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Angular distributions of secondary electrons in fast particle-atom scattering
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We present the angular distribution of electrons knocked out from an atom in a fast charge particle collision
at small momentum transfer. Not only dipole, but also quadrupole transitions determine this distribution. The
contribution of these transitions can be considerably enhanced as compared to the case of photoionization. In
photoionization angular distribution, the nondipole parameters are suppressed, as compared to the dipole ones,
by the factor ωR/c � 1, where ω is the photon energy, R is the ionized shell radius, and c is the speed of
light. In fast electron-atom collisions this suppression can be considerably reduced, since the corresponding
expansion parameter ωR/v � 1 is much bigger than in photoionization, because the speed of the incoming
electron vis much smaller than c. In formation of the angular distribution, it is decisively important that
the ionizing field in the collision process is longitudinal, while in photoionization—it is transversal. We
demonstrate that contrary to the case of cross sections, the angular anisotropy parameters for secondary
electrons in fast charge particle-atom collisions and in photoionization are essentially different. We illustrate
the general formulas by concrete results for outer s, p, and some nd subshells of multielectron noble gas
atoms Ar, Kr, and Xe, at several transferred momentum values: q = 0.0, 0.1, 1.1, and 2.1. Even for very small
transferred momentum q, i.e., in the so-called optical limit, the deviations from the photoionization case are
prominent.
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I. INTRODUCTION

About 10–15 years ago, a lot of attention was given
to the investigation of the so-called nondipole parameters
of photoelectron angular distributions (see Refs. [1–3], and
references therein). It was understood that this is in fact the
only way to reveal the contribution of quadrupole continuous
spectrum matrix elements of atomic electrons, which in the
absolute photoionization cross section are unobservable in
the shadow of much bigger dipole contributions. To study
nondipole parameters, the high intensity sources of continuous
spectrum electromagnetic radiation were used [4–7].

By the order of magnitude, the ratio of quadrupole-to-dipole
matrix elements in photoionization is characterized by the
parameter ωR/c, where ω is the photon energy, R is the
ionized shell radius, and c is the speed of light. For photon
energies up to several keV, which includes the ionization
potential of the inner 1s subshell even for medium atoms,
one has ωR/c � 1. In the absolute cross sections, the dipole
and quadrupole terms do not interfere, so that the second
power of the small parameter ωR/c determines the ratio of
quadrupole-to-dipole contributions. In addition, some of these
terms cancel each other. As to the angular distribution, it
includes the dipole-quadrupole interference terms that are in
the first power of ωR/c, and therefore the relative role of
quadrupole terms is much bigger.

Quite long ago the fast charged particle inelastic scattering
process was considered as a “synchrotron for the poor” [8].
This notion reflects the fact that the fast charge particle
inelastic scattering is similar to photoionization, since the
dipole contribution mainly determines it. However, contrary
to the photoionization case, the ratio “quadrupole-to-dipole”
contributions can be much bigger, since instead of ωR/c,
the parameter ωR/υ, where υ is the speed of the pro-
jectile, determines it. Because 1 � υ � c, the role of the

quadrupole term in inelastic scattering is relatively much
bigger.1

The momentum q transferred in the collision is not bound
to the transferred energy ω by a relation ω = aq, with a being
a constant, similar to the case of photoionization, with ω = cq.
Therefore, the collision experiment gives an extra degree of
freedom to control the atomic reaction to the transferred energy
and linear momentum. This stimulates the current research. Its
aim is to derive formulas for the angular anisotropy parameters
of electrons emitted off an atom in its inelastic scattering with
a fast charged projectile. We also perform calculations of these
parameters as functions of ω and q. Note that the information
from the photoionization studies does not inform one at all
about the q dependences of dipole and quadrupole matrix
elements or about the monopole matrix elements. As far as
we know, the angular anisotropy parameters presented in this
paper are derived for the first time.

Here we suggest investigation of the cross section of the
inelastic scattering on an atom and the study of the angular
distribution of the emitted electrons relative to the momentum
q transferred to the atom from the projectile. As is well known,
the fast charged particle inelastic scattering cross section is
proportional to the so-called generalized oscillator strength
(GOS) density. Therefore, in this paper we study the GOS
density angular distribution as a function of the angle θ

between the momentum of the electron emitted in the collision
process and of direction �q.

Deep similarity between the photoionization and the fast
electron scattering brought to belief that not only the total
cross section, but also the angular anisotropy parameters are

1The atomic system of units is used in this paper: electron charge e,
its mass m, and Planck constant h̄ being equal to 1, e = m = h̄ = 1.
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either the same or similar. As we show below, this is incorrect
even in the so-called optical limit q → 0.

In our calculations, we will not limit ourselves to the one-
electron Hartree-Fock approximation, but will also include
multielectron correlations in the frame of the random phase
approximation with exchange (RPAE) that was successfully
applied to studies of photoionization and fast electron scat-
tering [9,10]. We published formulas and some data for s

subshells in Ref. [11]. Here we present some more calculation
data for s subshells and new results, both analytic and numeric,
for p and d subshells.

Overall, what is done in this paper is the further develop-
ment of the idea of the “synchrotron for the pure” [8] in the
investigation of atoms along the same direction, in which one
can use normal synchrotron radiation. We demonstrate some
of the advantages of fast electron scattering that already opens
up the possibility to study not only dipole but also monopole
and quadrupole transitions (see Refs. [12,13], and references
therein).2

Let us compare our approach to that developed in connec-
tion to the studies of the so-called (e,2e) reaction [14–17].
In most cases, the electrons were not fast enough and the
first Born approximation in describing the incoming electrons
was not valid. The angle of the geometry used was obviously
different from that used in this paper. The aim of this direction
of research was clearly formulated in Ref. [17]: “A specific
set of kinematics is completely defined by the method with the
results yielding valuable information on the collision dynamics
or on the momentum distribution of the struck atomic
electron.” It required developing approaches that permitted
one to take into account the interaction between two outgoing
electrons.

In this paper, the aims and approach are different. We
suggest using fast incoming electrons as a source of transferred
to the atom energy ω and momentum q. This means that
we consider so high incoming energies that their interaction
with the target is sufficient to treat in the first Born approx-
imation. For medium heavy atoms, it corresponds to tens
of keV.

Our aim here is to study the reaction of a target atom to the
absorption of ω and q at small q. This is why the suggested
geometry of experiment, the method of results description,
etc., are entirely different from those used in (e,2e) studies.

In our approach, we determine the angular distribution
of the investigated electron by several parameters that are
dependent upon ω and q, and independent upon the electron
emission angle θ . We present analytic expressions for these
parameters along with their numeric values obtained in the
frame of RPAE. In spite of extensive investigation of the
fast electron scattering, there are no experiments suggested
in this paper on fast electron energy and collision geometry. In
this sense, the present research is a call to experimentalists to
perform the required measurements.

2The decisive contribution of the monopole GOS component in
Ar 3p-4p transition was predicted in Ref. [12] and later confirmed
in Ref. [13]. Thus, this part of the 3p-4p transition is not seen in
photoabsorption at all.

II. MAIN FORMULAS

Here for completeness we start with the well-known
expressions. Some formulas for s- subshell angular anisotropy
parameters we have already presented in Ref. [11]. We repeat
them here for completeness and the convenience of the reader.

The cross section of the fast electron inelastic scattering
upon an atom with ionization of an electron of nl subshell can
be presented [18,19] as follows:

d2σnl

dω dq
= 2

√
(E − ω)√
Eωq2

dFnl(q,ω)

dω
. (1)

Here dFnl(q,ω)/dω is the GOS density differential in the
ionized electron energy ε = ω − Inl , where Inl is the nl

subshell ionization potential.
The following formula gives, in one-electron approxima-

tion, the GOS density differential both in the emission angle
and in the energy of the ionized electron with linear momentum
�k from a subshell with principal quantum number n and angular
momentum l:

dfnl(q,ω)

d�
= 1

2l + 1

2ω

q2

∑
m

|〈nlms| exp(i �q · �r)|ε�ks〉|2. (2)

Here �q = �p − �p′, with �p and �p′ being the linear moments
of the fast incoming and outgoing electrons determined
by the initial E and final E′ energies as p = √

2E and
p′ = √

2E′, � is the solid angle of the emitted electron, m

is the angular momentum projection, and s is the electron
spin. Note that ω = E − E′, ω = p2/2 − ( �p − �q)2/2 = �p ·
�q − q2/2, and ε = ω − Inl is the outgoing electron energy.

The values of ω are limited by the relation 0 � ω �
pq − q2/2, contrary to the proportionality ω = cq for the case
of photoeffect. In order to consider the projectile as fast, its
speed must be much higher than the speed of electrons in the
ionized subshell, i.e.,

√
2E 	 R−1. The transferred-to-the-

atom momentum q is small if qR � 1.
Expanding exp (i �q · �r) into a sum of products of radial

and angular parts and performing analytic integration over
the angular variables, one obtains for GOS in the one-electron
Hartree-Fock approximation,

gnl,kl′,L(q) ≡
∫ ∞

0
Rnl(r)jL(qr)Rkl′(r)r2 dr, (3)

where jL(qr) are the spherical Bessel functions and Rnl(kl′)(r)
are the radial parts of the Hartree-Fock (HF) electron wave
functions in the initial (final) states.

We suggest measuring the angular distribution of the
emitted electrons relative to the direction of �q. This means that
the z axis coincides with the direction of �q and hence one has to
put θ�q = ϕ�q = 0 in Eq. (2). Since we have in mind ionization
of the particular nl subshell, for simplicity of notation let us
introduce the following abbreviations: gnl,kl′,L(q) ≡ gkl′L(q).
Note that due to energy conservation in the fast electron
inelastic scattering process one has k = √

2(ω − Inl).
We can generalize the GOS formulas in order to include the

interelectron correlations in the frame of RPAE. We achieve
this by substituting gkl′L′(q) with modulus G̃kl′L′(q) and the
scattering phases δl′ with δ̄l′ = δl′ + 
l′ , where the expressions
Gkl′L′(q) ≡ G̃kl′L′(q) exp(i
l′ ) are solutions of the RPAE set
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of equations [20]:

〈εl′|GL(ω,q)|nl〉 = 〈εl′|jL(qr)|nl〉 +
( ∑

ε′′l′′�F,ε′′′l′′′>F

−
∑

ε′′l′′<F,ε′′′l′′′�F

)
〈ε′′′l′′′|GL(ω,q)|ε′′l′′〉〈ε′′l′′,εl′|U |ε′′′l′′′,nl〉L

ω − εε′′′l′′′ + εε′′l′′ + iη(1 − 2nε′′′l′′′ )
. (4)

Here �F (>F ) denotes the summation over occupied (vacant) atomic levels in the target atom. Summation over vacant levels
includes integration over continuous spectrum; nεl is the Fermi step function that is equal to 1 for nl � F and 0 for nl >

F ; the Coulomb interelectron interaction matrix element is defined as 〈ε′′l′′,εl′|U |ε′′′l′′′,nl〉L = 〈ε′′l′′,εl′|rL
</rL+1

> |ε′′′l′′′,nl〉 −
〈ε′′l′′,εl′|rL

</rL+1
> |nl,ε′′′l′′′〉 and η → +0. In the latter formula, the notation of smaller (bigger) radiuses of r< (r>) of interacting

electron coordinates comes from the well-known expansion of the Coulomb interelectron interaction. The necessary details about
solving (4) one can find in Ref. [21].

For differentials in the outgoing electron angle GOS density of nl subshell dFnl(q,ω)/d�, the following relations are valid in
RPAE [10]:

dFnl(q,ω)

d�
=

∑
L′L′′

dF
L′,L′′
nl (q,ω)

d�
= ωπ

q2

∑
L′L′′

(2L′ + 1)(2L′′ + 1)iL
′−L′′

×
L′+l∑

l′=|L′−l|

L′′+l∑
l′′=|L′′−l|

G̃kl′L′(q)G̃kl′′L′′(q)il
′′−l′(2l′ + 1)(2l′′ + 1)ei(δ̄l′ −δ̄l′′ )

(
L′ l l′

0 0 0

) (
l′′ l L′′

0 0 0

)

×
l′+l′′∑

L=|l′−l′′ |
PL(cos θ )(−1)L+l(2L + 1)

(
l′ L l′′

0 0 0

) (
L L′ L′′

0 0 0

) {
L L′ L′′

l l′′ l′

}
. (5)

This expression follows by generalizing (2) to include the RPAE corrections and performing required analytical integrations
and summations over projection of the electron angular moments m with the help of the MATHEMATICA package [22].

From (5), the partial value of GOS Fnl(q,ω) in RPAE can be obtained by integrating over d�, leading to the following
expressions:

Fnl(q,ω) =
∑
L′

FL′
nl (q,ω) = 4ωπ2

q2

∑
L′

(2L′ + 1)
L′+l∑

l′=|L′−l|
[G̃kl′L′(q)]2(2l′ + 1)

(
L′ l l′

0 0 0

)2

. (6)

Note that at small q the dipole contribution in GOSs Fnl(q,ω) dominates and is simply proportional to the photoionization cross
section σnl(ω) [10]. To compare the results obtained with known formulas for the photoionization with lowest-order nondipole
corrections taken into account, let us consider so small q that it is enough to take into account terms with L′,L′′ � 2. In this case,
we can present the GOS angular distribution (5) in a way that is similar to the photoionization case, as

dFnl(q,ω)

d�
= Fnl(q,ω)

4π

{
1 − β

(in)
nl (ω,q)

2
P2(cos θ ) + q

[
γ

(in)
nl (ω,q)P1(cos θ ) + η

(in)
nl (ω,q)P3(cos θ ) + ς

(in)
nl (ω,q)P4(cos θ )

]}
.

(7)

The obvious difference is the presence of q dependence of the coefficients and an extra term ς
(in)
nl (ω,q)P4(cos θ ). Even in this

case of L′,L′′ � 2, expressions for β
(in)
nl (ω,q), γ

(in)
nl (ω,q), η

(in)
nl (ω,q), and ς

(in)
nl (ω,q) via gkl′L′(q) are too complex as compared to

relations for βnl(ω), γnl(ω), and ηnl(ω) in photoionization. Therefore, it is more convenient to present the results for s, p, and d

subshells separately. We demonstrate that while Fnl(q,ω) ∼ σ (ω), similar relations are not valid for the anisotropy parameters.
Let us start with s subshells, where, as follows from (5), the following relation gives differential GOSs in the above-mentioned

L′,L′′ � 2 approximation:

dFns(q,ω)

d�
=

2∑
L′,L′′=0

dFL′,L′′
ns (q,ω)

d�
= Fns(q,ω)

4π

{
1 + 6

W0
G̃11[G̃00 cos(δ̄0 − δ̄1) + 2G̃22 cos(δ̄1 − δ̄2)]P1(cos θ )

+ 2

7W0

{
21G̃2

11 + 5G̃22[7G̃00 cos(δ̄0 − δ̄2) + 5G̃22]
}
P2(cos θ )

+ 18

W0
G̃11G̃22 cos(δ̄1 − δ̄2)P3(cos θ ) + 90

7W0
G̃2

22P4(cos θ )

}

≡ Fns(q,ω)

4π

{
1 − 1

2
β(in)

ns (q,ω)P2(cos θ ) + q
[
γ (in)

ns (q,ω)P1(cos θ ) + η(in)
ns (q,ω)P3(cos θ )

]}
, (8)

where

Fns = 4π2ω

q2
W0; W0 = G̃2

00 + 3G̃2
11 + 5G̃2

22. (9)
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We will compare the result obtained in the small q limit with the known formula for photoionization of an atom by nonpolarized
light [1]. To do this, we have to use the lowest-order terms of the first four spherical Bessel functions:

j0(qr) ∼= 1 − (qr)2

6
; j1(qr) ∼= qr

3

(
1 − (qr)2

10

)
;

(10)

j2(qr) ∼= (qr)2

15

(
1 − (qr)2

14

)
; j3(qr) ∼= (qr)3

105
.

The lowest in the powers of q term is G̃11 ∼ q � 1.3 The correction to G̃11 is proportional to q3. As to G̃00 and G̃22, they are
proportional to q2 with corrections of the order ofq4. By retaining in Eq. (8) terms of the order of q2 and greater, one obtains the
following expression:

dFns(q,ω)

d�

= Fns(q,ω)

4π

{
1 + 2P2(cos θ ) + 2

G̃11
[G̃00 cos(δ̄0 − δ̄1) + 2G̃22 cos(δ̄1 − δ̄2)]P1(cos θ ) + 6G̃22

G̃11
cos(δ̄1 − δ̄2)P3(cos θ )

}

≡ Fns(q,ω)

4π

{
1 + 2P2(cos θ ) + q

[
γ (in)

ns (q,ω)P1(cos θ ) + η(in)
ns (q,ω)P3(cos θ )

]}
. (11)

One should compare this relation with the similar one for photoionization of the ns subshell [1]:

dσns(ω)

d�
= σns(ω)

4π

{
1 − P2(cos θ ) + κ

6Q̃2

5D̃1
cos(δ̄1 − δ̄2)[P1(cos θ ) − P3(cos θ )]

}
(12)

≡ σns(ω)

4π
{1 − P2(cos θ ) + κ[γns(ω)P1(cos θ ) + ηns(ω)P3(cos θ )]}.

where κ = ω/c is the photon momentum, and γns(ω) =
−ηns(ω) = (6Q̃2/5D̃1) cos(δ̄1 − δ̄2).

The sign and magnitude of the dipole parameter is different
for inelastic fast electron scattering, as follows from the
comparison of (11) and (12). This parameter in the electron
scattering is two times bigger than in the photoionization and
of opposite sign. Essentially different are the expressions for
the nondipole terms. This difference exists and remains even
in the so-called optical limit q → 0.

According to Eq. (10), in the q → 0 limit there are
simple relations between dipole D̃1 and quadrupole Q̃2 matrix
elements and functions G̃11,G̃22, namely, G̃11 = qD̃1/3 and
G̃22 = 2q2Q̃2/15. With the help of these relations and G̃00 =
−q2Q̃2/3 = −(5/2)G̃22, formula (11) transforms into the
following expression:

dFns(q,ω)

d�
= Fns(q,ω)

4π

{
1 + 2P2(cos θ )

+ q

[
2Q̃2

D̃1

(
4

5
cos(δ̄1 − δ̄2) − cos(δ̄0 − δ̄1)

)

×P1(cos θ ) + 2γns(ω)P3(cos θ )

]}
. (13)

The deviation from (12) is evident, since one cannot
express the angular distribution in inelastic scattering via a
single nondipole parameter γns(ω) including the absent in
photoionization phase difference δ̄0 − δ̄1. As a result, the

3As is seen from (10), we have in mind such values of q that
qR < 1.

following relations have to be valid at very small q:

γ (in)
ns (ω) = 2Q̃2

D̃1

[
4

5
cos(δ̄1 − δ̄2) − cos(δ̄0 − δ̄1)

]
,

(14)

η(in)
ns (ω) = 2γns(ω) = 12

5

Q̃2

D̃1
cos(δ̄1 − δ̄2).

We see that the investigation of inelastic scattering even at
q → 0 permits one to obtain an additional characteristic of the
ionization process, namely, its s-wave phase.

It will be demonstrated below that for l > 0, even at very
small q, the relations between nondipole parameters in the
photoionization and the inelastic fast electron scattering are
more complex.

The similarity of general structure and considerable dif-
ference between (11) and (12) is evident. Indeed, one can
enhance the contribution of the nondipole parameters, since
the condition ω/c � q � R−1 is easy to achieve. Let us note
that even while neglecting the terms with q, (12) and (13)
remain different: in photoionization, the angular distribution
is proportional to sin2 θ [see Eq. (12)], whereas in the inelastic
scattering it is proportional to cos2 θ [see Eq. (13)]. The reason
for this difference is clear. In photoabsorption, the atomic
electron is “pushed” off the atom by the electric field of the
photon, which is perpendicular to the direction of the light
beam. In inelastic scattering, the “push” acts along momentum
�q, so the preferential emission of the electrons takes place
along the �q direction, so the maximum is at θ = 0. Similar
reason explains the difference in the nondipole terms. Note that
the last term due to monopole transition in Eq. (13) is absent
in photoabsorption angular distribution (12). It confirms that
the angular distribution of the GOS densities is richer than that
of photoionization.
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Although the expressions for p and d subshells are much
more complex than that for s, they are of great importance
and interest since p and d subshells are multielectron objects.
As such, the intrashell electron correlations may affect them.
Particularly important are the multielectron effects in the 4d

subshell due to the presence there of the famous dipole giant

resonance (see, e.g., [10]). This is why it is of interest to present
data on non-s subshells also.

While in Ref. [11] we have obtained formulas for s subshells
only, here we present data for differential GOSs of p and d ′
subshells. For p′ subshells (l = 1) the following expression is
obtained:

dFnp(q,ω)

d�

=
2∑

L′,L′′=0

dFL′,L′′
np (q,ω)

d�

= Fnp

4π

(
1 + 1

5W1
{10G̃01(2G̃12 − G̃10) cos(δ̄0 − δ̄1) + 4G̃21[(5G̃10 − G̃12) cos(δ̄1 − δ̄2) + 9Ḡ32 cos(δ̄2 − δ̄3)]}P1(cos θ )

+ 2

7W1
{7G̃21[G̃21 − 2G̃01 cos(δ̄0 − δ̄2)] + 7G̃12(G̃12 − 2G̃10) + 3G̃32[(7G̃10 − 2G̃12) cos(δ̄1 − δ̄3) + 4G̃32]}P2(cos θ )

− 6

5W1
{6G̃21G̃12 cos(δ̄1 − δ̄2) + G̃32[5G̃01 cos(δ̄0 − δ̄3) − 4G̃21 cos(δ̄2 − δ̄3)]}P3(cos θ )

+ 18

7W1
G̃32[G̃32 − 4G̃12 cos(δ̄1 − δ̄3)]P4(cos θ )

)

≡ Fnp(q,ω)

4π

{
1 − β(in)

np (q,ω)

2
P2(cos θ ) + q[γ (in)

np (q,ω)P1(cos θ ) + η(in)
np (q,ω)P3(cos θ ) + ζ (in)

np (q,ω)P4(cos θ )]

}
, (15)

where

Fnp = 4π2ω

q2
W1; W1 = G̃2

10 + G̃2
01 + 2

[
G̃2

21 + G̃2
12

] + 3G̃2
32. (16)

For differential GOSs of d subshells (l = 2) the following expression holds:
dFnd (q,ω)

d�
= Fnd

4π

(
1 + 6

W2
{14G̃11(G̃22 − G̃20) cos(δ̄1 − δ̄2) − 14G̃11G̃02 cos(δ̄0 − δ̄1)

+ 3G̃31[(7G̃20 − 2G̃22) cos(δ̄2 − δ̄3) + 12G̃42 cos(δ̄3 − δ̄4)]}P1(cos θ )

+ 2

245W2

{
1029

(
G̃2

11 + 6G̃2
31

) − 18522G̃11G̃31 cos(δ̄1 − δ̄3) + 1225G̃02(7G̃20 − 10G̃22) cos(δ̄0 − δ̄2)

− 125G̃22(98G̃20 + 15G̃22) + 450G̃42[(49G̃20 − 20G̃22) cos(δ̄2 − δ̄4) + 25G̃42]
}
P2(cos θ )

+ 18

W2
[2G̃11[G̃22 cos(δ̄1 − δ̄2) − 6G̃42 cos(δ̄1 − δ̄4)] + G̃31[7G̃02 cos(δ̄0 − δ̄3)

− 8G̃22 cos(δ̄2 − δ̄3) + 6G̃42 cos(δ̄3 − δ̄4)]P3(cos θ )

+ 90

49W2

{
20G̃2

22 + G̃42[98G̃02 cos(δ̄0 − δ̄4) − 100G̃22 cos(δ̄2 − δ̄4) + 27G̃42]
}
P4(cos θ )

)

≡ Fnd (q,ω)

4π

{
1 − β

(in)
nd (q,ω)

2
P2(cos θ ) + q

[
γ

(in)
nd (q,ω)P1(cos θ ) + η

(in)
nd (q,ω)P3(cos θ ) + ζ

(in)
nd (q,ω)P4(cos θ )

]}
,

(17)

where

Fnd = 4π2ω

35q2
W2; W2 = 35G̃2

20 + 42G̃2
11 + 63G̃2

31 + 35G̃2
02 + 50G̃2

22 + 90G̃2
42. (18)

It is interesting to compare, just as was done with l = 0, the expressions (15) and (17) with the angular distribution of
photoelectrons. It is essential to clarify whether the difference exists even in the q → 0 limit, as takes place for the s subshells.
In this limit, the following expressions follow from (15) and (17):

For l = 1 one has from (15) at q = 0,

β(in)
np (q = 0,ω) = − 4

D̃2
0 + 2D̃2

2

[
D̃2

2 − 2D̃0D̃2 cos(δ̄0 − δ̄2)
]
, (19)
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γ (in)
np (q = 0,ω) = 18

25
[
D̃2

0 + 2D̃2
2

] {5D̃0Q̃1 cos(δ̄1 − δ̄0) + 2D̃2[2Q̃3 cos(δ̄3 − δ̄2) − 3Q̃1 cos(δ̄1 − δ̄2)]}, (20)

η(in)
np (q = 0,ω) = 12

25
[
D̃2

0 + 2D̃2
2

] {5D̃0Q̃3 cos(δ̄3 − δ̄0) + 2D̃2[3Q̃1 cos(δ̄1 − δ̄2) − 2Q̃3 cos(δ̄3 − δ̄2)]}. (21)

For l = 2 one has from (17) at q = 0,

β
(in)
nd (q = 0,ω) = − 4

5
[
2D̃2

1 + 3D̃2
3

] [
D̃2

1 + 6D̃2
3 − 18D̃1D̃3 cos(δ̄1 − δ̄3)

]
, (22)

γ
(in)
nd (q = 0,ω)

= 2

35
[
2D̃2

1 + 3D̃2
3

] {14D̃1[7Q̃2 cos(δ̄1 − δ̄2) − 2Q̃0 cos(δ̄0 − δ̄1)] + 9D̃3[8Q̃4 cos(δ̄4 − δ̄3) − 13Q̃2 cos(δ̄2 − δ̄3)]}, (23)

η
(in)
nd (q = 0,ω) = 12

35
[
2D̃2

1 + 3D̃2
3

] {2D̃1[Q̃2 cos(δ̄2 − δ̄1) − 6Q̃4 cos(δ̄4 − δ̄1)]

+ D̃3[7Q̃0 cos(δ̄0 − δ̄3) − 8Q̃2 cos(δ̄2 − δ̄3) − 6Q̃4 cos(δ̄4 − δ̄3)]}. (24)

In deriving formulas (19)–(24), we use the following relations:

G̃l′1 ≡ q

3
D̃l′(l

′ = l ± 1); G̃l′0 ≡ −q2

3
Q̃l′(l

′ = l);
(25)

G̃l′2 ≡ 2q2

15
Q̃l′ (l′ = l,l ± 2).

FIG. 1. (Color online) Differential generalized oscillator strength
given by (15) at the magic angle θm

∼= 54.7◦ of 3p, 4p, and 5p

subshells for Ar, Kr, and Xe at q = 0.1, 1.1, and 2.1 in HF and RPAE.

To clarify comparison between the angular anisotropy
parameters in photoionization and fast electron scattering,
note that we use the following relations in the HF approx-
imation for dipole and quadrupole radial matrix elements

FIG. 2. (Color online) Differential generalized oscillator strength
given by (8) at the magic angle θm

∼= 54.7◦ of 3s, 4s, and 5s subshells
for Ar, Kr, and Xe at q = 0.1, 1.1, and 2.1 in HF and RPAE.
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FIG. 3. (Color online) Angular anisotropy nondipole parameters
of knocked-out electrons γ (in)

ns (ω) and η(in)
ns (ω) given by (8) and

(13) at q = 0.01, 0.1, and 1.1, compared to similar parameters in
photoionization γns(ω) and ηns(ω) (12) for the 3s subshell of Ar in
RPAE.

d̃l′ and q̃l′ :

D̃l′ ⇒ d̃l′ =
∫ ∞

0
Pnl(r)rPkl′(r)dr;

(26)

Q̃l′ ⇒ q̃l′ = 1

2

∫ ∞

0
Pnl(r)r2Pkl′(r)dr,

wherePnl(kl′)(r) = rRnl(kl′)(r) and Rnl(kl′)(r) are the radial parts
of the HF electron wave functions in the initial (final) states.

For any l, the following expression gives the angular
distribution of photoelectrons with inclusion of nondipole
terms in the lowest order of photon momentum κ:

dσnl(ω)

d�
= σnl(ω)

4π

{
1 − βnl(ω)

2
P2(cos θ )

+ κγnl(ω)P1(cos θ ) + κηnl(ω)P3(cos θ )

}
. (27)

For l = 1 one has the following expression for the dipole
angular anisotropy parameters [1,10]:

βnp(ω) = 2

D̃2
0 + 2D̃2

2

[
D̃2

2 − 2D̃0D̃2 cos(δ̄0 − δ̄2)
]
. (28)

As one sees from (19), for l = 1 the relation β(in)
np (q = 0,ω) =

−2βnp(ω) is the same as for the s subshells.

FIG. 4. (Color online) Angular anisotropy nondipole parameters
of knocked-out electrons γ (in)

ns (ω) and η(in)
ns (ω) given by (8) and (13) at

q = 0.01, 0.1, and 1.1, compared to similar parameters in photoion-
ization γns(ω) and ηns(ω) (12) for the 4s subshell of Kr in RPAE.

The following expressions determine the nondipole angular
anisotropy parameters [1] for l = 1:

γnp(ω) = 6

25
[
D̃2

0 + 2D̃2
2

] {5D̃0Q̃1 cos(δ̄1 − δ̄0)

+ D̃2[9Q̃3 cos(δ̄3 − δ̄2) − Q̃1 cos(δ̄1 − δ̄2)]}, (29)

ηnp(ω) = 6

25
[
D̃2

0 + 2D̃2
2

] {5D̃0Q̃3 cos(δ̄3 − δ̄0)

+ 2D̃2[3Q̃1 cos(δ̄1 − δ̄2) − 2Q̃3 cos(δ̄3 − δ̄2)]}. (30)

For the dipole angular anisotropy parameter with l = 2, one
has the following expression [10]:

βnd (ω) = 2

5
[
2D̃2

1 + 3D̃2
3

] [
D̃2

1 + 6D̃2
3 − 18D̃1D̃3 cos(δ̄1 − δ̄3)

]
.

(31)

Note that for l = 2, as is seen from (22), the relation similar
to l = 0; 1 is valid, namely, β

(in)
nd (q = 0,ω) = −2βnd (ω). It is

quite possible that such a relation is valid for any l.
The following expressions determine the nondipole angular

anisotropy parameters [1] for l = 2:

γnd (ω) = 6

35
[
2D̃2

1 + 3D̃2
3

] {7D̃1[Q̃2 cos(δ̄2 − δ̄1)

− Q̃0 cos(δ̄0 − δ̄1)] + 3D̃3[6Q̃4 cos(δ̄4 − δ̄3)

− Q̃2 cos(δ̄2 − δ̄2)]}, (32)
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FIG. 5. (Color online) Angular anisotropy nondipole parameters
of knocked-out electrons γ (in)

ns (ω) and η(in)
ns (ω) given by (8) and

(13) at q = 0.01, 0.1, and 1.1, compared to similar parameters in
photoionization γns(ω) and ηns(ω) (12) for the 5s subshell of Xe in
RPAE.

ηnd (ω) = 6

35
[
2D̃2

1 + 3D̃2
3

] {2D̃1[6Q̃4 cos(δ̄4 − δ̄1)

− Q̃2 cos(δ̄2 − δ̄1)] − D̃3[8Q̃2 cos(δ̄2 − δ̄3)

− 6Q̃4 cos(δ̄4 − δ̄3) − 7Q̃0 cos(δ̄0 − δ̄3)]}. (33)

Prominent analytic deviation from respective nondipole
parameters for the inelastic scattering, given by (20), (21), (23),
and (24) is clearly seen. Contrary to the dipole parameters,
simple frequency-independent relations that connect respec-
tive nondipole parameters for photoionization and fast electron
inelastic scattering do not exist.

Note that the limit q = 0 at ω �= 0 cannot be achieved since
no energy can be transferred from the incoming electron to the
projectile without momentum transfer. However, with growth
of the projectile’s speed, smaller and smaller q is sufficient to
transfer the given energy ω.

One sees that in spite of the visibly deep similarity between
photoionization and fast electron scattering, a big difference
exists. Indeed, the angular distributions in photoionization and
fast electron scattering are different even in the limit q → 0.
One can explain it by the difference between the transverse (in
photoionization) and longitudinal (in fast electron scattering)
photons that ionize the target atom. Analytically, it is reflected

FIG. 6. (Color online) Angular anisotropy dipole parameter of
knocked-out electrons β (in)

np (q,ω) given by (15) at q = 0.1 and 1.1,
compared to similar parameters in photoionization βnp(ω), given by
(28) for the outer subshells of Ar, Kr, and Xe in RPAE.

in the difference between operators causing ionization by
photons and fast electrons that already include only the lowest
nondipole corrections. For the photoionization, it is (�e · �r) +
i(�κ · �r)(�e · �r), where �e is the photon polarization operator that
is orthogonal to the direction of light propagation given by
the photon momentum �κ . As to fast electron scattering, it is
(�q · �r) + i(�q · �r)(�q · �r), thus including only one angle between
�q and �r contrary to the case of photoionization with its two
angles—between �r , �e, and �κ .

Because of this difference, in photoionization the force that
acts upon the outgoing electron is orthogonal to the direction of
�κ and thus of the photon beam. Therefore, the photoelectron
emission is minimal along �κ/κ , while in inelastic electron
scattering the force and maximal knocked-out electron yield
is directed along �q.

III. CALCULATION DETAILS

In order to obtain dFnl(q,ω)/d� from experiment, one
has to measure the yield of electrons with energy ε = k2/2 =
ω − Inl emitted at a given angle θ in coincidence with the fast
outgoing particle that loses energy ω and transfers to the target
atom momentum �q. Note that according to (8), (11), and (12)
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FIG. 7. (Color online) Angular anisotropy parameters of
knocked-out electrons γ (in)

np (q,ω) and η(in)
np (q,ω) given by (15) at

q = 0.1 and 1.1, compared to similar parameters in photoionization
γnp(ω) and ηnp(ω) given by (29) and (30) for the 3p Ar, 4p Kr, and
5p Xe subshells in RPAE.

β
(in)
n0 = −4, which differs by sign and value from photoion-

ization value βns = 2. As demonstrated by calculations, the
differences in numerical values for nondipole parameters that
characterize inelastic scattering and photoionization of p and
d subshells are essential.

To calculate dFnl(q,ω)/d� we have used the numeric
procedures described at length in Ref. [21]. We perform
calculations in the frame of Hartree-Fock and RPAE ap-
proximations. As concrete objects, we choose outer np2 and
subvalent ns2 subshells of Ar, Kr, and Xe. The nondipole
parameter ζ

(in)
nd was calculated for 3d Kr and 4d Xe, using the

expression that follows from (17):

ζ
(in)
nd = 90

49qW2

[
20G̃2

22 + G̃42(98G̃02 cos(δ̄0 − δ̄4)

− 100G̃22 cos(δ̄2 − δ̄4) + 27G̃42)]. (34)

We perform computations using Eqs. (5)–(9), (11), (13),
and (15)–(18) in HF and RPAE, for q = 0.0,0.1, 1.1, and
2.1. The energies up to 20–25 Ry for outgoing electrons are
considered. Note that we present the point q = 2.1 only for
some orientation. Indeed, for not small enough q values the
formulas presented and discussed in this paper are incorrect,

FIG. 8. (Color online) Angular anisotropy dipole parameter of
knocked-out electrons β

(in)
nd (q,ω) given by (17) and (22) at q = 0,

0.1, 1.1 and 2.1 compared to similar parameters in photoionization
βnd (ω), given by (31) for the 3d Kr and 4d Xe subshells in RPAE.

since with the growth of q the values L′,L′′ > 2 become
increasingly important.

Most prominent are the nondipole corrections at so-called
magic angle θm, for which holds the relationP2(cos θm) =
0. This is why we present the differential in emission
angle GOSs dFnl(q,ω)/d� at the magic angle θm and at
q = 0.0; 0.1; 1.1; 2.1. Results are obtained also for dipole
and nondipole angular anisotropy parameters. Figures 1–11
present all data.

The lowest value of q corresponds to the photoionization
limit, since qR � 1, and in the considered frequency range
ω/c < 0.05 < qmin = 0.1. The last inequality shows that we
consider the nondipole corrections to the GOSs that are much
bigger than the nondipole corrections to photoionization.

IV. CALCULATION RESULTS

The results demonstrate that the GOSs and angular
anisotropy parameters are complex and informative func-
tions with a number of prominent variations. All calculated
characteristics demonstrate strong influence of the electron
correlations for p, s, and d electrons. They depend strongly
upon the outgoing electron energy and the linear momentum q

transferred to an atom in the fast electron inelastic scattering.
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FIG. 9. (Color online) Angular anisotropy nondipole parameters
of knocked-out electrons γ

(in)
nd (q,ω) and η

(in)
nd (q,ω) given by (17) at

q = 0.1 and 1.1, compared to similar parameters in photoionization
γnp(ω) and ηnp(ω), given by (32) and (33) for the 3d Kr and 4d Xe
subshells in RPAE.

Electron correlations strongly affect the results. Figures 2, 3,
and 5 have an overlap with that presented in Ref. [11]. They are
different in value, since in this paper we use a much improved
computing code.

Figures 1 and 2 present differential GOSs given by (15) and
(8) at the magic angle θm

∼= 54.7◦ for outer np and subvalent
ns subshells of Ar, Kr, and Xe at q = 0.1, 1.1, and 2.1 in HF and
RPAE. At small q the GOSs are similar to the photoionization
cross section. For p subshells with growth of q the maximum
decreases in magnitude and shifts to higher ω. For q =
2.1 there is no trace of any similarity with photoionization.
The situation for the s subshell is different, since here the
differential GOSs with an increase of q at first grow and only
then start rapidly to decrease. Note a particularly strong effect
of RPAE correlations near threshold.

The insertion in Fig. 1 for 5p Xe shows the prominent effect
played by the action of 4d giant resonance upon 5p GOS. For
big q, q = 2.1, the maximum exists at the same energy already
in HF, and the action of 4d adds only a small shoulder.

Figures 3–5 collect values for the nondipole angular
anisotropy parameters of knocked-out electrons γ (in)

ns (ω) and
η(in)

ns (ω) given by (7) and (14) at q = 0.01, 0.1, and 1.1,
compared to similar parameters in the photoionization γns(ω)
and ηns(ω) (11) for the subvalent ns subshell of Ar, Kr, and Xe

FIG. 10. (Color online) Angular anisotropy nondipole
parameter—coefficient of the fourth Legendre polynomial in
the angular distribution of the knocked-out electrons ζ (in)

np (q,ω),
calculated using (15). The results are presented for the 3p Ar, 4p Kr,
and 5p Xe subshells at q = 0.1, 1.1, and 2.1.

in RPAE. For q = 0 the relation η(in)
ns (ω) = 2γn0(ω) is valid.

As to γ (in)
ns (ω), it is of a different sign and three to four times

bigger than ηns(ω). This means that even in the limit q = 0 the
nondipole parameters for photoionization and for fast electron
inelastic scattering are essentially different. Qualitatively, the
parameters at q = 0.1 look similar to those at q = 0, but
smaller. With an increase of q, the variation becomes broader
and shifts to the higher ω side. Note that an approximate
relation proved to be valid between γ (in)

ns (ω) and η(in)
ns (ω).

Figure 6 presents the dipole angular anisotropy parameter
of the knocked-out electrons β(in)

np (q,ω) given by (15) at
q = 0.1 and 1.1, compared to a similar parameter in
the photoionization βnp(ω), given by (28), for the outer
subshells of Ar, Kr, and Xe in RPAE. It is seen that for
q = 0.1 the relation, which is precisely correct at q =
0,β(in)

np (q = 0,ω) = −2βnp(ω) is approximately valid, while
it is violated for bigger q. It looks like the inequality
−4 � β

(in)
nl (q,ω) � 2 holds. Maximum for βnp(ω) and minima

for β(in)
np (q,ω) in Xe in the ω region around 8–10 Ry are

consequences of the effect of the 4d giant resonance.
Figure 7 depicts the angular anisotropy nondipole param-

eters of knocked-out electrons γ (in)
np (q,ω) and η(in)

np (q,ω) given
by (15) at q = 0.1 and 1.1, compared to similar parameters
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in the photoionization γnp(ω) and ηnp(ω) given by (29) and
(30) for 3p Ar, 4p Kr, and 5p Xe subshells in RPAE. As
is already seen from the analytic expressions, the difference
between photoionization values and that for the fast electron
scattering is essential even in the limit q = 0. The nondipole
parameters are complex and thus rather informative functions
of ω at both qvalues.

Figure 8 represents the angular anisotropy dipole parameter
of knocked-out electrons β

(in)
nd (q,ω) given by (17) and (22) at

q = 0.1, 1.1, and 2.1, compared to similar parameters in the
photoionization βnd (ω), given by (31) for 3d Kr and 4d Xe
subshells in RPAE. Note that the relation β

(in)
nd (q = 0,ω) =

−2βnd (ω) is fulfilled. Prominent changes of β
(in)
nd (q,ω) take

place with the weakening of variations, while q increases.
Figure 9 shows the angular anisotropy nondipole parame-

ters of knocked-out electrons γ
(in)
nd (q,ω) and η

(in)
nd (q,ω) given

by (17) at q = 0.1 and 1.1, compared to similar parameters
in photoionization γnd (ω) and ηnd (ω), determined by (32)
and (33) for 3d Kr and 4d Xe subshells in RPAE. The
difference between parameters for photoionization and fast
electron scattering is quite large. Note that the parameters, as
it should be, are smaller than the data for respective psubshells
since the radii 3d Kr and 4d Xe are smaller than those of 4p

Kr and 5p Xe, respectively.

FIG. 11. (Color online) Anisotropy nondipole parameter
ζ

(in)
nd (q,ω)—coefficient of the fourth Legendre polynomial in the an-

gular distribution of the knocked-out electrons ζ
(in)
nl (q,ω), calculated

at q = 0.1, 1.1 and 2.1 using (17). The results are presented for the
outer and nd subshells of the Ar, Kr, and Xe subshells.

Figure 10 demonstrates the last angular anisotropy
nondipole parameter, namely, the coefficient of the fourth Leg-
endre polynomial in the angular distribution of the knocked-
out electrons ζ (in)

np (q,ω), calculated using (15). The results are
presented for the 3p Ar, 4p Kr, and 5p Xe subshells at q =
0.1, 1.1, and 2.1. This parameter does not have a calculated
photoionization analog. The absolute value is much smaller
than other nondipole parameters for the same subshells.

Figure 11 gives the data on the angular anisotropy nondipole
parameter ζ

(in)
nd (q,ω)—coefficient of the fourth Legendre poly-

nomial in the angular distribution of the knocked-out electrons,
calculated at q = 0.1,1.1 and q = 2.1 using (17). The results
are presented for 3d Kr and 4d Xe subshells. These results
are much smaller than in Fig. 10 since the respective radii
are for the 3d and 4d subshells, smaller than for 4p and 5p,
respectively.

V. CONCLUDING REMARKS

It is not a surprise that GOSs and angular anisotropy
parameters depend upon q and ω. What is indeed a surprise is
the big difference between the angular anisotropy parameters
for fast electron scattering and their respective photoionization
values. Already from photoionization studies, we know that
they are strongly affected by atomic electron correlations. Here
we saw that fast electron scattering also gives information on
transferred momentum dependences and their interplay with
electron correlations.

The biggest unexpected feature of the angular anisotropy
for the inelastic scattering is that even in the q = 0 limit they do
not coincide with respective photoionization values, and they
are not connected by a simple relation similar to that between
the photoionization cross section and GOSs. This is a result
of different operators for photoionization and fast electron
scattering as is discussed at the very end of Sec. III.

We expect that this paper will stimulate experimental efforts
in the not too simple but potentially rather informative studies
of the differential cross section of secondary electrons knocked
out off a target atom in fast electron-atom collisions. We
understand that such studies require coincidence experiments,
in which simultaneously the transferred by fast electron energy
and momentum are fixed, as well as the momentum of the
secondary electron.

In particular, the q → 0 limit deserves special attention. It
is already seen that the dipole angular anisotropy parameters
are different by sign and value. The nondipole parameters,
in their turn, deviate even qualitatively from their respective
photoionization values. It is amazing that in the nonrelativistic
domain of energies inessential at first glance difference
between a virtual and a real photon leads to such prominent
consequences.

The information that could come from studies of angular
distribution of secondary electrons at small q is of great interest
and value. Thus, the experimental studies suggested here are
desirable.
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