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We have measured the evolution with depth z of the vicinage effect and Coulomb explosion for H2
+ and

H3
+ molecular ions traversing thick, uniform amorphous targets of Si3N4 and SiO2. High depth resolution is

achieved by scanning the energy per nucleus of the incoming molecules Eb around the energy ER corresponding
to narrow resonances in the cross sections of 18O(p,α)15N at 151 keV and in 15N(p,αγ )12C at 429 keV. The
corresponding reaction yield Y (Eb) is, to first order, inversely proportional to the stopping force Smol on the
molecular fragments, giving a direct image of the evolution of the vicinage effect and Coulomb explosion with z.
At the target surface, the vicinage effect enhances the stopping force on the molecules by a factor χ > 1. As they
penetrate the matter, the distance between the molecule nuclei increases, as a consequence of Coulomb explosion
and multiple scattering lateral displacement, and the vicinage effect decreases with depth z. The experiment
yields information on the screened Coulomb repulsive potential via the repulsion velocity V lim observed at large
z, where the distances Rij between the molecule nuclei are large compared to the adiabatic cutoff Rad (no vicinage
effect). We show that the first order view, that Y (Eb) ∝ S−1

mol, is profoundly modified by the energy fluctuations
induced by the Coulomb explosion and lateral multiple scattering. Our observations are satisfactorily reproduced
when modeled using a dynamic screening radius rs in the range Rad (for H3

+) to 2Rad (for H2
+) for the Coulomb

explosion and the evolution with Rij of χ given by the dielectric model for the interaction of the exploding
molecules with the target electron gas.

DOI: 10.1103/PhysRevA.85.042901 PACS number(s): 34.50.Bw, 79.77.+g

I. INTRODUCTION

When a high-velocity molecular ion (n atoms) travels
in a dense medium, the stopping force on each ion of the
molecule is partially due to the polarization of the medium
induced by the neighboring ions of the molecule. The stopping
force Smol on the molecule is hence different from the value
Sadd given by a simple additivity rule (χ = Smol/Sadd �= 1).
This phenomenon is the vicinage effect, which has been
studied both experimentally [1–5] and theoretically [6–11]
over several decades. Depending on the ion velocity Vion, the
distance Rij between the nuclei (i = 1,n, j = i + 1,n), the
orientation of the molecule, and the medium, χ may be larger
or smaller than 1.

As they penetrate into matter, the nuclei composing the
molecule are progressively separated, a consequence of both
screened Coulomb repulsion (“Coulomb explosion”) and
lateral displacement induced by multiple scattering (MS) on
each nucleus of the molecular ions. Multiple scattering is by
far dominated by elastic collisions of these nuclei on target
nuclei screened by their own electrons. Thus, the distance
Rij between the nuclei of the molecule, initially equal to R0,
increases with traveled depth z. When Rij exceeds the adiabatic
cutoff Rad = Vion/ωp (where Vion is the translation velocity of
the molecule in the target frame and ωp is a plasmon frequency
associated with the loosely bound target electrons), typically
Rij � 2Rad, each ion travels as an independent particle; that
is, χ � 1. On the contrary, a strong vicinage effect (χ �= 1) is
observable for small Rij , typically for Rij � Rad.
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From a theoretical point of view it is of great interest to
follow the molecular breakup dynamics and vicinage effect
experimentally from the state corresponding to the initial
molecule to that of fully independent nuclei. In a recent short
communication [12], we showed that this is possible with high
depth resolution by recording yield curves in the vicinity of
narrow resonances of nuclear reactions. In practice, molecular
beams are sent onto thick layers of uniform composition
(traversed path length zmax) formed on an inert substrate.
The beam nuclei may induce on one of the layer elements
a nuclear reaction with a cross section presenting a narrow
resonance (resonance energy ER). One then measures the
nuclear reaction yield Y (Eb) as a function of the beam energy
Eb per nucleon when the energy per incoming nucleus is
close to ER (see Sec. II). The path length zmax is chosen
such that the nuclei reaching the layer-substrate interface can
be considered as fully separated. One may then obtain, in
principle, two major pieces of information. (i) The shape of
the yield curve corresponding to nuclear reactions induced
at the layer-substrate interface depends on the limit velocity
V lim of the nuclei of the exploding molecules in the projectile
center-of-mass (c.m.) frame, which can then be determined,
giving access to the screened Coulomb repulsive potential
governing the explosion of the molecules. The kinematics
of this explosion: Evolution with time Rij (t) of the distance
between the nuclei of the molecule, or evolution with depth
Rij (z), can then be deduced. (ii) To first order (see Sec. II C),
for Eb > ER , nuclear reactions occur at given depth z(Eb),
where the internuclear distance is Rij [z(Eb)]. Moreover,
Y (Eb) is inversely proportional to the stopping force Smol on
the molecule. Hence, the Y (Eb) yield curve give access to
the evolution with Rij of the stopping force on molecules,
Smol(Rij ).
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In fact, as is shown in this paper, the experimental data
analysis is much more complicated than suggested from the
above first-order approach. Energy fluctuations, in particular
those induced by the Coulomb explosion velocities when
projected on the beam direction, play a major role here: There
is no one-to-one correspondence between z, Rij , and Smol. One
of the major aims of this paper is to overcome this difficulty
(see Fig. 14 and more generally Sec. III) in order to reliably
extract valuable information from our experimental data.

In order to study the Coulomb explosion at various ion
velocities and the evolution of the stopping power with
the distance between the molecule nuclei in media with
different dielectric responses, we have performed two sets of
experiments, with H2

+ and H3
+ molecules (H+ beams were

also used as a reference).
(a) Hn

+ molecules (n = 1,2,3), produced by the high
energy resolution Van de Graaff accelerator of the Institut
des NanoSciences de Paris, were sent into amorphous thick
18O-enriched SiO2. We then used the narrow resonance of the
18O(p,α)15N nuclear reaction at 151 keV/A, measuring the α

yield Yα(Eb). In this experiment, Rad = 2.8 a.u. is larger than
the initial mean distance R0 between the molecule nuclei, and
the stopping force is enhanced (χ > 1). A preliminary analysis
of the experimental results was presented in Ref. [12].

(b) The same molecules as in (a) were sent into amorphous
thick 15N-enriched Si3N4. We used the 15N(p,αγ )12C narrow
resonance at 429 keV and measured the γ yield Yγ (Eb). Vion is
higher by a factor 1.68 than in (a) and perturbative approaches
are then more justified here. Since the ωp are rather close
for SiO2 and Si3N4, (see below), Rad is higher in experiment
(b) and the vicinage effect persists for larger Rij distances.
Moreover, the influence of MS is decreased for increasing
velocities. The γ yield is much higher than Yα measured in (a)
(larger cross section), leading to much better statistics. Hence,
the experiment in Si3N4 is a more severe test of the vicinage
effect coupled to Coulomb explosion than that in SiO2. As
we shall see, when analyzing the Si3N4 experimental results,
paradoxical features show up that are also present in the SiO2

experiment but, owing to the statistics, were not detected in
Ref. [12].

Unless otherwise mentioned, in what follows atomic units
are used. When necessary, we use n = 1,2,3 to index the
parameters associated, respectively, with H+, H2

+, and H3
+.

II. EXPERIMENT

A. Si3N4

A 15N-enriched Si3N4 target was obtained by plasma-
enhanced chemical-vapor deposition on a Si (001) crystal,
using SiH4 (silane) and a 99% enriched nitrogen gas 15N2.
The stoichiometry of the layer was determined by nuclear
reaction analysis (NRA); we found Si3N3.8H1.4, close to the
expected Si3N4. The influence of this departure from the Si3N4

stoichiometry on our results and their analysis is negligible,
since the mean valence electron density is very close to
that of Si3N4, within 1%. Moreover, we expect no hydrogen
desorption for the beam fluences used in our experiments
(Si3N4 is used as a hydrogen storage layer), and thus no

FIG. 1. (Color online) Measured γ yields when scanning the
beam energy Eb for Hn

+ ions in Si3N4 (ER = 429 keV/A). The
samples are tilted at 68◦ (mean path length zmax � 220 nm). An
indicative depth scale z is also given.

additional desorption-induced energy-loss fluctuations may be
feared.

The total measured amount of 15N is n15 = 4.31 ×
1017 cm−2 (thickness �82 nm, assuming a density ρ =
3.1 g/cm3). In the reaction chamber, the nitride sample was
mounted on a sample holder that allows x-y translation and
a rotation (tilt). The pressure in the chamber was below 10−7

mbar. The beam current varies from ≈1.5 μA for H2
+ beams to

≈0.3 μA for H3
+. The γ rays from the 15N(p,αγ )12C nuclear

reaction were detected by a BGO (Bi4Ge3O12) detector located
just behind the sample holder, outside the vacuum chamber.

The beam energy Eb was scanned from below the resonance
energy ER = 429 keV/A to above ER using an automatic
scanning system [13]. For a given beam energy, one measures
the total accumulated γ yield Y (Eb) in the BGO for a given
beam fluence. In Fig. 1, the yield curves Y (Eb) obtained with
H+, H2

+, and H3
+ ion beams are compared. A very large

solid angle � was used in order to improve statistics, with no
consequence on the shape of the Y (Eb) curves, since the γ

emission is nearly isotropic. The beam fluences for a given
Eb were, respectively, 10, 5, and 3.33 μC for H+, H2

+, and
H3

+, according to the number of fragments resulting from the
molecular breakup of the molecules. The sample was tilted to
�68◦ in order to increase the apparent sample thickness.

In order to minimize the beam-induced damage, the yield
curves for each ion were recorded on different impact points
(diameter 1.5 mm). The total dose on each point was about
1000 μC. A second sweeping of the beam energy on the same
points has shown that the influence of carbon buildup and beam
damage have negligible influence on the shape of the Y (Eb)
curves.

B. SiO2

The experimental results obtained for 151 keV/A H+, H2
+,

and H3
+ in SiO2 were given in Ref. [12]. We reproduce the α

yield curve Yα(Eb) in Fig. 2.
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FIG. 2. (Color online) Measured α yields when scanning the
beam energy Eb for Hn

+ ions in SiO2 (ER = 151 keV/A). Oxide
thickness 54 nm for H+ and H2

+ and 60 nm for H3
+. Samples

were tilted at 60◦ (corresponding mean path lengths zmax � 108 and
120 nm). α particles are detected using a 300 mm2 silicon surface
barrier detector (solid angle ≈2 sr). An indicative depth scale z is
also given.

The Yα(Eb) were obtained with 5 times larger beam fluences
than for Si3N4, but, owing to the much lower cross section, they
result in much poorer statistics.

Note that the traversed path lengths zmax were different for
the different ions (see caption of Fig. 2).

C. Qualitative analysis, first-order approach

The discussion is based on the Si3N4 experiment (better
statistics, very close zmax values for the three beams) but could
be applied to the SiO2 experiment as well. We first consider
the proton beam (see Fig. 1). When Eb < ER , the resonance is
never reached and Y (Eb) ≈ 0. For Eb > ER , when traveling
in the target the beam loses energy and reaches ER around
a depth z(Eb) where the resonant nuclear reaction can take
place. Y (Eb) is then proportional to the 15N concentration C(z)
around z(Eb). As we increase Eb, z(Eb) eventually reaches
the interface between the nitride and the silicon substrate
and the yield begins to decrease, falling to ≈0 for higher
beam energies. Since C(z) is constant throughout the nitride
layer, one observes essentially a constant plateau. The shape
of the leading edge of Y (Eb) around Eb = 429 keV is a
consequence of the incident beam energy fluctuations and of
the resonance width �R . The shape of the falling edge (around
Eb = 450 keV), is governed by the energy loss straggling of
the beam, dominated by violent collisions on target electrons.

As shown in Ref. [12], Y (Eb) is related to the stopping force
and to the resonance width �R . Briefly, neglecting all causes
of fluctuations, Y (Eb) corresponds to nuclear reactions around
depth z(Eb), in a slice of matter with thickness δz such that the
beam energy is in the range ≈[ER − �R/2,ER + �R/2]; that
is, �R ≈ S(ER)δz, where S(ER) is the stopping power at the
energy of the resonance. Y (Eb), which is proportional to δz,
is then proportional to 1/S(ER), whatever Eb, if one neglects
any fluctuations, leading to the observed constant plateau.

The H+ Y (Eb) curve yields a mean energy loss of 21.2 keV
for the proton beam throughout the tilted layer. The density
ρ of amorphous nitride is 3.1 g/cm−3 which gives, using
the stopping powers given by the code CASP [14], a total
path length zmax = 218 nm. Assuming a 99% enriched layer,
from the measured n15 and stoichiometry, the nitride thickness
should be 85.9 nm, leading to zmax = 229 nm, assuming a 68◦
tilt angle. This thickness is 5.0% higher than the value 218 nm
based on the CASP Sp value. This disagreement may originate
from uncertainties on the tilt angle (a perfect agreement is
obtained for an angle of 66.8◦), on the value n15 measured,
on the measured stoichiometry, on the isotopic enrichment
assumed, and on the measured energy loss, but also on the
CASP prediction itself. To simplify, in what follows we assume
the CASP stopping power to be valid for isolated protons.

We now consider the Y (Eb) curves obtained with very
high statistics for the two molecular ions. Due to possible
vicinage effect, the stopping force per nucleus on the molecule,
Svic(ER) = Smol(ER)/n, may be different from the stopping
force Sp(ER) = 98.4 eV/nm on an isolated proton (CASP

value). At least five features show up in Fig. 1.
(i) A large decrease of Y (Eb) in the energy range ER �

Eb � ER + 10 keV, a signature of a vicinage effect, about
twice larger for H3

+ than for H2
+. Since to first order Y (Eb) is

proportional to 1/Svic(ER), one has Svic(ER) > Sp(ER) (χ >

1). For larger Eb, the vicinage effect disappears and the plateau
yield Y (Eb) reaches that for H+: Due to Coulomb repulsion
and MS, the distance Rij between the molecule nuclei is much
larger than Rad and the nuclei behave as independent particles.
To first order, the yield evolution with Eb gives a direct vision
of the Coulomb explosion and of the evolution of the vicinage
effect with the distance Rij between the nuclei. To guide the
eye, a depth scale based on the CASP Sp(ER) is displayed on the
top of Fig. 1 (the corresponding depth scales for the molecules
are somewhat shorter and nonlinear). When compared to Fig. 2
for the same molecules at 151 keV/A in silicon oxide, one can
notice that the depth λvic over which a vicinage effect is observ-
able at 429 keV/A is about twice that observed at 151 keV/A.
The main reason for this is a larger adiabatic cutoff at high
velocity. We also observe that close to the layer entrance, the
vicinage effect seems larger in the nitride than in the oxide.

(ii) The magnitude of the falling slope at high energy
(Eb ≈ 450 keV) decreases from H+ to H3

+. This is a signature
of the Coulomb explosion. In this region of the yield curve, the
distance Rij between the nuclei of molecules is large and in
the projectile c.m. frame, the nuclei get a velocity V lim, which
depends on the initial distance R0 and on the screening of the
repulsive potential. In the laboratory frame and for an isotropic
population of molecules, this gives rise to large energy fluc-
tuations, proportional to V lim at the layer-substrate interface
[see Sec. III F and Eq. (7)], which add up independently with
the collisional energy fluctuations (those for H+). The energy
fluctuations induced by the explosion are much higher for H3

+
than for H2

+ since a nucleus is repelled by two neighboring
nuclei for the former against only one for the latter.

(iii) The beam energy values Eint
b required to reach the

interface with the silicon substrate at energy ER , increase from
H+ to H3

+. This is also a signature of the vicinage effect: Over a
large fraction of the layer thickness, one has Svic(Eb) > Sp(Eb)
and the vicinage effect is larger for H3

+ than for H2
+. For
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FIG. 3. (Color online) Measured γ yields (ER = 429 keV/A) as
a function of depth z for Hn

+ ions in Si3N4 (see text for depth scale
estimation).

Si3N4, one finds respectively Eint
b − ER = 21.2, 22.3, and

22.9 keV for H+, H2
+, and H3

+, respectively. This is a
measure of the cumulative effect of vicinage throughout the
nitride. However, in order to avoid beam-induced damage,
the impact points are different for the three ions and a small
relative variation of the layer thickness would give rise to
very large uncertainties when comparing the above Eint

b − ER

rather close values (for the SiO2 experiment, the tilt angle was
not kept constant and Eint

b − ER bears no really significant
information).

(iv) The rising slope around Eb = ER decreases from H+
to H3

+. For H+, this slope depends on the resonance width and
the beam energy resolution. For molecular ions, the vibration
of the atoms in the incident molecules increases the energy
fluctuations for each nucleus. A larger increase is observed for
H3

+ than for H2
+. A careful analysis of the rising slope for H+

using the code SPACES [15–17] (see Sec. II D) shows that there
is some exchange between 15N and 14N close to the nitride
surface.

(v) One observes in Fig. 1 that the vicinage effect disappears
at larger depth for H3

+ than for H2
+, when using the depth scale

only strictly valid for H+. This depth scale may be corrected to
first order by taking into account the experimental yield Y (Eb)
and using the Svic ∝ 1/Y (Eb) approximate law. This led to the
yields Y (z) of Fig. 3 for Si3N4.

With this more realistic z scale, the vicinage effects now
disappears within the statistical errors, for similar depths for
the two ions, λvic

2 � λvic
3 � 90 nm. This is a very surprising

result since the repulsive force should be much larger for
the triatomic molecule than for the diatomic one, leading
to a shorter lifetime (λvic

3 value) for vicinage. Indeed, as
discussed in (ii), the comparison of the falling slopes clearly
demonstrates that the repulsive potential was stronger for H3

+.
There is then a strong contradiction, and we are led to conclude
that the shapes of the experimental curves for molecular ions,
before reaching the plateau corresponding to H+ ions, do not
directly reflect the evolution with penetration depth of Svic,
as assumed in (i). In fact, neglecting the energy fluctuations
induced by the explosion (and also MS) is a very crude
approximation. In what follows, we indicate how we have
been able to account for these fluctuations and then to extract
from our experiments a reliable and accurate description of

the evolution of the vicinage effect with penetration depth. For
this purpose, a code was written to simulate the yield curves.
The physics underlying the code is fully detailed in Sec. III.

D. Quantitative analysis of the H+ yield curve

The yield curve Y1(Eb) for H+ may be considered as a
standard corresponding to no vicinage effect and should then
be carefully analyzed first. Here we only consider the case of
Si3N4. The shape of Y1(Eb) depends on

(i) the beam energy dispersion, assumed to be Gaussian,
with standard deviation σb;

(ii) the resonance shape, which is a Lorentzian with full
width at half maximum (FWHM) �R = 120 eV [18,19].

It also depends on
(iii) the possible presence of a thin contamination layer;
(iv) the shape of the concentration curve C(z) for 15N .
In principle, C(z) should equal Cbulk throughout the sample.

However, some exchange between the 15N nuclei in the layer
and the 14N nuclei in the atmosphere may take place in the very
surface region. If any, we assume a concentration variation
given by the complementary error function Erfc:

C(z) = Cbulk − (Cbulk − Cs)Erfc(z/zech), (1)

where zech is a characteristic depth and Cs the surface 15N
concentration.

Finally, the shape of Y1(Eb) depends on
(v) the energy-loss fluctuations of the proton beam.
For small thicknesses the energy spread is not Gaussian.

In order to calculate Y1(Eb) with high precision, we used
the code SPACES, which calculates the energy-loss distribution
through sums of autoconvolutions [15,17]. The best overall
fit of the experimental Y1(Eb) curve for protons in Si3N4 is
presented in Fig. 4. It corresponds to Cs/Cbulk = αs = 0.78
and zech = 9.7 nm. We have also included a contamination
layer (hydrocarbons, with zero 15N concentration), equivalent
to a 1.2-nm-thick nitride layer. For our high energy resolution
Van de Graaff accelerator, the best fit corresponds to σb =
106 eV [250 eV FWHM]. At large depths, corresponding to the
total traversed path (zmax � 216 nm), the proton energy-loss
spectrum calculated in SPACES is nearly Gaussian with variance

FIG. 4. (Color online) Fitting the γ yield curve Y1(Eb) for protons
in Si3N4, using the code SPACES (total path length zmax = 116 nm).
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�2
expt. We have compared �2

expt to the Bohr [20] free target
electron approximation �2

B [Eq. (2)]:

�2
B � 4πntotz, (2)

where ntot is the total target electron density (including
core electrons, that is, 70 electrons per Si3N4 molecule), by
introducing the ratio η = �2

expt/�2
B which should be very

close to 1 at large proton velocities. In Fig. 4, the best fit
of the high-energy descending slope of Y (Eb) is obtained
for η = 0.94, a very reasonable value for 429-keV protons
in a medium with mean atomic number Z2 = 70/7 = 10.
The corresponding value for 151-keV protons in SiO2 [12]
is η = 0.80.

For all further calculations corresponding to molecular ions,
we keep the same αs , zech, and �R values and contamination
layer as for protons. For zmax we allow for small variations (that
do not exceed 3%) since the beam impacts are at different
positions, and σb is replaced by σbv > σb as the energy
fluctuations associated to thermal vibrations in the incident
molecules also contribute to the slope of the leading edge (the
index bv stands for “beam and vibration”).

III. FITTING THE RESULTS OBTAINED WITH
MOLECULAR BEAMS: CALCULATION CODE AND

ASSOCIATED PHYSICS

A. The molecules, thermal vibrations

The molecules, which are produced in the RF ion source,
occupy excited vibrational states. For these homonuclear
molecules, dipole radiation transition is ruled out and
molecules enter the target in the excited states in which they
are produced, influencing not only the relative velocities of the
nuclei, but also their mean separation 〈Rij 〉. For H2

+ the R12 =
R0 distribution was measured for a similar ion source [21],
with a most probable value Rm = 1.17 Å, instead of 1.08 Å
in the ground state. The distribution is broad and asymmetrical
with an estimated mean value 〈R0〉 ≈ 1.48 Å larger than the
value 〈Ro〉 = 1.29 Å used in Ref. [8], estimated from the
Franck-Condon principle [22], and a FWHM L12 ≈ 0.8 Å.
The H3

+ molecules are equilaterally triangular in shape [23]
with 〈Rij 〉 = 〈R0〉 = 0.88 Å in the ground state [24] and 〈R0〉
in the range 0.95 Å to ≈1.2 Å when experimentally measured
[23] in three different laboratories. A distribution of 〈R0〉 was
also measured in Ref. [23] and found to be very broad and
asymmetrical (tail toward high R0), with a FWHM very close
to its mean value. As we see below, the R0 distributions (mainly
their mean value and to a lesser extent, their width), play an
important role on the shape of the yield curves measured in our
experiments. These distributions should hence be known with
some precision if one wants to extract from the yield curves
reliable information on the vicinage effect and on the Coulomb
explosion of the molecules. However, the R0 distributions most
probably depend on the particular conditions in which the
molecular ions were produced in the ion source. For instance,
as shown later, our measurements indicate that, both for H2

+
and for H3

+, the initial velocity distributions associated with
the vibrating nuclei in the c.m. frame were smaller in the ex-
periments performed at 151 keV/A than in those performed at
429 keV/A. We do not have a direct experimental access to the

R0 distributions. Thus, we have attempted to take benefit both
of the distributions found in the literature and of our measure-
ments providing the initial velocity distributions of the nuclei
in the molecule (c.m. frame) in order to determine a realistic
range for the 〈R0〉 values and for the widths of the R0 distribu-
tions corresponding to the molecules used in our experiments.

B. History of a molecule

When entering the layer, the distance Rij between the nuclei
and the vibrational velocity Vth varies from one molecule
to another. The molecular ions dissociate close to the target
entrance (z = 0). For 429 keV/A H2

+ and H3
+ in Si3N4,

the cross section σD for dissociation is of the order of 1.5 ×
10−16 cm2 (taken from [25] for the same molecules in neon,
which corresponds to the same atomic number Z2 = 10 as the
nitride mean atomic number); it corresponds to a mean free
path �D = 0.7 nm (using the density ρ = 3.1 for nitride, that
is, an atomic concentration NA = 9.33 × 1022 at. cm−3). For
the SiO2 experiment, the cross sections are ≈2 times larger
(�D = 0.35 nm, extrapolated from [25]). The time scale for
dissociation is orders of magnitude smaller than the period
associated with molecular vibration. Thus, the position and
velocity of the nuclei in a given molecule may be considered as
frozen in their initial state before Coulomb explosion. Rij and
Vth are then random variables distributed around their mean
values. There are at least two consequences for the shape of
the yield curves Y (Eb).

(i) Velocity fluctuations lead to energy fluctuations at the
sample surface, influencing the slope of the leading edge.

(ii) To Rij fluctuations correspond fluctuations in the
initial potential energy just after dissociation of the molecule.
This in turn implies fluctuations for the Coulomb repulsive
velocities. The implication of these fluctuations is discussed
in Appendix D. Following the dissociation, the distance Rij

between the nuclei in the molecule varies: It increases due to
the repulsive interaction between the nuclei and also due to the
elastic collisions on the target nuclei.

The perturbation of the target electron gas induced by the
molecule depends on the orientation of the molecule with
respect to the beam direction. Hence, even in an isotropic
medium (silicon nitride, silicon oxide), the repulsive potential
V (Rij ) which depends on the dynamic perturbation of the
target electron gas induced by the molecule, is not isotropic.
The small-angle MS of the nuclei of the molecules on the target
nuclei induces independent random lateral displacements of
each molecule nucleus; that is, Rij are random vectors. The
mean distance 〈Rij 〉 increases with depth and the orientation
of the molecule varies. Clearly, an exact description of the
evolution with time of a molecule entering the crystal with a
given orientation is an involved task. However, the molecules
in the incident beam are randomly oriented, and we may
assume that these orientations are isotropically distributed.
The experimentally observed effects are then an average over
these orientations, but one needs, in principle, to describe the
detailed history of molecules for given initial orientations,
including the MS, the anisotropy of the vicinage effect and
that of V (Rij ). Then and only then an average should be
taken over the various orientations. Huge simplifications are
brought about when averaging first over the orientations of
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the molecule, that is, using an isotropically averaged vicinage
effect and an isotropic repulsive potential V (Rij ). This is a
strong assumption, extensively used in the literature and that
we have adopted. It is mainly questionable for the fraction of
the molecules entering the target with an internuclear axis close
to the beam orientation. For these molecules, the contribution
of the wake potential to V (Rij ) does indeed induce a departure
from the hypothesis of isotropy. Also, when averaging so early,
at least one source of energy-loss fluctuations is omitted since
the energy loss is orientation dependent when vicinage takes
place (see Sec. III C and Appendix A).

C. Stopping power, vicinage effect, and molecule orientation

When averaged over isotropically oriented molecules, the
contribution of the loosely bound target electrons to the
stopping force on molecules (n nuclei) may be expressed
as [11]

Smol-val = 2

πV 2
ion

∫ ∞

0

dq

q

∫ qV

0
dωωIm

( −1

ε(q,ω)

)

×
[

n∑
i=1

Z2
i + 2

∑
i>j

ZiZj

sin(qRij )

qRij

]
, (3)

where the Rij are the internuclear distances and ε(q,ω) is
the generalized valence dielectric function; the imaginary part
Im[−1/ε(q,ω)] is the so-called energy-loss function (ELF);
ω and q may be associated, respectively, with the energy and
momentum transfers between the incident particles and the
medium. One may also rewrite Eq. (3) as

Smol-val = Sp

(
n∑

i=1

Z2
i

)
+ 2

∑
i>j

ZiZjKij (Rij ),

where Sp stands for the stopping force on an isolated proton
and the Kij are interference terms describing the vicinage
effect. At large Rij , the Kij vanish and the stopping force on
the molecule is simply the sum of individual stopping forces
on the atoms in the molecule. In the present experiment, all
the Zi are equal to 1.

In order to estimate the energy-loss fluctuations induced
by anisotropy, we consider the simple case of H2

+ molecules
and of the so-called single-pole (SP) approximation. In this
description of the dielectric response, damping is omitted and
the ELF is given by

Im

( −1

ε(q,ω)

)
= πω2

p

2ωq

δ(ω − ωq), (4)

where ω2
q = ω2

p + q4/4; this approximation is valid at high
velocity (V 
 vF , where vF is the electron gas Fermi
velocity). For a vector R12 joining the two nuclei, with
projection d = R12 cos θ on the beam direction and projection
ρ = R12 sin θ in the transverse plane, the stopping force on the
molecule is given by (SP approximation)

Smol-SP(R12,θ ) = 4πne

V 2
ion

∫ q2

q1

dq

q

[
Z2

1 + Z2
2

+ 2Z1Z2Jo(qρ) cos(ωqd/V )
]
, (5)

TABLE I. Binding energies in atomic Si and N (the number of
electrons in each subshell is indicated in brackets). Contribution Sshell

of each shell to the H+ stopping power of Si3N4 (in eV/nm, assuming
a ρ = 3.1 g cm−3 density) for 429-keV protons, as calculated by CASP

in the unitary convolution approximation [14] (multiply Sshell by 0.750
to convert into 10−15 eV cm2/molecule units).

Shell BSi (eV) BN (eV) Sshell

1s 1825.3 (2) 406 (2) 1.0
2s 152.1 (2) 24.1 (2) 20.0
2p 109.5 (6) 12.5 (3) 44.4
3s 14.5 (2) 15.0
3p 7.4 (2) 18.0
Total electrons 14 7 98.4

where Jo is the zero-order Bessel function of the first kind.
At large molecule velocity, q1 � ωp/Vion = 1/Rad and q2 �
2Vion. When isotropically averaged, the oscillating factor
Jo(qρ) cos(ωqd/V ) in Eq. (5), which governs the interference
term K12, reduces to sin(qR12)/qR12 [see Eq. (3)], and the
integral calculation is analytical:

Smol-SP(R12) = 4πne

V 2
ion

{(
Z2

1 + Z2
2

)
ln

(
2V 2

ion

/
ωp

) + 2Z1Z2

× [F (u1) − F (u2)]
}
, (6)

where u1 = q1R12, u2 = q2R12, F (u) = sin u/u − Ci(u), and
Ci is the cosine integral function.

We show in Appendix A that the anisotropy of the vicinage
effect [Eq. (5)] induces energy-loss fluctuations that can be
neglected to first order.

D. Valence electrons, H+ stopping power, and
energy-loss function

1. Case of 429 keV/A molecular ions on Si3N4

One may partition the electrons in the Si3N4 molecule
into valence and core electrons. When considering binding
energies BSi and BN in Table I, for electrons in the L shell of
N and in the M shell of Si, the corresponding valence binding
energies Bval are below or equal to 24.1 eV = 0.89 a.u. � ωp.
These 32 electrons per molecule (4.57 electron/atom) may
hence be considered as valence electrons. Assuming a density
ρ = 3.1 g cm−3, the corresponding plasma frequency ωp of
the uniform valence free electron gas is (4πne)1/2 = 0.891 a.u.
(Fermi velocity vF = 1.37 a.u., electron density ne =
0.0632 a.u.). The remaining 38 electrons per molecule have
binding energies Bcore larger than 4 a.u. and may be considered
as core electrons. Table I also gives the stopping power Sshell

of silicon nitride for protons, calculated using the unitary
convolution approximation (UCA) [14]. For Eb = ER , the
CASP total stopping Stot = 98.4 eV/nm is very close to the
stopping and range of ions in matter [26] semiempirical
value, 95.6 eV/nm. One may hence estimate with precision
the relative contribution of valence and core electrons to
the stopping of 429-keV protons (Vion = 4.14 a.u.): The
contribution of valence electrons amounts 82% of the total
stopping force Stot = 98.4 eV/nm. According to Eq. (6), the
high velocity approximation gives a H+ valence stopping of
87 eV/nm, using the plasma frequency ωp = 0.89 a.u. of the
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free electron model. This value, calculated in the high velocity
approximation, is then only 8% higher than the more involved
CASP result for 429-keV protons. In the present experiment,
core electrons do not contribute to the vicinage effect: The cor-
responding adiabatic cutoff is Rad-core � Vion/Bcore = 1.0 a.u.,
smaller than the initial distance R0 between the nuclei in
the molecule (�2.4 and 1.8 a.u., respectively, for H2

+ and
H3

+). Since the vicinage effect comes only from the valence
electrons, the dielectric model may be used to describe the
associated energy-loss processes.

2. Case of 151 keV/A molecular ions on SiO2

A similar analysis was performed in Ref. [12] for 151-keV
molecular ions in SiO2. At this lower velocity, the contribution
of core electrons to H+ stopping is smaller: Valence electrons
contribute to 94% of the total stopping.

3. ELF

We used experimentally measured ELFs for SiO2 and
Si3N4, which were fitted by Drude-type functions [27] (see
Appendix B).

E. Multiple scattering

Multiple scattering has a significant influence on the
evolution with penetration depth z of the distance Rij between
the nuclei of molecules. In Appendix C, we discuss how MS
was taken into account in our calculations.

We present in Figs. 5 and 6 calculations of the evolution
with z of the mean value of Rij , with and without MS, for H2

+
and H3

+ ions in Si3N4.
The relative influence of MS on the mean distance 〈Rij 〉

is smaller for H3
+ than for H2

+ since MS is the same (same
velocity) and since the repulsive force is much larger for H3

+.
In both cases, MS plays a major role in the evolution of the
exploding molecule and could in no way be omitted.

F. Energy fluctuations

The two main sources of energy fluctuations are (a) the
energy loss straggling and (b) the velocity fluctuations induced

FIG. 5. (Color online) Mean distance 〈R12〉 between nuclei in an
exploding H2

+ molecule. Calculation for pure Coulomb and screened
potential, including or not MS.

FIG. 6. (Color online) Mean distance 〈R12〉 between nuclei in an
exploding H3

+ molecule. Calculation for pure Coulomb and screened
potential, including or not MS.

by Coulomb explosion. One must also consider (c) the incident
beam energy fluctuations and (d) thermal vibration in the
molecule. Other sources of energy fluctuations, described in
Appendix D, are (e) velocity fluctuations induced by initial
distance R0 fluctuations and (f) MS.

(a) From Sec. II D, we observe that violent collisions on
target electrons lead to a Gaussian energy loss spread at large
depths. At small and even medium z values, a more involved
non-Gaussian description is needed. For protons, we have used
the full stochastic approach of the code SPACES [15] in Sec. II D,
but for molecular ions, this code needs deep modification
in order to include vicinage. We hence used the analytical
approximations of [28] in our calculation code.

(b) In the c.m. frame, Coulomb explosion results in a
repulsion velocity V for a given nucleus in the molecule. In
the laboratory frame, the kinetic energy of this nucleus is
Ekin = (1/2)Mp(Vion + V)2, which, to first order in V , may
be written

Ekin � Eion + MpVion · V,

where Eion is the kinetic energy for no Coulomb repulsion.
Energy fluctuations originate then from the cross term (scalar
product)

MpVion · V = MpVionVz = Ez,

where Vz is the projection of the repulsive velocity on the
beam direction. For isotropically oriented molecules, V is
isotropically distributed. Its projection is Vz = V cos θ , where
θ is a random variable with a distribution P (θ ) given by
Eq. (A1). The probability distribution fu(u) of u = cos θ

is such that fu(u)du = P (θ )dθ = sin θdθ : u is uniformly
distributed on [−1,1]. Hence, for given V , Vz is a random
variable uniformly distributed over [−V,V ]. This is also the
case for Ez, which is uniformly distributed:

P (Ez; V ) =
{

[1/(2EV )] Ez ∈ [−EV ,EV ],

0 Ez � [−EV ,EV ],
(7)

where EV = MpVionV . V increases with depth z; at large
depth z, V takes a constant value (no more repulsion at large
distance). This limit velocity V lim may be estimated using
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energy conservation (strictly valid for zero MS). Consider the
case of H3

+ with initial distance R0 = 1.8 a.u. and a pure
Coulomb repulsion: One obtains Mp(V lim)2 = 2/R0, which
gives MpVionV

lim � 5 keV, that is, an energy distribution for
Ez with a 10 keV width FWHM. Such very large fluctuations
overshadow the collision fluctuations and strongly influence
the shape of the yield curve Y (Eb).

(c) The beam energy fluctuations for H+ are Gaussian with
standard deviation σb. For Si3N4 (see Sec. II D), σb = 106 eV.
These measured fluctuations are greater than the fluctuations
in the accelerating voltage, whose standard deviation was
measured via a calibrated capacitive pickoff plate to be of
similar magnitude and smaller than 40 eV for acceleration
of H+, H2

+, and H3
+ at 429 keV, 858 keV, and 1.29 MeV,

respectively. For molecular ions the incident beam energy
fluctuations are shared between the nuclei of the molecule.
It thus appears reasonable to assume that both for H2

+ and for
H3

+, σb does not exceed the value measured for H+.
(d) For H2

+ and H3
+ ions, the initial slope of the

experimental yield curve depends both on the incident beam
energy fluctuations characterized by σb and on the velocity
fluctuations brought by thermal vibrations in the incident
molecule. As for the Coulomb explosion, the kinetic energy
of nuclei entering the target is sensitive to a cross term
MpVionv

vib
z , where vvib

z is the projection of the thermal velocity
of a nucleus on the beam direction. When averaging over
all molecule orientations, the law of this cross term is only
approximately Gaussian (a Gaussian law is, however, assumed
in what follows). It is possible to fit the initial slope of the
yield curves Y (Eb) for H2

+ and H3
+ molecules with the same

parameters as for H+, by only replacing σb by σbv > σb. In fact,
whatever the hypothesis on σb, its value is in all cases small
compared to σbv and it is then possible to extract from the
experimental results a rather precise estimation of the thermal
kinetic energy in the H2

+ and H3
+ molecules.

G. Screened Coulomb explosion and multiple scattering

After dissociation, the repulsive potential between the
nuclei indexed by i and j in a molecule is assumed to be
isotropic with an exponential screening function:

V (Rij ) = (ZiZj/Rij )exp(−Rij/rs), (8)

where rs is a dynamic screening radius of the order of the
adiabatic cutoff Rad [29,30], Rij is the distance between
nuclei, and Zi and Zj are their atomic numbers (here 1).
In the calculations, rs is considered as a phenomenological
parameter; its value is determined by fitting the experimental
yield curves, with possible different screening radii for H2

+
and H3

+. When looking for the best fit, increasing rs (less
screening) leads to higher limit velocities V lim, thus to higher
energy fluctuations, in particular at large depths. It also leads
to a faster explosion of the molecules (vicinage disappears at
smaller depths). Hence, the entire yield curve is affected by
changing the screening, which is then a major issue in our
experiments. Examples of Coulomb explosion kinematics for
screened and unscreened potential were presented in Figs. 5
and 6.

Multiple scattering tends to increase the distance Rij

without changing the repelling velocity. Consequently, the

FIG. 7. (Color online) Influence of MS on the dynamics of
Coulomb explosion for H2

+ in Si3N4. Vz is the projection of the
velocity of a nucleus in the molecular frame on the beam direction.

Coulomb explosion velocity is smaller than that given by the
conservation laws of mechanics when MS is included. For
H3

+, the reduction of the velocity is negligible, due to the
strong repelling force. This is not the case for H2

+, as shown
in Fig. 7, which gives the evolution of the mean absolute value
〈|Vz|〉 of the repelling velocity projected on the beam direction,
for a set of isotropically distributed H2

+ molecules in Si3N4

(the figure considers a screened and an unscreened potential):
MS tends to lower |Vz|.

H. Vicinage effect as a function of Ri j : Influence of MS

Using Eq. (3) for istotropically oriented molecules, with
various ELFs (SP, ELFs of Refs. [31–33]), one may de-
termine the vicinage effect for valence electrons by nu-
merical integration. We have taken into account the fact
that core electrons contribute to the mean energy loss
(18% in Si3N4, 6% in SiO2), but do not contribute to
vicinage for molecular ions. The vicinage effect described
by the ratio χn = (Svicin/S0)tot (the index “tot” indicating that
core electrons are taken into account) as a function of the
distance Rij between nuclei, is represented in Figs. 8 and
9, respectively, for 429 keV/A H2

+ and H3
+ in Si3N4. As

expected, since the ELF is rather narrow, the calculated curves
are close to each other, even in the SP approximation (which
leads to the strongest oscillations). For SiO2, since the ELF
peak is broader, a much larger difference shows up when
comparing calculations performed in the SP approximation
and with a more realistic ELF [12].

When neglecting MS, one may easily calculate the vicinage
effect as a function of time or depth, by using the kinematics
[Rij (t) or Rij (z) are determinist laws]. Calculations are more
involved when including MS. We operate as follows. A set
of repartition functions F (Rij ; zk) of the distance Rij at given
depths zk are calculated by Monte Carlo for a given screening
radius rs [F (Rij ; zk) is the probability to find the internuclear
distance below Rij ]. Examples of such repartition functions
are given in Fig. 10 for H2

+ and in Fig. 11 for H3
+, in Si3N4.

These curves were calculated for the large screening radius
rs = 2Rad = 9.3 a.u.
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FIG. 8. (Color online) Vicinage effect χ2 = (Svicin/S0)tot for H2
+

in Si3N4 as a function of the distance between nuclei, calculated for
three different ELFs.

According to Figs. 8 and 9, vicinage effect disappears (or
becomes smaller than 1) for Rij � 2Rad. For H3

+, considering
only mean values, even for rather strong screening (see Fig. 6),
the mean internuclear distance 〈Rij 〉 is larger than 2Rad at
depth z = 50 nm (MS included). One is then led to conclude
that the vicinage effect is negligible at this depth. In fact,
this conclusion is wrong because, due to MS, the 〈Rij 〉 are
random variables. One may notice in Fig. 11 that at z = 50 nm
about 50% of the Rij are below 2Rad, and the corresponding
molecules thus experience a vicinage effect, while for the
remaining 50% the vicinage effect is negligible: Adding the
two contributions, the overall result is a non-negligible effect.
Hence, if one analyzes the influence of MS on the vicinage
effect, (i) it increases the Rij mean value, which tends to reduce
the vicinage effect, but, (ii) at the same time, the very large Rij

fluctuations favor the vicinage effect. In the calculation code,
at given depth z, zk < z < zk+1, one determines the vicinage
effect by sampling the internuclear distances according to
the set of repartition curves (an interpolation between curves
indexed by k and k + 1 is performed). The vicinage effect as
a function of depth for rs = (2/π )Rad and different ELF (SP,

FIG. 9. (Color online) Vicinage effect χ3 = (Svicin/S0)tot for H3
+

in Si3N4 as a function of the distance between nuclei, calculated for
three different ELFs.

FIG. 10. (Color online) For H2
+ in Si3N4, repartition function of

the distance between nuclei calculated for four different depths zi .

Ref. [31]), including or not MS, is represented in Figs. 12 and
13, respectively, for H2

+ and H3
+ in Si3N4. Similar curves are

obtained for SiO2 (see 1/χ in Fig. 2 of [12]). On Figs. 12 and
13, one can notice the following.

(i) As already pointed out in Ref. [12], MS suppresses the
oscillating behavior with Rij of the vicinage effect.

(ii) The relative influence of MS is larger for H2
+ than

for H3
+.

(iii) For Si3N4, the difference between the crude SP
approximation and the more elaborated ELF of [31] is weaker
than for SiO2 (see Fig. 2 of [12]).

(iv) For the chosen value rs = (2/π )Rad, the vicinage effect
disappears at z ≈ 80 nm for H2

+ and at the lower value z ≈
60 nm for H3

+. This result was expectable, as the repulsive
potential experienced is stronger for H3

+ than for H2
+ ions.

It is, however, in apparent contradiction with the experimental
yield curves. The reason for this is analyzed in Sec. III I. There
we will show that the shape of the experimental yield curves
is strongly affected by the fluctuations of the depths at which
the penetrating nuclei reach ER .

When comparing the results presented in Figs. 12 and 13
for Si3N4 to those shown in Ref. [12] for SiO2, one can notice
that the vicinage effect for 151 keV/A molecules in SiO2

FIG. 11. (Color online) For H3
+ in Si3N4, repartition function of

the distance between nuclei calculated for four different depths zi .
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FIG. 12. (Color online) Vicinage effect χ2 = (Svicin/S0)tot for H2
+

in Si3N4 calculated as a function of depth, when including or not MS.

is slightly lower than for 429 keV/A molecules in nitride:
For H3

+ in SiO2, at the sample surface, χ3(0) � 1.53 to be
compared to 1.60 for the nitride experiment.

I. Fluctuations of the depth z at the resonance

For isotropically distributed incident molecules with given
energy per nucleon Eb > ER , the problem is to determine
the distribution of depths Fz(z; Eb) at which the nuclei reach
the resonance energy. The calculations were performed by
Monte Carlo using the approximations described above in
this section. We consider the case of H3

+ molecules (large
Coulomb repulsion velocity) in Si3N4 (large ion velocity,
i.e., large-velocity cross term). In Fig. 14, four different
incident energies Eb are considered. The distributions broaden
very rapidly when increasing Eb, mainly because Coulomb
explosion generates a dramatic increase of the z fluctuations.
In Fig. 1, the H3

+ γ yield for Eb = ER + 8 keV = 437 keV/A

is significantly below the H+ plateau level, a consequence of
the vicinage effect. According to Fig. 3, the corresponding
mean depth at which the energy ER is reached for this value of
Eb is ≈60 nm [A more precise determination of this mean
depth is obtained from the mean value of the distribution
Fz(z; Eb = 437 keV) in Fig. 14: We find then 70 nm.] As we

FIG. 13. (Color online) Vicinage effect χ3 = (Svicin/S0)tot for H3
+

in Si3N4 calculated as a function of depth, when including or not MS.

FIG. 14. (Color online) Distribution Fz(z; Eb) of depth z where
nuclei of H3

+ molecules reach the resonance energy ER = 429 keV,
for various beam incident energies Eb.

have determined (see Fig. 13), that there is no more vicinage
effect beyond 60 nm, we must conclude that the vicinage effect
cannot simply be related to the mean depth. This results from
the very broad distribution Fz(z; Eb = 437 keV). The latter
extends from ≈20 nm to more than 130 nm and, for the part of
the distribution corresponding to 20 nm < z < 60 nm, there is
indeed a vicinage effect, which is responsible for the γ yields
significantly smaller than 1 that we observe experimentally.
This is a key point in our experiment: Due to very strong
energy fluctuations caused by Coulomb explosion, the γ yield
in the Si3N4 experiment (Fig. 3), or the α yield in the SiO2

experiment, do not give a direct image of the evolution of
the vicinage effect with depth χ (z). Elaborate calculations are
needed to extract χ (z) from the experimental results.

Furthermore, the energy fluctuations also affect the mea-
sured yields independently of the vicinage effect. The very
broad distribution Fz(z; Eb = 437 keV) clearly shows that the
nuclei have experienced very different histories: The mean
kinetic energy variation of an ion reaching ER at 20 nm is
6 times higher than that of an ion for which ER is reached
at 120 nm. The reason for this is that during the Coulomb
explosion, some nuclei of the molecule are accelerated, while
others are decelerated. In fact, we are interested in the local
stopping power δE/δz of the nuclei when they reach ER , since
the γ yield is inversely proportional to this. An ion reaching
ER at depth greater than 60–70 nm is no longer subjected
to a repulsive potential and thus no longer accelerated or
decelerated: It thus experiences the usual stopping power of an
“ordinary” monatomic ion and has the same contribution to the
γ yield. In contrast, an ion reaching ER at depths smaller than
60–70 nm will not only still be subject to the vicinage effect
but will also still be decelerated by the Coulomb explosion. Its
stopping power will then be increased for these two reasons,
resulting in a significant decrease of the γ yield.

A classical application of narrow resonances in NRA, is
the possibility to determine concentration profiles of given
isotopes in a target with very high depth resolution, by measur-
ing yield curves around a narrow resonance, using monatomic
beams. The depth resolution decreases at increasing depths
due to the increase of the energy spread of the beam. In
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principle, the use of molecular beams for depth profiling
could be of interest. They may in particular provide high
incoming nuclei densities and allow the use of electrostatic
accelerators for which the minimum operating potential is
greater than ER . It may also be thought to use molecular ions
in high-resolution medium energy backscattering experiments
(MEIS). In fact, the very broad energy distributions reached by
molecular ions in the first nm of their path, in connection with
Coulomb explosion does not leave much hope to achieve high
resolution depth profiling. Even close to the sample surface,
the depth resolution is degraded by the thermal vibrations in
the molecules.

J. Yield curve calculation

The yields Y (Eb) obtained when scanning the beam energy
Eb may be expressed as

Y (Eb) = K

∫
dEσR(E)

∫
dzC(z)g(E; Eb; z), (9)

where g(E; Eb; z)dE is the probability for a proton to have an
energy in the interval [E,E + dE] at depth z, for an incident
energy Eb; σR(E) is the nuclear cross section, centered on ER

and K a constant.
A nearly equivalent formulation consists in assuming a

Dirac type cross section at E = ER , σR(E) = ARδ(ER),
and transferring the real shape of σR(E) into g(E; Eb; z) as
independent energy fluctuations of the protons at depth z, with
a Lorentzian law. Y (Eb) is hence given by a single integration
on z,

Y (Eb) � KAR

∫
dzC(z)g(E; Eb; z). (10)

For a nucleus (proton) of a molecular ion with mean
impinging energy Eb per nucleon, the energy E(z) at depth
z is a random variable:

E(z) = Eb − δEin − δEcoll + MpVionVz −
∫ z

0
S(R12(z))dz.

(11)

In this expression, δEin is a random variable which includes
the beam energy fluctuations, the energy fluctuations induced
by thermal vibrations, and the shape of the resonance. The
associated probability law is the convolution product of a
Gaussian (standard deviation σbv) by a Lorentzian with FWHM
�R . δEcoll corresponds to the fluctuations of energy loss
to target electrons (with a nearly Gaussian law at large z).
MpVionVz is associated with the Coulomb explosion: For a
determinist variation of Vz with z the law is rectangular for
isotropically oriented molecules [see Eq. (7)]. When including
the fluctuations induced by the initial distance R0 distribution,
the law is approximately given by the convolution product of
this rectangular law by a Gaussian with standard deviation
MpVionσV (see Sec. III F and Appendix D). All these contribu-
tions originate from independent processes. The corresponding
law for the sum is then given by convolution of the individual
probability laws. The last term,

∫ z

0 S(R12(z))dz = �(z) is an
energy loss that to first order is a mean value. In fact, due to
anisotropy of the vicinage effect, to thermal vibrations, and to

MS, this energy loss embodies also some fluctuations, but we
have shown in Sec. III that they may be neglected in all cases.

We approximate the energy fluctuations due to lateral
spread by a Gaussian (see Appendix C) with standard deviation
σLS (for a tilting angle 68◦ in Si3N4, σLS = 0.35 keV, see
Fig. 24). These energy-loss fluctuations originate from path-
length fluctuations. Assuming that the 15N or 18O concen-
tration CO is independent of z close to the layer-substrate
interface, one may simulate these path-length fluctuations
by introducing a variable concentration profile C(z) at the
layer-substrate interface given by the convolution product of a
Gaussian by a rectangular profile:

C(z) = 1

2
CO

[
1 + Erf

(
zmax − z

σz21/2

)]
, (12)

where zmax is the mean total traveled path and σz = σLS/S0.
Erf stands for the error function.

IV. FITTING THE EXPERIMENTAL YIELD CURVES

A. Fitting the leading edge: Initial velocity distribution of the
nuclei associated with thermal vibration

The leading edge slope of Y (Eb) is a measure of the
velocity distribution of the nuclei in the impinging molecular
ions. It was fitted assuming a Gaussian contribution for
the energy fluctuations induced by thermal vibrations (see
discussion below). Removing the beam energy fluctuations
σb (assumed to be the same for the three ions used) from
the σbv fitting parameter gives an energy standard deviation
σEs = MpVionσV z where σV z is a standard deviation for the
thermal velocity of a nucleus in the c.m. frame of the molecule,
projected on the beam direction.

We first consider the H2
+ molecule in Si3N4. Neglecting

rotational modes, the molecule is a one-dimensional (1D)
oscillator; we measure σEs � 0.40 keV = 14.7 a.u (σbv �
0.42 keV). Along the direction of the molecule axis, the
velocity fluctuations σVth for a nucleus in the c.m. frame
are Gaussian in the harmonic approximation. For a set
of isotropically oriented molecules, the law g(Vz) of the
projection Vz is not Gaussian and may be calculated as follows.
For a given Vth, the law of the projection Vz is given by Eq. (7)
(rectangular law). Since Vth is Gaussian, the joint probability
law g(Vz,Vth) for the couple Vz, Vth is given by

g(Vz,Vth) = 1

2Vth
[Y (Vz + Vth) − Y (Vz − Vth)]

× 2

(2π )1/2σVth

exp

(
− V 2

th

2σ 2
Vth

)
, (13)

where Y is the Heaviside unit step function. Integrating
g(Vz,Vth) over Vth yields the gz(Vz) law. An example of such
a projected distribution is given in Fig. 15. The projected law
is not at all gaussian (gz is infinite at the origin), but when
convoluted by a rather narrow Gaussian (energy dispersion of
the beam), the shape is much closer to that of a Gaussian.

We have compared fits of the leading edge using a full
Gaussian approximation (standard deviation σbv) to an exact
calculation using the exact shape of gz(Ez). One finds that
good full Gaussian fits of the main part of the leading
edge may be obtained in a broad range of σb values, which
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FIG. 15. (Color online) Red dashed line, law gz(Ez) of MpVionVz

for isotropic H2
+ harmonic oscillators with Gaussian velocity

distribution (standard deviation σVth ), and with velocity projection
Vz on the beam direction; blue dot-dashed line, Gaussian beam
energy dispersion gb with standard deviation MpVionσVth/4; solid
line, convolution of gz with gb.

includes those corresponding to our experiments, yielding a
pseudovariance σ 2

Es = σ 2
bv − σ 2

b . Moreover, the ratio between
σEs and MpVionσVth is found to be nearly constant, namely:
σEs = 0.50MpVionσVth ± 2% (note that in the case of 3D
independent oscillators the ratio would be 1/

√
3 = 0.577).

Thus, we are now able to extract the value of σVth through a
simple Gaussian fit of the leading edge of the excitation curves.
Applying this procedure, we find σVth ≈ 0.003 87 a.u. The
total kinetic energy in the molecule is hence Ekin = Mpσ 2

Vth
�

0.0275 a.u. = 0.75 eV, larger than the 0.5 eV estimated from
the Franck-Condon principle [22]. Keeping the harmonic
oscillator approximation, the relation between σVth and the
standard deviation of the internuclear distance R0 is σVth =
ωσRo

, ω being the characteristic vibration frequency. With the
value ω = 0.2 eV = 0.007 35 a.u. proposed by Walters [22],
we then obtain σR0 = 0.53 a.u. Comparing this value to the
mean value 〈R0〉 = 2.8 a.u. measured in Ref. [21], we then
get σR0/〈R0〉 = 0.19, a ratio only slightly lower than the value
σR0/〈R0〉 = 0.21 that was measured in the latter reference.

For H3
+, the analysis of the leading edge of the excitation

curves provides σEs = 0.8 keV. For this triatomic molecule, a
full Gaussian approach with σEs = MpVionσVth/

√
3 is justified.

One finds σVth ≈ 0.0067 a.u. (a value nearly twice that
found in Ref. [34] for H3

+ molecules cooled in a storage
ring) and a total kinetic energy Ekin = (9/2)σ 2

Es/(MpV 2
ion) =

0.124 a.u. = 3.4 eV (0.041 a.u./nucleus). This corresponds
to highly excited states since from [24], the characteristic
frequency for this molecule is ω = 0.0137 a.u. With this
Ekin value, we obtain σR0 = 0.49 a.u. Considering the mean
value 〈R0〉 = 1.8 a.u. measured in Ref. [23], we then get
σR0/〈R0〉 = 0.27, which is significantly smaller than the value,
larger than 0.4, that can be found in the literature [23].
We would then conclude that the H3

+ ions produced in our
experiment were less excited than those studied in Ref. [23].
However, the value of ω taken from [24] that we used to relate
our measured σVth to σR0 may well be an overestimation as it
corresponds to the ground state, which is not the case for the

molecules produced by the ion source. Thus, the discrepancy
between our observations and the results obtained in Ref. [23]
may be smaller than it appears at first sight.

In the SiO2 experiment, the σEs are, respectively, 210
and 300 eV for H2

+ and H3
+. The corresponding kinetic

energies in the molecules are 0.59 eV and 1.36 eV. These
values are respectively slightly smaller, in the case of H2

+,
and much smaller in the case of H3

+, than measured at
429 keV (respectively, 0.75 and 3.4 eV). This demonstrates
that the conditions in the ion source play an important role
on the excitation of the molecules. Whatever the laws
connecting the vibrating velocities to the R0 fluctuations,
these fluctuations are smaller in the SiO2 experiment than
in the nitride experiment. In the frame of a simple harmonic
oscillator model, the comparison of the values measured for
σVth respectively at 429 and 151 keV indicates that σR0 is
1.1 times lower in the case of H2

+ ions and 1.6 times lower in
the case of H3

+ ions in the experiment performed at 151 keV
than that performed at 429 keV.

To conclude this analysis, our study of the leading edge
of the excitation curves show that for H2

+ ions our results
are in fair agreement with the R0 distributions measured in
Ref. [21], even if this agreement is slightly better for the
experiments performed at 429 keV. We have thus decided to
adopt these distributions when fitting the complete excitation
curves obtained with H2

+ ions in order to obtain information
on the vicinage effect and on the dynamics of the Coulomb
explosion. The situation is more complex for H3

+ ions. In this
case, there are serious uncertainties when attempting to deduce
R0 distributions from our experiments, even if it appears that
the H3

+ ions that we used are very probably significantly
less excited than those studied in Ref. [23], in particular
for our measurements at 151 keV. We have thus decided to
systematically undertake two types of fits for H3

+ ions. The
first type of fit is obtained using the R0 distributions of [23].
The second type of fit is obtained by setting for 〈R0〉 the
average between the value corresponding to the ground state
and the value measured in Ref. [23] and by using a value
for σR0 that is half that given in the literature. In the second
type of fit we thus suppose that the molecules are much more
weakly excited. Our aim is to determine the extent to which
conclusions extracted from our measurements depend on the
uncertainties related to the initial state of the molecules.

B. Fitting the whole yield curve: Determination of the vicinage
effect and of the dynamics of Coulomb explosion

1. Si3N4

Calculations are based on the dielectric model. According
to Sec. III, the detail of the narrow ELF function has moderate
influence on the calculated vicinage for Si3N4. The influence of
the thermal displacements (distribution of R0) increases with
depth and smooths the descending slope of the yield curve
at the substrate interface. However, as seen in Appendix D,
its influence is weaker than that of the collisional straggling,
and this is even more the case in type 2 fits, where we
consider narrower R0 distributions. The parameter η = 0.94,
which measures deviations from the Bohr free target electron
model of the energy straggling induced by collisions on
target electrons should not be varied. In fact, the main fitting
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FIG. 16. (Color online) Fit of the yield curve for H3
+ in Si3N4

using the ELF of [31], η = 0.94, including MS and the initial distance
distribution of [23], with mean value 〈R0〉 = 1.8 a.u. Open circles,
experimental curve; solid curve, fit with the adjustable values σbv =
800 eV and rs = Rad; dashed curve, yield when lowering energy
fluctuations (see text).

parameter is the screening radius rs . As shown in Sec. III,
changing its value may change the shape of the yield curve
Y (Eb) over the whole incident beam energy range.

Looking for the optimum dynamic screening radius, we
focus on the descending slope of Y (Eb), since (i) it is governed
by the limit value V lim of the exploding velocity when particles
are leaving the nitride layer and (ii) its shape is independent
of the vicinage effect.

For H3
+, in the case of a type 1 fit, an optimum adjustment

of the descending slope fit is obtained with rs = Rad =
4.65 a.u. We notice in Fig. 16 that this also leads to a
remarkable fit of the overall excitation curve. At first sight,
this could appear surprising when considering Fig. 13, where
the vicinage effect is calculated for a stronger screening [rs =
(2/π )Rad], and does not extend beyond 60 nm: One could then
expect for rs = Rad no vicinage effect beyond depths of the
order of zvic = 55 nm, much smaller than the λvic

3 � 90 nm
found experimentally for the γ yield Y (Eb). In fact, according
to the discussion in Sec. III I, we know now that, because of the
fluctuations induced by the Coulomb explosion, the vicinage
effect extends beyond zvic on the yield curves. In order to
illustrate the crucial influence of energy fluctuations, we have
also represented in Fig. 16 the yield curve obtained when
assuming that the velocity cross term MpVionVz is divided
by 10 with respect to its value obtained when considering
isotropically oriented H3

+ molecules. Such a situation would
correspond to an experiment where incident molecules have
been selected with a plane nearly perpendicular to the beam
direction (low Vz projection). This reduction of the energy
fluctuations profoundly modifies the yield curve. As expected,
the calculated descending slope is very steep (small V lim).
The shape of the vicinage region is also deeply affected and
corresponds to what could be expected: For rather low energy
fluctuations, a first-order analysis of the γ yield variations
with mean depth is valid and Y (Eb) reaches the plateau value
(no vicinage) at rather shallow depths, a signature of the fast
Coulomb explosion. Clearly, this first-order approach does not
at all apply in our experiments.

FIG. 17. (Color online) Fit of the yield curve for H2
+ in Si3N4

using the ELF of [31], η = 0.94, including MS and the Ro distribution
of [21]. Open circles, experimental curve; solid line, calculated yield
with the adjustable values σbv = 420 eV and rs = 2Rad; dashed curve,
yield when lowering energy fluctuations (see text).

We have also obtained a remarkable overall adjustment (not
represented) of the excitation curve obtained with H3

+ ions at
429 keV when attempting a type 2 fit. To get this agreement, we
had to use a screening radius rs ≈ 0.9Rad. This 10% difference
with the rs value used in the type 1 fit sets the uncertainty on the
repulsive potential induced by our uncertainties on the initial
condition of the H3

+ molecules.
We now consider the case of H2

+. We use the R0 distribution
of [21], with 〈Ro〉 = 2.8 a.u. and leading to σV = 0.23V (z)
(see Appendix D). As shown in Fig. 17, with this distribution, a
very large screening radius rs = 2Rad had to be used in order to
obtain a fair adjustment of the high energy descending slope of
the yield curve. However, the calculated slope remains slightly
steeper than the experimental one. This could be corrected for
by slightly increasing V lim, and thus the energy fluctuations
associated with the explosion. As we have already used a
nearly unscreened repulsive potential, an increase of V lim can
only be obtained by slightly lowering the mean distance 〈R0〉
between the two nuclei of the molecule at the target entrance.
Let us recall that we have adopted for R0 the value measured in
Ref. [21] which appeared quite consistent with our analysis of
the leading edge of the excitation curves (see Sec. IV A). This
value of R0 is thus perhaps slightly overestimated. The fast
Coulomb explosion is compensated for by the corresponding
energy fluctuations caused by Coulomb explosion, and the
yield Y (Eb) variations are very well reproduced in the vicinage
region. As in Fig. 16, in order to illustrate the influence of
energy fluctuations on the shape of Y (Eb), a dotted curve was
calculated when lowering by a factor of 10 the velocity cross
term valid for isotropically oriented incident molecules (see
Fig. 17). The shape modification is here less marked than for
H3

+, indicating that the experiment with H2
+ is less sensitive

to the adjustable rs value than the corresponding experiment
with H3

+.
We note that the isotopic exchange at the sample surface

has a non-negligible influence on the shape of the calculated
Y (Eb) at the top of the leading edge (Eb ≈ 430 keV), mainly
for H3

+ (a more pronounced bump appears for zero exchange).
However, the exchange parameters carefully determined from
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FIG. 18. (Color online) Fit of the yield curve for H2
+ in SiO2

using the ELF of [35], η = 0.80, including MS and Ro distribution
of [21]. Open circles, experimental curve; solid curve, fit with
σbv = 235 eV and rs = Rad; dotted red curve, pure Coulomb repulsive
potential.

the H+ yield curve play a negligible role on the main fitting
parameters (rs , ELF, σbv , 〈R0〉).

2. SiO2

Preliminary fits were presented in Ref. [12] for the experi-
ment performed in SiO2. We reconsider here these fits keeping
in mind the very important role of energy fluctuations. Since
the two materials used in our experiment are both insulators
with rather close valence electron density, one may anticipate
rather similar screening for the Coulomb explosion. We used
the same approach for the fitting as that used for the experiment
in nitride, that is, looking for the best rs when fitting the high
energy edge, with the R0 distribution of the literature. We show
in Figs. 18 and 19 calculated curves obtained for type 1 fits, that
is, when using the R0 distributions of the literature. In order
to estimate the sensitivity of the fits to the screening radius,
we present in both figures two curves, calculated respectively
with rs = Rad, or in the case of pure Coulomb repulsion (rs

infinite). In fact, for H2
+, due to the statistics and the poor

sensitivity of the yield curve to the screening radius, it is

FIG. 19. (Color online) Fit of the yield curve for H3
+ in SiO2

using the ELF of [35], η = 0.80, including MS and the Ro distribution
of [23]. Open circles, experimental curve; solid curve, fit with σbv =
320 eV and rs = Rad; dotted red curve, pure Coulomb potential.

hardly possible to decide between rs = Rad and 2Rad. On the
other hand, for H3

+, rs = Rad gives rather clearly the best
fit in the two regions of interest. We have also obtained a
type 2 fit for H3

+ ions (using smaller 〈R0〉 and narrower R0

distributions than in the literature; see Sec. IV A), and, like for
the experiment performed at 429 keV, we note that the best
agreement is obtained by reducing rs by ≈10%, that is, by
setting rs = 0.9Rad.

C. Fluctuations of the stopping power

When comparing Y (Eb) for the two sets of experiments,
one observes that the vicinage effect seems greater for Si3N4

than for SiO2. In fact, the theory predicts rather close vicinage
effects for Rij ≈ Ro. This apparent contradiction originates
from fluctuations in the stopping power induced by the
acceleration and deceleration effects discussed in Sec. III I,
where we showed that they tend to further lower the yield
curves in the vicinage region. The stopping power is higher
for protons at 151 keV (experiment in SiO2) than at 429 keV
(experiment in Si3N4). Then the relative stopping power
fluctuations are stronger in the nitride experiment and we thus
expect a stronger influence on the yield curves.

V. CONCLUSION

A. Screening

We have performed a detailed analysis of all the con-
tributions to energy-loss fluctuation, including the influence
of the R0 distribution. Due to our incomplete knowledge
of this distribution, the screening radius rs extracted from
our experiments bears some relative uncertainties, in the
10% to 20% range. For the nitride experiment, rs is found
unambiguously larger for H2

+ than for H3
+, typically 2Rad

against Rad. For the SiO2 experiment, we find again, that for
H3

+ ions the value of rs is close to Rad. For H2
+ ions the

sensitivity to rs is poorer, and our results can be fitted with rs

values lying in the [Rad,2Rad] range. Thus, even if there are
serious uncertainties on the value of rs for H2

+ at 151 keV/A,
we are led to conclude (i) that the repulsive potential is more
screened for H3

+ than for H2
+ ions, and that for the latter

the screening is very weak, and (ii) that rs , like Rad, scales
with Vion.

B. Vicinage effect, electron gas model

Silicon nitride is a nearly ideal medium concerning the
response of its valence gas to a fast moving charge, as it
presents a narrow single-peaked ELF. Moreover, the exper-
iment is performed in a high velocity regime (429 keV/A),
in a medium with low atomic number (mean value 10). The
experiment is hence not very sensitive to the precise shape
of the ELF and a simple representation of the ELF by sums
of Drude functions is more than sufficient. As shown, the
confrontation between the dielectric model and the experiment
is not direct since energy fluctuations and Coulomb explosion
kinematics contribute to the shape of Y (Eb) in the vicinage
region. Since the fluctuations are smallest close to the layer
surface, the most severe test of the dielectric model concerns
internuclear distances Rij close to the initial distance R0,
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that is, for Rij ≈ 2 a.u. ≈ Rad/2. Having confidence in the
screening radius rs , the experiment with the nitride, performed
with very good statistics, confirms the theoretical prediction
of the dielectric model on the vicinage dependence with
the internuclear distance, for Rad/2 � Rij � 2Rad, with good
precision. For the experiment at 151 keV/A in SiO2, the
perturbative approach of the dielectric model and the single
Drude approximation for the ELF are less justified and from
this point of view the experiment is a more severe test for these
approximations. Considering the quality of the fits in Figs. 18
and 19, the theoretical approach used here seems justified.

C. Thermal vibrations

The fit of the leading edge of the yield curve provides the
velocity distribution of the nuclei of the impinging molecular
ions in the c.m. frame. The comparison of the results obtained,
respectively, at 151 and 429 keV demonstrates that the levels
of excitation reached by the molecules depend markedly on the
conditions upon which they were produced in the ion source.
We have tried, in a rather crude way, to relate the velocity
distributions to the distributions of distances R0 between the
nuclei of a molecule. The knowledge of the latter, on which
information can be found in the literature, is required to analyze
our data related to vicinage effects and Coulomb explosion.
Our conclusion is that, in the case of H2

+, the R0 distributions
proposed in the literature are consistent with the initial velocity
distributions that we measure. For H3

+ ions, however, this
is not the case; these ions are clearly less excited in our
experiments than those analyzed in the literature, and we had
to consider narrower R0 distributions and smaller R0 mean
values.

D. Summary

(i) The Coulomb explosion in amorphous insulators such
as Si3N4 and SiO2 for protons clusters with energy of a few
100 keV/A is governed by a screened Coulomb potential with
screening radius in the Rad (for H3

+ clusters) to 2Rad (for H2
+

clusters) range.
(ii) The dielectric model using ELF described by Drude

functions is pertinent to describe the vicinage effect.
(iii) The shape of the yield curves Y (Eb) obtained when

scanning the beam energy Eb is governed both by Coulomb
explosion and vicinage effect. Energy fluctuations related to
the Coulomb explosion play a major role in this shape.

(iv) As a consequence of the preceding point, the shape
of Y (Eb) does not give a direct image of the evolution of the
vicinage effect with depth. Involved calculations are needed to
extract this variation law.

(v) Molecular ion beams should not be used for high-
resolution depth profiling using narrow nuclear resonances,
unless a very careful analysis of all the causes of energy
fluctuations is undertaken.
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APPENDIX A: ANISOTROPY OF VICINAGE EFFECT

Let us consider Eq. (5). For aligned H2
+ molecules (d =

R12, ρ = 0), the interference term oscillates with no damping
when d increases with depth; however, for H2

+ molecules
perpendicular to the beam direction (d = 0, ρ = R12), the
Bessel function introduces damping. One may estimate the
energy fluctuations induced by anisotropy as follows.

(i) Calculate the mean distance 〈R12(z)〉 between the nuclei
as a function of depth. For this estimation, we used an initial
mean distance R0 = 2.4 and assumed that the explosion of
the molecules was governed by an isotropic screened potential
(Yukawa, with the screening radius rs = (2/π )Rad used in
Ref. [12]), and we include MS.

(ii) Using Smol-SP(R12,θ ), for a given θ , calculate
Smol-SP(〈R12(z)〉,θ ) at various depths z � zo to calculate the
mean energy loss �E(zo; θ ) over a given thickness zo; repeat
this procedure for various θ . The variations of �E(zo; θ )
are represented in Fig. 20 for zo = 100 nm in the case of
429 keV/A H2

+ in Si3N4.
For isotropically oriented H2

+ molecules, the probability
distribution P (θ ) of θ is given by

P (θ ) = (1/2) sin θ, 0 < θ < π. (A1)

In Fig. 20, �E(zo; θ ) is centered around the mean value
〈�E〉iso calculated according to the P (θ ) law.

P (θ ) favors the large angles. Moreover, except for a
relatively small fraction of molecules which enter the target
with values of θ small enough to allow the trapping of the
second atom of the molecule by the wake potential created by
the first one, MS induces independent lateral displacements
of the two nuclei and hence induces a rapid rotation of the
molecule (θ increases). Finally, we estimate that the energy-
loss fluctuations induced by anisotropy are in all cases smaller
than ±≈0.3 keV. This value is to be compared to the shape of
the high-energy part of Y2(Eb) in Fig. 1: Energy fluctuations
at large depths are of the order of ≈7 keV. This justifies the
early average on the molecule orientation. This conclusion is
also valid for H3

+ molecules and for the SiO2 target.

FIG. 20. Mean energy-loss variations �E(θ ) for a zo = 100 nm
path length, for 429 keV/A H2

+ molecules in Si3N4 as a function
of their orientation θ with respect to the beam direction. �E(θ ) is
centered on the isotropic mean energy loss 〈�E〉iso = 10.4 keV.
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APPENDIX B: ELECTRON LOSS FUNCTION

1. Si3N4

All the information on the target valence electrons is
embodied in the ELF, which must satisfy the sum rule∫ ∞

0 dωωIm[−1/ε(q,ω)] = ωelf = 2π2ne = 1.25 for all q

(ne = 0.0632). Experimental values of ELF at q � 0 are
available (UV optical measurements, typically up to ω �
2 a.u.). Starting from measured Im[−1/ε(q = 0,ω)], a theory
is then needed to extend these experimental data to all q values.
For amorphous Si3N4, from [32], as quoted by [33], the ELF
is a single peak, with maximum value ≈2.02, corresponding
to ωp-exp = 0.92 a.u., with a width (FWHM) 0.32 a.u., and
a large tail toward high ω. The value of ωp-exp is close to
the plasma frequency ωp = 0.89 corresponding to ne = 32
electron/molecule, partly justifying our core versus valence
electron partition. In fact, the ELF close to its maximum
value was not measured in Ref. [32] and was extrapolated
in Ref. [33]. For this reason, we also consider the theoretical
calculation of Wang et al. [31] for Spinel Si3N4, which predicts
a narrower peak (0.14 a.u. FWHM) with a maximum value ≈6
corresponding to ωp-exp = 0.99. ELFs described by sums of
Drude-type functions satisfy the above sum rule and are largely
adequate to fit the narrow single-peaked ELF of Si3N4 [27]:

ωIm

( −1

ε(q,ω)

)
= 4πneγω2

[(ωp + q2/2)2 + γ 2ω2]
. (B1)

The best overall agreement with [33] is obtained for a sum of
3 Drude functions (i = 1,3) with damping factors γ (i) � 0.3,
0.8, 0.99 a.u., ωp(i) � 0.93, 0.7, and 1.54 a.u., with weighing
factors A(i) = 0.73, 0.145, and 0.125. For the ELF calculated
in Ref. [31], six Drude functions were used (i = 1,6), γ (i) �
0.4, 0.2, 0.085, 0.05, 0.05, 0.05 a.u., ωp(i) � 0.88, 0.89, 0.992,
1.032, 1.062, 0.082, A(i) = 0.12, 0.06, 0.52, 0.13, 0.11, 0.06.
These two ELF and their description using sums of Drude
functions are represented in Figs. 21 and 22.

In a medium with a rather narrow single-peaked ELF,
one may anticipate rather small differences in the calculated
vicinage effect when changing from the ELF function of [33],

FIG. 21. (Color online) Open circles, ELF for Si3N4 as calculated
by [31]; solid line, corresponding fit using a sum of six Drude
functions.

FIG. 22. (Color online) Open red circles, ELF for Si3N4 as
measured by [32] and extrapolated by [33]; solid line, corresponding
fit using a sum of three Drude functions.

to that of [31] or even to the SP description [Eq. (4)]. Since
the Drude function may be expressed as the sum of two
second-order rational fractions in ω, integration over ω in
Eq. (3) is analytical and only one numerical integration, on
q, is needed.

2. SiO2

For SiO2, the ELF is broader than for Si3N4. It exhibits
oscillations and is approximated [12] by a single Drude
function with damping factor γ = 0.8, and ωp = 0.88.

APPENDIX C: MULTIPLE SCATTERING

Multiple scattering is the consequence of successive small
angular deflections of an incident ion by the target nuclei.
Collisions of the incident protons on target nuclei are elastic
and may be described using a classical description. The
interaction potential is screened by the target electrons and
a simple Thomas-Fermi type screening may be used, here the
Lenz-Jensen [36] formulation. It has been shown [37,38] that
MS in polyatomic targets may reduce to MS in a monatomic
target with a mean atomic number Z which depends on the
target thickness. For rather small and close atomic numbers
(here 14 and 7 or 8), and rather thick targets, this mean value
is close to the arithmetic mean value, that is, 10 for both Si3N4

and SiO2. We consider that the target nuclei are randomly
distributed in space and that trajectories are straight lines
between the collisions. Using Monte Carlo one may easily
simulate these random interactions.

In the present experiment, we are essentially interested in
the lateral displacement ρ distribution of the incident nuclei.
In the transverse plane, the successive collisions lead to 2D
random vectors −→ρ i corresponding to the lateral displacement
between two successive collisions. For a given path length z, if
N is the corresponding random number of collisions, one has
−→ρ = ∑N

i=1
−→ρ i . The impact parameters leading to significant

angular deflections are small compared to an interatomic
distance. Hence, except for molecules nearly aligned with the
incident beam direction, that is, the minor fraction for which
the second ion of the molecule (case of H2

+) is trapped by
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FIG. 23. (Color online) Lateral distribution ρ and distribution of
the distance Rij = R12 between nuclei for 429 keV/A H3

+ in Si3N4,
at depth z = 80 nm. Monte Carlo calculation using a Lenz-Jensen
screening function (Coulomb repulsion was omitted when calculating
R12).

the wake potential along the beam direction, the deflections of
the nuclei composing a molecular ion may be considered as
independent: In the transverse plane, each nucleus follows an
independent random walk.

In the Monte Carlo calculation, one may also calculate the
evolution with z of the distance Rij between two nuclei in a
molecule (initial distance Ro). Repeating such a calculation for
a larger number of molecules leads to distributions of the lateral
displacement ρ = ‖−→ρ ‖ for a nucleus and to the distribution
of Rij . In Fig. 23, we consider the case of 429 keV/A H3

+
molecules at depth z = 80 nm in Si3N4. In this calculation,
the initial distance Rij = R0 is fixed and there is no Coulomb
repulsion between the nuclei of the molecule in order to isolate
the specific contribution of MS.

The distribution of R12 (identical to that of R13 or R23) is
very broad and its mean value is very large compared to the
initial distance R0 = 1.80 a.u. Clearly, the MS plays a major
role in this experiment. Small-angle MS scales as 1/E, where
E is the kinetic energy of the colliding monatomic ions (here
a proton). The contribution of MS in the Si3N4 experiment is
then smaller than in the experiment performed in SiO2 [12]
(E = 151 keV/A).

The experiments were performed on tilted targets. One
hence has to consider the influence of the lateral displacement
on the path lengths throughout the whole target [38,39] (for
perpendicular targets, this is a second order effect). Using
a Monte Carlo code, we obtain the result displayed on
Fig. 24 for a Si3N4 target tilted at �68◦ (mean traveled
path zmax = 220 nm). The path-length fluctuations around
the mean value are converted into energy-loss fluctuations,
via the proton stopping power (no vicinage effect at the
nitride-substrate interface). This distribution is not Gaussian;
the width FWHM �0.83 keV, is larger than the estimated
width corresponding to anisotropy in the vicinage effect (see
Fig. 20), but is still rather small compared to the major
causes of energy fluctuations (Coulomb explosion, energy
loss straggling). It was nevertheless included in all our
calculations.

FIG. 24. (Color online) Monte Carlo calculation of the energy-
loss fluctuations induced by lateral displacement in a tilted target
(tilt = 68◦), for 429-keV protons Si3N4 (mean path length 220 nm).

APPENDIX D: OTHER SOURCES OF ENERGY
FLUCTUATIONS

1. Velocity fluctuations related to R0 fluctuations

The discussion in Sec. III F (b) should now be extended in
order to take into account the influence of the fluctuation of the
initial internuclear distance R0 due to thermal vibrations. For a
given R0 distribution and a given screening radius rs , one may
calculate the velocity distribution of the nuclei of an molecule
in the c.m. frame at a given depth z. For H2

+, using the
asymmetrical distribution of [21], one finds an approximately
Gaussian velocity distribution of standard deviation σV (z) �
0.23V (z), where V (z) is the repulsive velocity of a nucleus
in the c.m. frame. Similarly, for H3

+, using [23], one finds
σV (z) � 0.32V (z). The corresponding energy fluctuation for
an incident nucleus is given by σER0 = MpVionσV . At large
depth, V (z) = V lim. An upper limit for V lim is obtained when
assuming that the repulsive potential between the nuclei of an
initial molecule is unscreened. For H3

+ ions, this upper limit
is 0.0246 a.u, which leads, for a 429 keV/A incident beam, to
an upper value of σER0 equal to 60 a.u., to be compared to the
collisional energy straggling � = 84.5 at the nitride substrate
interface: σER0 is not negligible and was taken into account in
all our calculations.

2. Energy-loss fluctuations induced by MS

Due to MS, from one molecule to another, the evolution of
the distance Rij (z) between the nuclei varies. This in turn leads
to fluctuations in the energy loss through the dependence with
Rij of the vicinage effect. Coulomb explosion and energy loss
are correlated: Molecules having suffered high energy loss
(due to vicinage) at given z are those with Rij smaller than
its mean value. For larger z, the small Rij distance implies
a stronger Coulomb repulsion and the further energy losses
are smaller than the average value. Using a full Monte Carlo
calculation, we have shown that these correlations play a minor
role in all our experiments. Hence, we may use procedures
that avoid time-consuming full Monte Carlo calculations (see
in particular Sec. III H).
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