = U0 =
〈
−e2A2(k · x)

2me

〉
, (47)

which in our case gives

U = (eA0)2

2me
〈f 2(k · x,χ )〉 = 1

2
mec

2μ2〈f 2(χ )〉. (48)

Here and in all subsequent sections, μ is defined as μ = |eA0|
mec

.
In addition, we understand that

〈f 2(χ )〉 = 1

2π

∫ 2π

0
dφf 2(φ,χ ). (49)

As we have mentioned before, for a bichromatic laser field
characterized by a carrier-envelope phase χ , the ponderomo-
tive energy depends on χ . This can be illustrated for the case
discussed in Sec. IV A, for which the ponderomotive energy
equals

U = 1
210 mec

2μ2(13 + 112 cos2 χ ). (50)

One can expect therefore that the rate of pair production would
be smaller in this case for χ = 0 than for χ = π/2, because for
χ = π/2 the ponderomotive energy (50) (and so the threshold
energy) is minimal. This may suggest that, in order to compare
the rates of pair creation for different envelope phases χ , one
should in fact compare the results obtained for such shape
functions,

fU(k · x,χ ) = NU(χ )f (k · x,χ ), (51)

that would lead to the same ponderomotive energy. This can
be accomplished, for instance, if the condition

〈
f 2

U

〉 = 1

2π

∫ 2π

0
dφf 2

U(φ,χ ) = 1

2
(52)

is imposed; here, the normalization constant is chosen to
correspond to the monochromatic case. In closing this section,
let us note that in order to satisfy Eq. (52) for the case
considered in Sec. IV A, one has to use the following
normalization NU(χ ):

1

NU(χ )
=

√
1

28
(13 + 112 cos2 χ ). (53)

Thus, introducing a similar Fourier decomposition of the
function fU(k · x,χ ) as given by Eq. (43),

fU(k · x,χ ) =
∞∑

N=−∞
fU,N (χ )e−iNk·x, (54)

we obtain that

fU,N = NU(χ )fN (χ ), (55)

where the only nonvanishing harmonics are those with N =
±1, ± 3.

C. Shape function fI(k · x,χ )

Another choice of the shape function that is of physical
significance when analyzing the phase effects in laser-induced
processes would be to normalize it such that the mean intensity
carried out by the laser field is phase independent. This also
means that the mean energy of the laser field does not depend
on the carrier-envelope phase, which we believe is the situation
mostly met in experiments.
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Let us remind the reader that the mean intensity of the laser
field I is defined as the averaged over the period of oscillations
T the energy flux of the electromagnetic field, represented by
the Poynting vector [44]. Hence,

I = c

(
2π

T

)2

A2
0ε0

〈
[f ′]2

〉 = m2
ec

3ε0μ
2

e2

(
2π

T

)2

〈[f ′]2〉,
(56)

where ε0 is the vacuum permittivity and f ′ stands for the
derivative of the shape function f (k · x,χ ) with respect to its
first argument. One can check that for a monochromatic laser
field,

I = m2
ec

3ε0μ
2ω2

2e2
. (57)

Having established this, we define the normalized shape
function fI(k · x,χ ),

fI(k · x,χ ) = NI(χ )f (k · x,χ ), (58)

such that its derivative fulfills

〈[f ′
I ]2〉 = 1

2π

∫ 2π

0
[f ′

I (φ,χ )]2dφ = 1

2
. (59)

As we can understand from Eq. (56), each shape function
satisfying the above condition leads to the same average laser
field intensity (57). We find out that in the case considered in
this paper [i.e., when f is given by Eq. (38)], this is achieved
if only

1

NI(χ )
=

√
1

28
(85 + 240 cos2 χ ). (60)

Having this in mind, we can also introduce the Fourier
expansion of the respective shape function, such that

fI(k · x,χ ) =
∞∑

N=−∞
fI,N (χ )e−iNk·x, (61)

with

fI,N = NI(χ )fN (χ ), (62)

and N = ±1, ± 3.
The phase dependence of the normalization coefficient

NI(χ ) is shown in the last panel of Fig. 5. In the same panel, the
phase dependence of the normalization constant NU(χ ) is also
illustrated. Both of these coefficients show a double-hump
structure which shows pronounced peaks for χ = π/2 and
χ = 3π/2. One can also observe that NI(χ ) exhibits more
smooth dependence on χ than NU(χ ). In the remaining panels
of Fig. 5, we show each shape function f (k · x,χ ), fI(k · x,χ ),
and fU(k · x,χ ) for chosen phases: χ = 0,π/4, and π/2. In
each case, we observe three maxima whose relative heights
change, however, depending on the value of χ . For each shape
function, the most modified shapes are achieved for χ = π/2.

In Fig. 6, we present modulus of the first and the third
harmonic components for three different shape functions,
namely, fN (χ ) (blue dash-dotted line), fU,N (χ ) (solid red
line), and fI,N (χ ) (black dashed line), where N is either 1 or 3.
Depending on normalization, we note a qualitative difference
between fU,N (χ ) and fI,N (χ ), as compared to fN (χ ). The
difference is not very obvious for the first harmonic, as each
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FIG. 5. (Color online) Shape functions f (k · x,χ ), fU(k · x,χ ),
and fI(k · x,χ ) [defined by Eqs. (38), (51), and (58), respectively] for
three chosen values of the carrier envelope phase χ [χ = 0 (blue solid
line), χ = 0.25π (red dashed line), and χ = 0.5π (black dash-dotted
line)]. The last panel shows the dependence of the normalization
factors NU(χ ) and NI(χ ) on the phase χ .

shape function exhibits a minimum at χ = π/2 and 3π/2.
The situation changes for the third harmonic. In this case,
f3(χ ) exhibits a minimum at the above-mentioned values,
whereas fU,3(χ ) and fI,3(χ ) show maxima there. These
maxima are particularly pronounced for fU,3(χ ). As we shall
recognize later on, this difference dramatically modifies the
total probability rates of pair creation, when comparing them
for different shape functions.

V. CARRIER-ENVELOPE PHASE EFFECTS

Here we present the results for total probability rates of pair
creation, which were obtained for each of the discussed shape
functions defining the laser field. In doing so, we use the Monte
Carlo method developed in Ref. [11]. In Fig. 7, we show the
respective total rates of pair production that were calculated
for different values of the envelope phase χi = iπ/8, where
i = 0, . . . ,16. Each of the calculated values was obtained as
the average of more than 109 sample points in each Monte
Carlo run. The relative standard deviation for these data was
estimated between 0.001 and 0.01. The results presented are
still for ω = mec

2 (in the reference frame where q i = 0) and
for different values of the parameter μ such that μ = 0.01,
0.1, and 1 (from bottom to top). The data corresponding to
different shape functions are marked as diamonds [for f (k ·
x,χ )], circles [for fU(k · x,χ )], and squares [for fI(k · x,χ )].
Even though for a given shape function, the dependence of
total probability rates on the phase χ is very similar regardless
μ, one should recognize that the rates grow in magnitude
significantly with increasing the parameter μ. By comparing
Fig. 6 and Fig. 7, we also observe that qualitative behavior of
total probability rates of pair creation presented in Fig. 7 is
dominated by the behavior of the third harmonic. Thus, the
question arises whether the one-photon pair-creation process
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FIG. 6. (Color online) Modulus of the first and the third harmonic
components for three shape functions considered in this paper; the
solid red line corresponds to fU,N (χ ), the black dashed line is for
fI,N (χ ), whereas the blue dash-dotted line is for fN (χ ).

by the 3ω laser field is dominant in this case. To answer this
question, we analyze the ratio of the total probability rates of
pair creation R(χ ) and the intensity carried out by the third
harmonic, H [3](χ ),

R[3](χ ) = R(χ )

H [3](χ )
. (63)

Here, H [3](χ ) is defined as μ2|f3(χ )|2 for the unnormalized
shape function, μ2|f3,U(χ )|2 in the case of the shape func-
tion normalized with respect to the ponderomotive energy
experienced by an electron in the two-color field, whereas
μ2|f3,I(χ )|2 is for the shape function normalized with respect
to the intensity of the two-color field. Let us note that, if
the one-photon process by the third harmonic was indeed
dominant, the ratio defined by Eq. (63) should not depend
on the phase χ , and should be the same for all normalizations
considered. In Fig. 8, we show the respective ratio as a function
of the phase χ for the laser field parameters ω = mec

2 (in
the chosen reference frame) and μ = 1. In the upper panel,
the results for the normalized shape functions are presented
such that circles correspond to the choice of fU(k · x,χ )
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FIG. 7. (Color online) Total probability rate of pair creation
as a function of the phase χ for the case when the laser-field
frequency is ω = mec

2 (in the chosen reference frame), whereas
μ = 1 (upper-most panel), μ = 0.1 (middle panel), and μ = 0.01
(lower-most panel). In each panel, the results obtained for different
shape functions discussed in this paper [i.e., f (k · x,χ ) (diamonds),
fU(k · x,χ ) (circles), and fI(k · x,χ ) (squares)] are presented.

whereas squares are for fI(k · x,χ ). In the lower panel of
Fig. 8, we show the results obtained for the unnormalized
shape function f (k · x,χ ). Since none of the considered cases
show a constant behavior as a function of χ , we conclude that
interference of the one-photon and the three-photon processes
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FIG. 8. (Color online) Dependence of the ratio defined by Eq. (63)
on the carrier-envelope phase χ for ω = mec

2 (in the chosen reference
frame) and μ = 1. In the upper panel, we present the results for the
case when the shape function is either normalized with respect to
the ponderomotive energy (circles) or with respect to the intensity
of the laser field (squares). In the lower panel, the results for the
unnormalized shape function are shown (diamonds).

plays here a crucial role. A qualitatively different situation
is met for less-intense laser fields, particularly for the laser
fields described by the parameters μ = 0.01 and μ = 0.1.
Even though we do not present here the respective results, we
have checked that in these cases the ratio defined by Eq. (63)
exhibits a flat dependence on the carrier-envelope phase χ and
is independent on the chosen normalization. This proves that,
for weaker laser fields, the one-3ω-photon process is dominant,
which is a perturbative result.

It follows from our analysis that, while in the case
considered in this paper and for the laser field corresponding
to μ = 0.01, or 0.1 we deal with a perturbative pair creation,
thus for μ = 1 the process has a nonperturbative character.
In the latter case, we conclude from Fig. 8 that the efficiency
of pair production by the 3ω component of the laser field,
which is defined by Eq. (63), does depend on the envelope
phase χ in a nontrivial way. Also from Fig. 8, we see a
qualitative difference between the results obtained for different
shape functions of the laser field. In the case when the shape
function is either not normalized or normalized with respect
to the ponderomotive energy, we observe a maximum for the

envelope phases χ = π/2 and 3π/2. On the opposite, if the
shape function is normalized with respect to the intensity
of the laser field, we see a dip for those values of χ . This
proves that there is a strong interference between probability
amplitudes which lead to the same final state of created
particles.

In closing this section, let us comment on a flat phase-
dependence of total probability rates of pair creation in the
case when the shape function is normalized with respect to the
laser field intensity (see Fig. 7). As we have mentioned before,
such a χ -dependence of the total probability rates for the shape
function fI(k · x,χ ) is governed by a similar flat behavior of
fI,3(χ ) and thus is characteristic to our choice of the shape
function. If we choose the same shape function f (k · x,χ ) to
characterize the electric field, rather than the vector potential,
the normalization to the laser field intensity in this case will
correspond to the normalization introduced in Sec. IV B for
fU(k · x,χ ). We have checked that, for this new choice of
the shape function, a more significant carrier-envelope-phase
dependence of total probability rates can be observed for the
intensity-like normalization. In order to analyze this issue for
other choices of the shape function, a more general approach
developed for a multicolor laser field is necessary. This is
beyond the scope of this paper but will be analyzed in the near
future.

VI. CONCLUSIONS

We have studied electron-positron pair creation in the laser-
nucleus-beam collisions, where a laser field has been modeled
as a two-color field, and where nuclear recoil has been taken
into account. We have analyzed the case where the frequencies
of the two color-fields are commensurate. In particular, we
have considered the superposition of the first and the third
harmonic of the laser field, which is particularly interesting in
the context of pair creation by a pulsed laser field.

Our main objective was to study phase effects in the
laser-induced pair-creation process. We have observed a very
pronounced dependence of angular distributions of the created
pairs on the relative phase of a two-color field. On the contrary,
the total probability rates of pair creation have turned out to
be independent on the relative phase of a bichromatic laser
field. For this reason, we have proceeded with analyzing the
carrier-envelope phase effects in the case of a laser pulse train,
which we have approximated by a bichromatic laser field. In
this case, we have analyzed different forms of the four-vector
potential describing the two-color laser field: the unnormalized
one and normalized such that either the ponderomotive energy
of the free particle oscillations in the two-mode laser field
or the mean intensity carried by this field is independent of
a carrier-envelope phase. For typical parameters of the laser
field considered in this paper, which are in the nonperturbative
regime, we have observed very pronounced interference effects
in both angular distributions of created particles and in total
probability rates of pair creation. The next step will be
to analyze similar effects in the pair-creation process by
a single laser pulse, which however requires to develop a
new mathematical and numerical approach. This is under
investigation now.
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[15] K. Krajewska and J. Z. Kamiński, Laser Phys. 18, 185 (2008).
[16] C. Deneke and C. Müller, Phys. Rev. A 78, 033431 (2008).
[17] C. Müller, Phys. Lett. B 672, 56 (2009).
[18] E. Lötstedt, U. D. Jentschura, and C. H. Keitel, New J. Phys. 11,

013054 (2009).
[19] S. J. Müller and C. Müller, Phys. Rev. D 80, 053014 (2009).
[20] A. Di Piazza, E. Lötstedt, A. I. Milstein, and C. H. Keitel, Phys.

Rev. A 81, 062122 (2010).
[21] K. Krajewska and J. Z. Kamiński, Phys. Rev. A 82, 013420
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