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Formation of negative ions in collisions between Rydberg atoms and neutral particles
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We present a theoretical description of the formation of weakly bound (Eb ∼ 0.1–10 meV) negative ions in
collisions of Rydberg atoms with neutral atoms or molecules. Using the adiabatic approximation for the collision,
we obtain an analytical expression for the formation cross section. It is shown that the cross section has a sharp
peak in its dependence on the principal quantum number of the Rydberg electron. This result is in agreement with
the experimental studies. We obtain a simple analytical expression that relates the peak position and the binding
energy of the negative ion. This expression generalizes the empirical law previously established by Desfrançois
[Phys. Rev. A 51, 3667 (1995)]. Comparison of our calculations with the experimental data on dipole-bound
anion formation shows that the obtained formula can be used for determination of binding energies of weakly
bound negative ions from Rydberg electron transfer reactions with good accuracy.
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I. INTRODUCTION

Fermi and Teller [1] were the first to predict that a fixed
point dipole can bind an electron provided that the dipole
moment is larger than 1.625 D. This result has been used
over the last 20 years in experimental and theoretical studies
of dipole-bound anions (DBA), that is, molecular negative
ions in which the excess electron is bound to the neutral
molecule due to its dipole moment (see reviews [2,3] and recent
works [4,5]).

One of the basic processes of DBA creation for experimen-
tal studies is charge-exchange collision between an excited
Rydberg atom and a polar molecule. The probability of this
reaction should be expected to be large due to the small
binding energy of the Rydberg electron. The formation of
DBAs with binding energies Eb ∼ 1–10 meV has been studied
in Refs. [6,7]. The cross sections of the anion formation were
shown to be strongly dependent on the principal quantum
number n of Rydberg atoms, peaking sharply at a certain
value of n = nmax. Such a sharp sensitivity has also been
observed in Ca− ion formation (Eb � 20 meV) produced by
similar charge-exchange collisions between ground-state Ca
atoms and Ne Rydberg atoms [8]. The characteristic of these
reactions is that the following relation (in a.u.) is fulfilled at the
maximum of the cross sections as a function of the Rydberg
quantum number n:

Eb � 1

2n2
max

. (1)

This inequality means that the charge-exchange process is
strongly nonresonant since the cross section reaches its
maximum value when the binding energy of the Rydberg
atom is much larger than that of the created negative ion. The
following empirical law has been established [7] that relates
Eb and nmax:

Eb � 0.84

n2.8
max

, (2)
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where Eq. (1) follows for n � 1. Relation (2) has been used in
a series of works [7,9,10] for determination of DBA binding
energies and has been proven to be quite accurate.

Numerical calculations of DBA formation cross sections
were carried out within the framework of the multistate
Landau-Zener model [7]. In Ref. [11] the cross section of
the reaction of Ca− ion formation was numerically calculated
using the decay model. According to this model, the negative
ion can decay due to the electric field of the positive core
of the Rydberg atom. As applied to the Ca− formation, both
models agree well with experiments with regard to the value of
nmax, but differ substantially from each other in the predicted
values of the cross section. In the latter case, a comparison
with experiment is difficult because one usually measures
relative rather than absolute formation cross sections. The
close-coupling calculations [12] of the Ca− formation have
shown that the decay model describes quite well both the peak
position and the absolute value of the cross section as a function
of Rydberg quantum numbers n.

A common drawback of the above mentioned numerical
calculations is that they are not able to clarify the physical
meaning and the validity conditions of the useful empirical
relation (2). In the present work we show that condition (1)
together with the requirement for the collision to be adiabatic
enable us to perform analytical calculations of negative ion
formation in charge-exchange reactions between Rydberg
atoms and neutral atoms or molecules. As a result, we obtain an
approximate expression that determines nmax for given values
of the anion binding energy Eb and the relative collision
velocity v. Also, an approximate formula for calculating
Eb for given nmax and v is obtained that generalizes the
empirical law (2). This formula seems important because it
can be used for direct determination of the binding energy of
weakly bound negative ions from Rydberg electron transfer
reactions with good accuracy. The results of calculations with
the obtained analytical expressions are shown to be in good
agreement with the experimental data. [It should be noted that
investigation of Rydberg states has recently become especially
actual in relation to important scientific and technological
applications (see, for instance, Refs. [13–15] and references
therein).]
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FIG. 1. Diabatic potential curves for the system of the colliding
particles in reaction (3) as a function of the internuclear distance R

at a fixed impact parameter ρ. The solid lines correspond to covalent
terms H11, and the dashed line corresponds to the ionic term H22. Rc

is the transition point from the initial ns covalent term to the ionic
term.

Atomic units will be used throughout this paper, unless
explicitly stated otherwise.

II. GENERAL EXPRESSIONS FOR PROBABILITY
OF NEGATIVE ION FORMATION

We consider the charge transfer reaction in collisions
between Rydberg atoms in ns states and neutral particles
(atoms or molecules) in ground states,

A∗(ns) + B → A+ + B−. (3)

We assume that the negative ion B− has only the ground-
state energy level with the angular momentum l = 0 (the s

state) and the binding energy −Eb (Eb > 0). It should be
noted that in the case of DBAs the angular momentum l

of the excess electron is not conserved due to nonspherical
symmetry of the dipole potential. Nevertheless, the spherically
symmetric approximation for DBAs may be regarded as
acceptable, its accuracy is discussed in Refs. [16,17]. The
effect of nonspherical symmetry of the dipole potential on the
charge-exchange process in collisions of polar molecules has
been considered in Refs. [18,19].

The energies H11 and H22 of the covalent and ionic diabatic
states, which correspond to the localization of the electron in
the Rydberg atom and the negative ion, respectively, are

H11 = − 1

2n2
, H22 = −γ 2

2
− 1

R
. (4)

Here γ = √
2Eb and R is the distance between the colliding

particles. Equations (4) are accurate up to the terms of the
order of O(R−1).

In the approximation of straight-line trajectories the time
dependence of R has the form

R(t) =
√

ρ2 + v2t2. (5)

Here ρ is the impact parameter and v is the velocity of relative
motion of the colliding particles.

The neutral particle B can capture the electron initially
localized in the Rydberg atom to form a negative ion. It can
occur at the point R = Rc, where the initial covalent potential
curve crosses the ionic curve (Fig. 1). Equating H11 = H22,

we obtain

Rc = 1

−γ 2/2 + 1/2n2
. (6)

Since in the collision the particles pass through the crossing
point R = Rc twice (Fig. 1), the total probability of negative
ion formation for a fixed impact parameter ρ is

P = pnW1 + (1 − pn)pnW2. (7)

Here pn is the probability of the initial capture of the electron
into the ionic state and W1,2 are the probabilities for the
negative ion to survive if it is formed after the first or the second
passing through the crossing point R = Rc, respectively. The
first term in Eq. (7) corresponds to the negative ion formation
as the particles approach each other, and the second term is
responsible for negative ion formation as the particles move
away from each other.

III. DECAY MODEL

In the next step we will calculate the survival probabilities
W1,2 that appear in Eq. (7). The electron of the negative ion
can make a transition to the Rydberg atom energy levels at
each crossing point that the particles pass through in the
collision (Fig. 1). Since the spectrum of Rydberg states is
dense, such a transition can be described as tunneling of the
electron from the short-range potential of the neutral particle
to the quasicontinuous spectrum of the states in the field of
the positive ion [20–22]. We will refer to this picture for the
electron transition from the negative ion to the Rydberg atom
as the decay model. In this model it is possible to define a
decay probability per unit time �(R). Then the probabilities
W1,2 are given by the exponential decay law

W1,2 = exp

[
−

∫ ∞

∓tc

�(R(t))dt

]
, (8)

where ∓tc are the instants of the first (“−” sign) and the second
(“+” sign) passing through the point R = Rc. We note that, in
accordance with Eq. (5), the instant of the closest approach,
when R = ρ, has been chosen as a time reference point, that
is, R(0) = ρ.

Using the substitution t =
√

R2 − ρ2/v, which follows
from Eq. (5), we change from integration over t to integration
over R in Eq. (8). As a result, we obtain

W1 = exp

(
−

∫ Rc

ρ

�
dR

vr

)
exp

(
−

∫ ∞

ρ

�
dR

vr

)
, (9)

W2 = exp

(
−

∫ ∞

Rc

�
dR

vr

)
. (10)

Here vr = v
√

1 − ρ2/R2 is the component of the relative
velocity along the internuclear axis.

In the decay model, the electron tunnels through the
potential barrier in the Coulomb field of a positive ion (Fig. 2).
Under the conditions of the problem studied, variation of
the electric field along the path of the electron through the
barrier can be neglected, that is, the negative ion decay can be
considered to occur in a uniform electric field. To prove this
we note that condition (1) implies the relation

n2γ 2 � 1, (11)
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FIG. 2. The potential energy of the electron that tunnels from the
negative ion to the Rydberg atom, along the internuclear axis. The
positive ion is located at the point R = 0, d is the tunneling length,
the internuclear distance R = Rc.

which holds near the maximum of the cross section as
a function of the Rydberg principal quantum number n.
Using inequality (11), Eq. (6) for Rc can be rewritten
approximately as

Rc � 2n2(1 + γ 2n2). (12)

This relation has a clear physical meaning: the distance Rc

at which the electron can pass from the Rydberg atom to the
negative ion almost coincides with the radius of the Rydberg
atom. As is seen from Fig. 2, the tunneling length d is
determined at R = Rc by the condition

1

Rc − d
= 1

2n2
.

Substituting here Eq. (12) for Rc, we obtain

d = Rc − 2n2 � 2n4γ 2 � Rc. (13)

From Eq. (13) it follows that at R = Rc the electron tunnels
in a uniform electric field with the strength F = 1/R2

c . The
corresponding probability per unit time for an s electron of a
negative ion has the form [23,24]

� = A2F

4γ 2
exp

(
− 2γ 3

3F

)
. (14)

Here A is the normalization factor in an asymptotic behavior
of the s electron wave function at large distances [25]

ψ(r) � A√
4πr

e−γ r , rγ � 1. (15)

For a weakly bound electron, it is convenient to represent A
in the form

A = B
√

2γ ,

where the coefficient B ∼ 1. When B = 1, the electron in a
negative ion is described by the wave function (15) in the
whole space.

Equation (14) can be used for description of the negative
ion decay not only at the point R = Rc, but also in a narrow
interval of R values around this point, |R − Rc| � Rc, where
the uniform-field approximation also holds. The substitution of
the corresponding electric field strength F = 1/R2 in Eq. (14)

gives

�(R) = A2

4γ 2R2
exp

(
− 2

3
R2γ 3

)
. (16)

As it will be shown below, expression (16) leads to the result
that the negative ion decay mainly takes place at distances
|R − Rc| � Rc, that is, in the region where (16) is applicable.
Thus we can assume that Eq. (16) gives a complete description
of the negative ion decay.

Expression (16) is correct if R2γ 3 � 1, which corresponds
to a small tunneling probability. For description of the negative
ion decay in the neighborhood of the point R = Rc it is
sufficient to satisfy the condition R2

c γ
3 � 1. It follows from

Eqs. (11) and (12) that Rc � 2n2. Therefore, the condition
n2γ 2 � 1 for the uniform field approximation to be valid is
equivalent to Rcγ

2/2 � 1. To use formula (16) it is necessary
to satisfy both conditions

Rcγ
2/2 � 1, R2

c γ
3 � 1 (17)

simultaneously. We show below that, for thermal collision
velocities, conditions (17) are satisfied at the cross section
maximum n = nmax in a wide range of γ values.

IV. LANDAU-ZENER MODEL FOR NEGATIVE ION
FORMATION

In this section we calculate the capture probability pn from
Eq. (7). Since the probability pn corresponds to the transition
between the initial covalent curve and the ionic curve, it can be
obtained from the following simplified Landau-Zener formula
[26] (see also Ref. [27]):

pn = 1 − exp

(
− 2π |H12(Rc)|2R2

c

vrc

)
, (18)

where H12 is the potential of the one-electron exchange
interaction between the ionic state and the initial covalent state,
and vrc = v

√
1 − ρ2/R2

c is the radial velocity vr at R = Rc.
The decay model can be used for description of the electron

transfer from the negative ion to the Rydberg atom if the
transition probability at each crossing between the ionic and
covalent curves is sufficiently small, so that the electron has a
negligible chance to return back into the negative ion from
quasicontinuum of the Rydberg states, that is, so that the
irreversibility of the decay holds. In particular, we must have
pn � 1. We make the assumption, which will be confirmed
by the result, that the condition pn � 1 does hold. Then the
exponential in Eq. (18) is close to 1, and, expanding it in a
series, we obtain

pn � 2π |H12(Rc)|2R2
c

vrc

. (19)

To calculate H12(Rc) we use an approximate expression,
obtained in Refs. [28,29], for the potential of the exchange
interaction between negative and positive ions at large internu-
clear distances Rγ � 1. In our case of the s electron transition,
it has the form

H12(Rc) = A
2

χns(Rc), (20)
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where χns(R) is the radial wave function of the ns Rydberg
state. We note that the condition Rcγ � 1 for expression (20)
to be valid is satisfied automatically if conditions (17) hold
since R2

c γ
3/Rcγ

2 = Rcγ .
Since the principal quantum number n of the Rydberg

electron is high, we can use for χns(Rc) the quasiclassical
approximation [25]

χns(Rc) = cn

2Rc
4

√
1
n2 − 2

Rc

exp

(
−

∫ Rc

2n2

√
1

n2
− 2

r
dr

)
,

(21)
c2
n = 2/πn3.

The integral appearing in Eq. (21) can be calculated as
∫ Rc

2n2

√
1

n2
− 2

r
dr = Rc

(
1

n2
− 2

Rc

)1/2

− n ln

[
Rc

n2
− 1 + Rc

n

(
1

n2
− 2

Rc

)1/2]
.

(22)

Using Eqs. (6), (11), and (12), Eq. (22) can be simplified to
∫ Rc

2n2

√
1

n2
− 2

r
dr � 4

3
γ 3n4.

In the pre-exponential factor in Eq. (21) we replace
1/n2 − 2/Rc by γ 2 in accordance with Eq. (6). The final result
for χns is

χns(Rc) = 1

Rc

√
2πγn3

exp

(
−1

3
R2

c γ
3

)
. (23)

In the exponent in Eq. (23) the replacement of n by Rc has
been carried out by using relation (12).

Substituting Eq. (23) into Eq. (20), and then Eq. (20) into
expression (19), we finally obtain for the capture probability

pn = A2

4γ n3vrc

exp

(
−2

3
R2

c γ
3

)
. (24)

V. CALCULATIONS OF THE TOTAL CROSS SECTION

Taking into account Eq. (7), the total cross section of
negative ion formation can be written as

σ = 2π

∫ Rc

0
ρP (ρ) dρ = 2π

∫ Rc

0
pn(W1 + W2)ρ dρ.

(25)

Here we have used the above-stated inequality pn � 1.
It is follows from Eqs. (9) and (10) that the expression for

W1 can be rewritten in the form

W1 = exp

[
− 2

∫ Rc

ρ

�(R)
dR

vr

]
W2. (26)

According to Eq. (25), the lower limit of integration in
Eq. (26) varies from 0 to Rc. As shown in the Appendix, for
R2

c γ
3 � 1 the exponent in Eq. (26) decreases rapidly with

decreasing ρ from the value ρ = Rc, that is, with increasing
the interval of integration. This fact enables us to neglect W1

in comparison with W2 in Eq. (25). Physically, it means that

almost all negative ions which were formed at the first passing
through the point R = Rc decay as they move from R = Rc to
R = ρ and back.

Next we consider the integral∫ ∞

Rc

�(R)
dR

vr

, (27)

which appears in Eq. (10) for W2. For R2
c γ

3 � 1, according
to Eq. (16), �(R) decreases fast as R increases from the value
R = Rc, corresponding to the lower limit of integration in
Eq. (27). Therefore, the main contribution to integral (27) is
given by a narrow region near the point R = Rc. The width
δR of the region is determined by variation of the exponent in
Eq. (16) by a quantity of the order of O(1). Then for R2

c γ
3 � 1

we obtain the estimate

δR ∼ 1

2Rcγ 3
. (28)

From this relation and the condition R2
c γ

3 � 1, it is follows
that δR/Rc � 1. Thus, the negative ion decay mainly takes
place near the transition point R = Rc.

We assume that the velocity vr is constant in the segment
δR and equal to the value vrc. We also neglect the variation of
the pre-exponential factor in expression (16) for �(R) in this
segment. Then we can approximately calculate the integral
(27). Putting R = Rc(1 + u), we obtain

∫ ∞

Rc

�(R)
dR

vr

� A2e− 2
3 R2

c γ
3

4 γ 2 Rc vrc

∫ ∞

0
e− 2

3 R2
c γ

3u(2+u)du

� 3A2

16 γ 5 R3
c vrc

exp

(
−2

3
R2

c γ
3

)
. (29)

In the calculation it has been taken into account that for
R2

c γ
3 � 1 only values u � 1/(R2

c γ
3) � 1 contribute to the

integral over u.
Substituting Eq. (29) in expression (10) for W2 and using

formula (24) for pn, and neglecting W1 in comparison with
W2, we can represent the cross section (25) as

σ = πB2R2
c

n3v
e− 2

3 R2
c γ

3
∫ 1

0
exp

(
− 3

8

B2 e− 2
3 R2

c γ
3

γ 4R3
c vx

)
dx. (30)

Replacing n in front of the integral by
√

Rc/2 in accordance
with Eq. (12) and denoting α ≡ (2/3)R2

c γ
3, we bring the

previous expression for σ to the form

σ = 61/42πB2

vγ 3/4
α1/4e−α

×
∫ 1

0
exp

(
−

√
2

4
√

3

√
γB2

v

e−α

α3/2

1

x

)
dx. (31)

Figure 3 shows the cross section (31) as a function of
the principal quantum number n of Rydberg atoms for γ =
10−2 a.u., B = 1, and v = 10−4 a.u. The resonant behavior of
the dependence σ (n) is explained by the competition between
two processes, which occur mainly in the neighborhood of
the transition point R = Rc: (i) the capture of the Rydberg
electron into the negative ion and (ii) its decay in the Coulomb
field of the positive ion. We also plotted in Fig. 3 the
Gaussian curve obtained by the least-squares fitting of the
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FIG. 3. Solid line: the cross section of the negative ion formation
normalized to unity as a function of the Rydberg principal quantum
number n for γ = 10−2 a.u., B = 1, and v = 10−4 a.u. Dashed line:
the Gaussian curve which gives the least-squares approximation of
the cross section curve.

cross section curve. As can be seen, the two curves differ
markedly, which is mainly related to the asymmetry of the
function σ (n).

VI. DEPENDENCE OF THE CROSS SECTION
ON REACTION PARAMETERS

The cross section (31) reaches its maximum at the value of
n determined by the condition

dσ

dn
= ∂σ

∂α

dα

dn
= 0. (32)

Since dα/dn = (4/3)γ 3dRc/dn � (16/3)γ 3n �= 0, condi-
tion (32) is reduced to the equation ∂σ/∂α = 0. For α � 1,
in a computation of ∂σ/∂α in the first nonvanishing order of
α−1, it is sufficient to differentiate in expression (31) only the
exponentials that appear in the terms α1/4e−α , e−α/α3/2. As a
result, condition (32) is transformed into the equation∫ 1

0
e−δ/x

(
δ

x
− 1

)
dx = 0, (33)

where

δ(α) =
√

2

4
√

3

√
γB2

v

e−α

α3/2
.

A numerical evaluation of Eq. (33) gives δ(α) � 0.61. Thus
we have the following relation at the cross section maximum:

e−α

α3/2
= 3.0

v√
γB2

. (34)

For given values of γ and v, Eq. (34) enables us to find the
value of Rc that corresponds to the cross section maximum
and hence to obtain the value of nmax. Conversely, given
values of nmax and v, we can calculate γ from Eq. (34),
taking into account that Rc � 2 n2

max in accordance with
Eq. (12).

To calculate nmax approximately, we note that in the
adiabatic approximation, when v/γ � 1, the inequality
v/

√
γ � 1 holds if γ � 1. Therefore, we have a small

parameter on the right-hand side of Eq. (34), so that it can
be solved by iteration. To do this we represent Eq. (34) in the

form

α = ln μ − 3
2 ln α,

where we have introduced the parameter μ = √
γB2/(3v) �

1. Assuming that in the zeroth approximation α = ln μ, we get
after the first iteration

α = ln μ − 3
2 ln ln μ. (35)

Substituting the expression α = (2/3)R2
c γ

3 for α in
Eq. (35), and replacing, in accordance with Eq. (12), Rc by
2n2

max, we finally obtain

nmax � 0.78(ln μ)1/4

γ 3/4

(
1 − 3

8

ln ln μ

ln μ

)
, μ =

√
γB2

3v
. (36)

To determine the binding energy γ 2/2 for given v and nmax,
we rewrite Eq. (34) in such a form that it does not contain γ

on its right-hand side:

e−α

α4/3
= 2.8

B2
R1/3

c v. (37)

From Eq. (11) we have the inequality n � 1/γ , which
enables us to estimate the right-hand side of Eq. (37) as follows:
R

1/3
c v � (2n2)1/3v ∼ n2/3v � nv � v/γ . In the adiabatic ap-

proximation v/γ � 1, and consequently the right-hand side
of Eq. (37) is small, so that we can solve Eq. (37) by iteration.
Proceeding in exactly the same way as in the derivation of
formula (36), we obtain from Eq. (37) the following expression
for the negative ion binding energy:

Eb = γ 2

2
� 0.26(ln η)2/3

n
8/3
max

(
1 − 8

9

ln ln η

ln η

)
, η = 0.28B2

n
2/3
maxv

.

(38)

Now we will show that the relations obtained are in
agreement with the assumption which have been made in
deriving formulas (19) and (25), that is, that the probability
pn � 1 in the neighborhood of the cross section maximum.
To this end, we substitute the expression for exp[−(2/3)R2

c γ
3]

from Eq. (34) into formula (24) for pn. This enables us to get
the following estimate:

pn ∼ R3
c γ

4

n3
� 8n3γ 4,

where the relation Rc � 2 n2
max has been used. For Rydberg

atoms with a principal quantum number n � 10, we obtain, us-
ing inequality (11), 8n3γ 4 = 8(n2γ 2)2/n � 1, which proves
the assumption made.

VII. RESULTS AND DISCUSSION

To compare nmax and Eb values obtained by using formulas
(36) and (38) with experimental data and results of previous
calculations, we use results of Ref. [7], where the process of
DBA formation in collisions of several polar molecules with
Xe Rydberg atoms was studied. In Table I the experimental val-
ues n(1)

max are given for the Rydberg electron principal quantum
number at which the formation cross section for various DBAs
reaches its maximum. The binding energies E

(1)
b indicated in

Table I have been adjusted in Ref. [7] so as to achieve the
best fit of the experimental and numerically calculated cross
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TABLE I. Comparison of nmax and Eb values obtained by
using analytical expressions (36) and (38) with the experimental
data and the results of numerical calculations of Ref. [7] for the
reaction of DBA formation in collisions between Rydberg atoms
and polar molecules. The B values are calculated from the data of
Ref. [7].

Reference [7] This work

Molecule n(1)
max E

(1)
b (meV) B n(2)

max E
(2)
b (meV)

Acetonitrile 13 18.6 2.21 13.1 18.6
Acrylonitrile 15–16 10.8 2.19 15.9 11.4
Cyclohexanone 19 5.78 1.73 19.5 6.09
TFMBa 22–23 3.73 1.73 22.8 3.81
Cyclopentanone 24 3.18 1.70 24.1 3.17
Acetone 24–25 2.97 1.66 24.7 2.97
2-Butanone 28–29 1.89 1.64 29.0 1.94
Cyclobutanone 29 1.88 1.66 29.1 1.86
Butanal 33 1.29 1.59 33.1 1.28
Pivaldehyde 34 1.20 1.56 33.9 1.17
Acetaldehyde 41–42 0.70 1.53 41.1 0.67

aTrifluoromethylbenzene.

section curves. The numerical calculations were carried out
by using the multistate Landau-Zener model. The binding
energies thus obtained are compared in Table I with the values
E

(2)
b calculated by means of formula (38), the values n(1)

max andB
from Table I being used for nmax andB in (38), respectively. We
assume the relative collision velocity v = 5.5 × 10−4 a.u. =
1.2 × 105 cm/s, which corresponds to the mean collision
energy 350 meV reported in [6]. Theoretical values n(2)

max
are also given in Table I for the Rydberg electron principal
quantum number at the maximum of the cross sections. These
values were calculated by using formula (36) with E

(1)
b for the

binding energy.
As can be seen from Table I, the results of numerical

calculations [7] within the framework of the multistate
Landau-Zener model agree well with those obtained here
by using the decay model for description of the electron
transfer from anions to Rydberg atoms. This indicates that both
models are equivalent in the neighborhood of the cross section
maximum. In a significant deviation from the maximum, one
of the conditions (17) for validity of our theory is violated.
Therefore, far from the cross section maximum, calculations
within the multistate Landau-Zener model is expected to be
more accurate.

The empirical relation (2) has been obtained in [7] by
approximating the dependence of the values E

(1)
b on n(1)

max
(see Table I). Expression (38) for Eb enables us to understand
the origin of this empirical relation. Indeed, as is seen from
Table I, in the experiment [7] nmax � 10–40, which leads, at
the velocity v ∼ 10−4 a.u., to variation of the coefficient before
1/n

8/3
max � 1/n2.7

max in Eq. (38) by about 15% of its maximum
value, the change of B being taken into account. Thus we can
write Eb � const/n2.7

max, and this is very close to the empirical
law (2).

It follows from Eq. (2) that nmax does not depend on
the relative velocity v of the colliding particles. However, in
accordance with Eq. (36), such a dependence, though weak,

must exist. A weak dependence of nmax on v has indeed been
observed experimentally [9,30], and its character is similar to
that predicted by formula (36): as the relative velocity of the
colliding particles decreases, nmax shifts in the direction of
bigger values.

In Ref. [7], numerical results are also presented for DBA
formation rate constants k = vσ at the cross section maxi-
mum, where n = nmax. The values reported vary from 1.6 ×
10−8 cm3/s for acetonitrile to 14 × 10−8 cm3/s for acetalde-
hyde. A similar computation by using Eq. (30) for the cross
section σ gives, at the velocity v = 1.2 × 105 cm/s, k = 3.1 ×
10−8 cm3/s for acetonitrile and k = 12 × 10−8 cm3/s for
acetaldehyde. This should be considered as good agreement
with [7] in view of the many approximations which have been
made in our calculations.

Expressions (30), (36), and (38) for σ , nmax, and Eb are
valid under conditions (17). At the cross section maximum we
can write them by using Eq. (35) for α = (2/3)R2

c γ
3, in the

form

√
γ

(
ln

√
γ

3v

)1/2

� 1, ln
√

γ

3v
� 1. (39)

For a given relative velocity v of the colliding particles,
the first of conditions (39) gives an upper limit, while the
second gives an lower limit for the permissible values of γ .
Conditions (39) must be supplemented by the requirements
that the electron of the negative ion is weakly bound, that is,
γ � 1, and the collision is adiabatic, which implies γ � v.
It is the latter condition that gives the lower limit for the
values of γ at thermal collision velocities v ∼ 105 cm/s �
4.6 × 10−4 a.u. since the second of conditions (39) still holds
when γ /v ∼ 1, provided that γ � 1. As a result, we obtain
that at velocity v = 4.6 × 10−4 a.u. our theory is applicable for
γ values lying in a range ∼10−3–10−2 a.u., which corresponds
to negative ion binding energies Eb ∼ 0.1–10 meV. For lower
values of Eb the adiabatic approximation is violated; for bigger
values of Eb the assumption that the negative ion decays in
a uniform electric field breaks down because of violation of
condition (11).

The expressions (36) and (38) for nmax and Eb can be
shown to remain valid even for a nonzero orbital angular
momentum l of the electron in the Rydberg atom before
the collision, provided that l � n, and l ∼ 1, where n is the
principal Rydberg quantum number. These conditions hold in
all the experiments referred above, in which Rydberg atoms
were initially excited in states with angular momentum l � 3.
Expression (30) for σ retains its form for l �= 0 if σ means
a cross section averaged over the projection of the Rydberg
electron angular momentum on the internuclear axis. A special
consideration is required for the case when the Rydberg
electron is captured by neutral particles in a state with l �= 0,
for example, for the reaction of Ca− ion formation [8].

VIII. CONCLUSION

We have theoretically considered the formation of negative
ions in collisions between Rydberg atoms and neutral particles
(atoms or molecules) which are able to capture an excess
electron. Using condition (11), which means that the formation
of the negative ion takes place at the boundary of the Rydberg
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atom, and the requirement for the collision to be adiabatic
with respect to the motion of the electron in the negative
ion, we have calculated the formation cross section in an
analytical form. It is shown that the cross section as a function
of the principal quantum number n of Rydberg atoms has
a sharp maximum at a certain value of n = nmax which is
strongly correlated to the binding energy Eb of the negative
ions. The analytical expressions (36) and (38) linking Eb and
nmax are obtained. We point out that in accordance with Eq. (38)
the negative ion binding energy Eb depends only slightly on
the relative collision velocity v and the asymptotic coefficient
B. It is the reason why the simple empirical law (2) established
in Ref. [7] appears to be quite accurate for determination of
DBA binding energies. The expression (38) for Eb generalizes
the empirical law (2). It can be used for determination of
binding energies of DBA and other weakly bound negative
ions (both atomic and molecular) through measurements of
the cross section of Rydberg electron transfer reactions. The
obtained expressions are shown to be applicable to negative
ions with binding energies Eb ∼ 0.1–10 meV.
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APPENDIX: ESTIMATION OF THE SURVIVAL
PROBABILITY W1

To prove that the survival probability W1 can be neglected
in comparison with W2, we will show that, if conditions (17)
hold, the exponential factor in expression (26) for W1 decreases
fast as ρ decreases from the value ρ = Rc, at which the factor
is unity. To this end, we consider the integral in the exponent

in Eq. (26),

I (ρ) =
∫ Rc

ρ

�(R)
dR

vr

. (A1)

Since R2
c γ

3 � 1, the inequality ρ2γ 3 � 1 holds for values
of ρ that satisfy (Rc − ρ)/Rc � 1. For the same reason as
in the derivation of estimate (28), the condition ρ2γ 3 � 1
means that the main contribution to integral (A1) is given by a
region of width δρ ∼ 1/(ργ 3) ∼ 1/(Rcγ

3) near the lower limit
R = ρ of integration. Consequently, for Rc − ρ � δρ we can
replace the upper limit Rc in Eq. (A1) by infinity. For ρ2γ 3 �
1, the integral obtained may be calculated approximately to
give

I (ρ) �
√

3π

2

A2

8γ 7/2ρ2v
exp

(
− 2

3
ρ2γ 3

)
. (A2)

Since ρ < Rc, from Eq. (A2) we get the inequality

I (ρ) > I (Rc) ∼ A2

γ 7/2R2
c v

exp

(
− 2

3
R2

c γ
3

)
. (A3)

Substituting the expression for exp[−(2/3)R2
c γ

3] from
Eq. (34) into (A3) we obtain

I (ρ) � Rcγ
3/2 � 1 (A4)

since R2
c γ

3 � 1. Estimate (A4) is valid for values of ρ in the
range

1

R2
c γ

3
� Rc − ρ

Rc

� 1. (A5)

These inequalities are consistent due to the condition
R2

c γ
3 � 1.

From relations (A4) and (A5) it follows that the expo-
nential exp[−2I (ρ)] in Eq. (26) becomes small even on a
slight deviation of ρ from Rc, and this proves the prime
assertion.
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