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Symmetric two-point weighted density approximation for exchange energies
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We describe a symmetric, two-point, nonlocal weighted density approximation for the exchange energy of
atoms and compare it to conventional density functionals and the conventional weighted density approximation.
Even the simplest two-point weighted density approximation gives results comparable to the best generalized
gradient approximations. Unlike those functionals, however, the two-point weighted density approximation is
fully nonlocal, has no self-interaction error, approximately fulfills the Pauli principle, and preserves the uniform
electron gas limit.
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I. INTRODUCTION

In Kohn-Sham density-functional theory, the only unknown
component of the energy is the exchange-correlation energy
[1–4]. While the exchange-correlation energy is a small
fraction of the total energy, describing it correctly is essential
if useful accuracy for calculations of atoms, molecules, and
materials is to be obtained. The quest for accurate, yet
computationally feasible, approximations to the exchange-
correlation density functionals continues. Recently, there has
been significant interest in nonlocal density functionals, where
the exchange-correlation energy is approximated as a six-
dimensional integral [5–14],

Exc[ρ] =
∫ ∫

f [ρ; r,r′]dr dr′. (1)

This is a natural form for the functional because the exact
exchange-correlation energy functional can be written in the
form

Exc[ρ] = 1

2

∫ ∫
ρ(r)ρ(r′)hxc(r,r′)

|r − r′| dr dr′, (2)

where

hxc(r,r′) =
∫ 1

0
hλ

xc(r,r′)dλ (3)

is the exchange-correlation hole

hλ
xc(r,r′) = ρλ

2 (r,r′) − ρ(r)ρ(r′)
ρ(r)ρ(r′)

(4)

averaged over the constant-density adiabatic connection path,
in which the electron-electron repulsion potential λ/|r − r′| is
increased from the noninteracting limit (λ = 0) to the physical
limit of interest (λ = 1) [15,16]. Here,

ρλ
2 (r,r′) = 〈�λ|

∑
j �=i

δ(ri − r)δ(rj − r′)|�λ〉 (5)

is the electron pair density.
Two-point functionals of this type have advantages, es-

pecially when the exchange-correlation hole is not localized
[17–20]. They are especially useful for adding corrections
to orbital-based density functional [5,6] and are arguably
essential to the correct treatment of long-range electron
correlation (e.g., dispersion [7–13]).

There have been a few recent attempts in the litera-
ture to directly approximate the exchange-correlation hole
in Eq. (3), notably the work of Gori-Giorgi to construct
analytic exchange-correlation holes for the uniform elec-
tron gas [21,22] and recent attempts to construct nonlocal
exchange-correlation holes using a variant of the classical
Ornstein-Zernike expression [23–29]. One difficulty of these
hole models is that they generally do not exactly satisfy the
normalization condition on the exchange-correlation hole [30],∫

ρ(r)hxc(r,r′)dr = −1. (6)

When Eq. (6) is satisfied, each electron in the system
interacts with precisely N − 1 other electrons. When the
normalization condition is satisfied, the density functional is
(one-electron) self-interaction free [31–33]. Functionals that
are not self-interaction free have numerous undesirable prop-
erties. For example, they are not exact for one-electron systems
and their exchange-correlation potentials asymptotically decay
at the wrong rate. The exchange-correlation potentials of
self-interaction-free functionals decay as [31,34–38]

vxc(r) ∼ −1

r
, (7)

which is important for time-dependent density-functional
theory (DFT) calculations and band gap calculations [39–45].

Fortunately, the exact normalization condition can be
imposed using the weighted density approximation (WDA)
[46–48]. As expected for an approximation that is self-
interaction free, the WDA provides better highest-occupied
orbital energies [49] and band gaps [50–53] than the local
density approximation (LDA). [54,55] This is surprising in
the sense that the underlying approximation—the exchange-
correlation hole of the uniform electron gas is assumed to be
transferable to systems with nonuniform electron density—is
exactly the same as in conventional LDA. In this paper we will
test a different type of weighted density approximation for the
exchange energy of atoms and molecules. This extension obeys
the normalization constraint on the exchange-correlation hole
but, unlike the conventional WDA, our model for the hole is
symmetric,

hxc(r,r′) = hxc(r′,r). (8)

This addresses a previously identified weakness [56–59] in
the WDA and provides a more physically reasonable model for
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the exchange-correlation hole. In particular, without using a
symmetric hole, one does not regain the correct asymptotic
decay for the exchange-correlation potential, Eq. (7). The
model we consider was previously examined by Garcia-
Gonzalez et al. for surfaces [58]. Despite its deficiencies there,
we shall see that this simple model performs well for atoms
and molecules. Moreover, our approach is simpler than the
previous successful applications of WDA to molecules because
it does not require a (somewhat arbitrary) partitioning of the
system into core and valence regions [60].

II. WEIGHTED DENSITY APPROXIMATION (WDA)

The conventional weighted density approximation starts
with an approximation to the exchange hole, hx(r,r′) =
hλ=0

xc (r,r′). Typically, the dependence on electron position can
be expressed using only the interelectronic distance |r − r′|
and the dependence on the electron density is only through the
Fermi momentum, kF . So the functional form is usually

hx(r,r′) ≈ f (kF |r − r′|). (9)

In this paper we treat both closed- and open-shell systems,
so we need to write the exchange hole in a spin-resolved way.
Denoting the spin as σ = α,β, the form of approximation
under consideration is

hx;σσ (r,r′) ≈ f (kF,σ |r − r′|). (10)

If we use the expression for kF from the uniform electron
gas,

k
(0)
F,σ (r) =

√
6π2ρσ (r), (11)

where ρσ (r) is the electron spin density. Using Eq. (11) in
Eq. (10) results in an approximation to the exchange hole
that does not satisfy the normalization constraint, Eq. (6). In
the weighted density approximation (WDA) [46–48], this is
remedied by using the normalization condition to determine
an effective k

(1)
F,σ (r),

−1 =
∫

ρσ (r)hx;σσ (r,r′)dr =
∫

ρσ (r)f
(
k

(1)
F,σ (r′)|r − r′|)dr.

(12)

In the WDA, k
(1)
F,σ (r′) is determined by solving a system of

uncoupled nonlinear integral equations: there is one equation
for each r′. There has been significant interest in the weighted
density approximation [61,62], mostly in condensed matter
physics [50–53,57,63–67], but also for the study of surfaces
[58,68–71] and metal clusters [49,72].

Substituting either the uniform electron gas expression
for kF or its WDA results in an exchange-correlation hole

that is not symmetric with respect to interchange of r and
r′. The expression needs to be symmetric, however, because
the electron pair density is symmetric [57,58]. As previously
proposed by Garcia-Gonzalez et al. [58,73], we use the p-mean
to symmetrize this formula,

k
(×)
F,σ (r,r′) =

[
[k(×)

F,σ (r)]p + [k(×)
F,σ (r′)]p

2

]1/p

. (13)

The formula in Eq. (13) is proven to be effective for
approximate density functionals [73–81].

Next we approximate the exchange hole using Eq. (13),

h(×)
x,σ (r,r′) ≈ f (k(×)

F,σ (r,r′)|r − r′|), (14)

and then compute the exchange energy,

E(×)
x [ρ] ≈ 1

2

∑
σ=α,β

∫
ρσ (r)ρσ (r′)h(×)

x,σ (r,r′)
|r − r′| dr dr′. (15)

When we compute the exchange hole using k
(0)
F,σ (r) [cf.

Eq. (11)] in Eq. (13), we say we are doing a zero-point (0P)
WDA calculation. When we compute the exchange hole using
k

(1)
F,σ (r) [cf. Eq. (12)] we say we are doing a one-point (1P)

WDA calculation.
In general, the symmetrized exchange hole from the

1P WDA is no longer normalized,

−1 �=
∫

ρσ (r)f (k(×)
F,σ (r,r′)|r − r′|) dr. (16)

This leads to the 2P WDA [58]: solve for the effective Fermi
momentum k

(2)
F,σ (r) by solving the coupled system of nonlinear

integral equations,

−1 =
∫

ρσ (r)f
(
2

−1/p
{[

k
(2)
F,σ (r)

]p

+ [
k

(2)
F,σ (r′)

]p}1/p|r − r′|)dr. (17)

In 1P WDA, the normalization constraint is imposed first,
and then the hole is symmetrized. In 2P WDA, the hole is
symmetrized first, and then the normalization constraint is
imposed. As noted already by Garcia-Gonzalez et al., the
two-point functional is more demanding because the effective
Fermi momenta at different points are coupled [58].

III. COMPUTATIONAL APPROACH

The purpose of this paper is to test the 0P, 1P, and 2P
symmetrized WDAs for the exchange energy of atoms and
molecules. We chose the model hole from the uniform electron
gas,

f (k(×)
F,σ |r − r′|) = −9

[
sin(k(×)

F,σ |r − r′|) − (k(×)
F,σ |r − r′|) cos(k(×)

F,σ |r − r′|)
(k(×)

F,σ |r − r′|)3

]2

. (18)

Although many researchers favor a Gaussian model for the
hole [59,60,82], the Gaussian model for the hole is inconsistent

with the idempotency of the one-electron reduced density
matrix [83].
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We discretized the nonlinear integral equations that arise
in the WDA on a six-dimensional numerical integration grid
that is the direct product of Becke-Lebedev grids [84–86]
by adapting a software package that we had developed for
another purpose [87]. Denoting the weights and locations of
the grid points as {wi,ri}Ngrid

i=1 , the 1P WDA requires solving
the following set of uncoupled nonlinear equations:⎧⎨

⎩
Ngrid∑
i=1

wiρσ (ri)f
(
k

(1)
F,σ (rj )|ri − rj |

) = −1

⎫⎬
⎭

Ngrid

j=1

. (19)

We solved these equations to a precision of 0.0001 a.u. using
Newton’s method with a trust radius; for a starting guess we
used the local density approximation, k

(0)
F,σ (rj ). The 2P WDA

gives a system of Ngrid coupled equations in Ngrid unknowns,⎧⎨
⎩ρσ (rj )

Ngrid∑
i=1

wiρσ (ri)f

([
k

(2)
F,σ (ri) + k

(2)
F,σ (rj )

2

]1/p

|ri − rj |
)

= −ρσ (rj )

⎫⎬
⎭

Ngrid

j=1

. (20)

We chose to weight the nonlinear equations by the electron
density at the point rj ; this ensures that the equations are
solved to greater accuracy where the electron density is larger.
We found that our results for the exchange energy were not
sensitive to this weighting factor. Our initial guess for the 2P
WDA nonlinear equations was the solution to the 1P WDA
equations, k

(1)
F,σ (rj ). We found that our final results for the

exchange energy were not sensitive to the choice of initial
guess.

The diagonal element of the Jacobian of the nonlinear
system in Eq. (20) is typically Ngrid times larger than the
off-diagonal elements. The nonlinear equations could be
solved by simply neglecting the off-diagonal elements of the
Jacobian and then solving the equations with a trust-radius
(quasi-)Newton method. We found that we could accelerate
the procedure by a factor of about 2 by augmenting the
diagonal information with information from previous steps of
the algorithm, which we did using a limited-memory version
of the “bad Broyden” quasi-Newton method [88]. This allowed
us to solve the nonlinear system in Eq. (20) in about ten
iterations. 2P WDA is about one order of magnitude more
time-consuming than 1P WDA.

For p > 1, the nonlinear system (20) is difficult (and
perhaps impossible) to solve. Remember that kF,σ (r) decays
exponentially with increasing distance from an atom or
molecule. Therefore, when rj is far from an atom, most of
the points that contribute to the sum have k

(2)
F,σ (ri) � k

(2)
F,σ (rj ).

It seems impossible to adjust k
(2)
F,σ (rj ) enough to satisfy the

normalization condition without allowing k
(2)
F,σ (rj ) < 0, but

negative Fermi momenta are not physically reasonable. In
these cases we stop the iterations once the normalization error
ceases to improve. We believe that the solution we find in this
way is a good approximation to the solution of the system of
equations in Eq. (20), subject to the constraint that kF (r) > 0.
Because the errors in normalization are associated mainly with

the exponential tails of the electron density, they do not seem
to compromise the quality of our results.

To test the 0P, 1P, and 2P WDAs, we first performed Kohn-
Sham DFT calculations in the local density approximation
(LDA) using Gaussian 2009 [89], with the QZVP basis set
[90]. The electron spin densities from these calculations were
fed into our program and the 0P, 1P, and 2P WDAs were
computed using the aforementioned direct product grid with
the r = r′ points omitted. The exact exchange energy was
computed from the orbitals of the Kohn-Sham calculations.
Therefore, even though the exchange energies in the tables
are not exact exchange energies for the atoms, they do
correspond to the exact exchange energies for the LDA spin
densities [91,92]. Using these spin densities, we computed the
exchange energy from the LDA [93], and the Becke 1988 (B88)
[89,94], Perdew-Burke-Ernzerhof [95], and OPT [96] gener-
alized gradient approximation (GGA) functionals. The LDA
and PBE functionals are exact for the uniform electron gas;
OPT is among the best GGAs for exchange; the B88 functional
is a very popular GGA that was fit to the exchange energy of
atoms. The results of these computations are reported in Table I
(atoms) and Table II (small molecules).

We determined the value of p for the generalized mean of
kF,σ values by minimizing the average error in the 2P WDA
exchange energy for the atoms hydrogen-krypton,

p = arg min︸︷︷︸
p

(
1

36

∑
A=H,He,Li...Br,Kr

[
Eexact

x (A)

−E2P WDA
x (A,p)

])
. (21)

The optimal value was p = 5. Even when the results are op-
timized separately for the 1P WDA and 0P WDA functionals,
the results for those functionals are far inferior to the 2P WDA.

IV. RESULTS

The exchange energies of atoms are reported in Table I.
Even though the 0P WDA approximation is based on Eqs. (11)
and (18), which are exactly the same ingredients that are used
to derive the conventional LDA exchange function [93], the
root-mean-square error of the 0P WDA is much larger. The 1P
WDA is significantly more accurate than the 0P WDA, but it
is still less accurate than conventional LDA. The rms error of
the 2P WDA is comparable to the popular OPTX functional
and is significantly smaller than the errors in the functionals
(LDA and PBE) that give exact results for the uniform electron
gas. The 2P WDA is inferior to B88, but one must recall that
B88 was fit to atomic exchange energies [94]. One interesting
feature of the 2P WDA is that it has almost no systematic error,
unlike PBE and OPT, which tend to give exchange energies
that are too negative. Recall that 2P WDA is not a gradient-
corrected functional and contains no information about the
nearly uniform electron gas or the gradient expansion.

For molecules, density-functional exchange functionals
should include a contribution from left-right correlation
[96–98]. For this reason, one does not wish to assess DFT
exchange functionals against molecular data. Nonetheless, a
good DFT functional for exchange should give a reasonable
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TABLE I. Exchange energies for atoms, in atomic units, for conventional density functionals (LDA, B88, PBE, OPT) and the symmetrized
weighted density approximations (0P WDA, 1P WDA, 2P WDA) described in Sec. II. The p = 5 mean is chosen in Eq. (13).

Atom 0P WDA 1P WDA 2P WDA LDA B88 PBE OPT Exact

H −0.085 −0.313 −0.313 −0.213 −0.259 −0.268 −0.261 −0.313
He −0.448 −1.026 −1.026 −0.884 −1.026 −1.062 −1.026 −1.026
Li −0.794 −1.662 −1.653 −1.518 −1.757 −1.823 −1.763 −1.781
Be −1.252 −2.482 −2.530 −2.312 −2.658 −2.759 −2.665 −2.667
B −1.831 −3.439 −3.574 −3.272 −3.733 −3.877 −3.735 −3.770
C −2.564 −4.577 −4.835 −4.449 −5.040 −5.231 −5.035 −5.078
N −3.452 −5.846 −6.258 −5.751 −6.450 −6.686 −6.439 −6.609
O −4.504 −7.395 −8.028 −7.416 −8.285 −8.579 −8.271 −8.221
F −5.708 −8.954 −9.801 −9.055 −10.022 −10.360 −10.005 −10.051
Ne −7.112 −10.800 −11.927 −11.042 −12.147 −12.536 −12.134 −12.120
Na −8.269 −12.399 −13.763 −12.768 −14.013 −14.459 −14.011 −14.018
Mg −9.559 −14.102 −15.773 −14.609 −15.998 −16.502 −15.992 −15.992
Al −10.905 −15.860 −17.854 −16.531 −18.066 −18.626 −18.061 −18.088
Si −12.342 −17.704 −20.067 −18.583 −20.270 −20.887 −20.269 −20.301
P −13.858 −19.586 −22.344 −20.702 −22.531 −23.204 −22.534 −22.637
Si −15.478 −21.642 −24.844 −23.037 −25.038 −25.772 −25.054 −25.026
Cl −17.143 −23.629 −27.277 −25.345 −27.481 −28.270 −27.505 −27.533
Ar −19.010 −25.872 −30.014 −27.864 −30.154 −31.001 −30.193 −30.186
K −20.564 −27.864 −32.439 −30.188 −32.634 −33.546 −32.687 −32.677
Ca −22.334 −30.023 −35.072 −32.592 −35.194 −36.169 −35.251 −35.211
Sc −24.324 −32.388 −37.979 −35.285 −38.048 −39.088 −38.117 −38.061
Ti −26.490 −34.861 −40.740 −38.196 −41.129 −42.224 −41.225 −41.084
V −28.656 −37.475 −44.228 −41.092 −44.175 −45.340 −44.284 −44.235
Cr −31.207 −40.386 −47.562 −44.544 −47.807 −49.031 −47.956 −47.878
Fe −36.157 −46.127 −54.505 −51.217 −54.828 −56.182 −55.047 −54.674
Co −38.824 −49.241 −58.570 −54.631 −58.363 −59.772 −58.638 −58.279
Ni −41.615 −52.301 −61.957 −58.327 −62.225 −63.691 −62.549 −62.025
Cu −44.168 −55.425 −66.066 −61.739 −65.801 −67.337 −66.164 −65.636
Zn −47.169 −58.863 −70.198 −65.677 −69.903 −71.501 −70.332 −69.691
Ga −49.895 −62.015 −74.018 −69.288 −73.682 −75.342 −74.162 −73.521
Ge −52.723 −65.275 −78.000 −73.026 −77.594 −79.316 −78.129 −77.477
As −55.641 −68.574 −82.001 −76.793 −81.525 −83.309 −82.109 −81.504
Se −58.563 −71.942 −86.148 −80.716 −85.635 −87.483 −86.289 −85.535
Br −61.510 −75.234 −90.164 −84.592 −89.668 −91.579 −90.370 −89.639
Kr −64.845 −78.961 −94.671 −88.620 −93.867 −95.839 −94.638 −93.848
Avg. error 12.497 5.490 0.006 2.415 −0.018 −0.922 −0.186
rms error 15.318 7.237 0.329 2.866 0.086 1.135 0.348

approximation to the exact exchange energy for a small
molecule near its equilibrium geometry. The results in Table II

show that the 2P WDA gives reasonable results for molecules,
comparable in quality to good GGA functionals. The

TABLE II. Exchange energies for small molecules, in atomic units, for conventional density functionals (LDA, B88, PBE, OPT) and the
symmetrized weighted density approximations (0P WDA, 1P WDA, 2P WDA) described in Sec. II. The p = 5 mean is chosen in Eq. (13).

Molecule 0P WDA 1P WDA 2P WDA LDA B88 PBE OPT Exact

H2 −0.312 −0.672 −0.672 −0.582 −0.672 −0.693 −0.676 −0.672
F2 −11.668 −18.100 −19.751 −18.193 −20.084 −20.755 −20.047 −19.972
N2 −7.450 −12.120 −12.946 −11.876 −13.212 −13.674 −13.202 −12.733
HF −6.071 −9.323 −10.295 −9.475 −10.456 −10.801 −10.444 −10.250
BH −2.072 −3.770 −3.964 −3.627 −4.126 −4.282 −4.129 −4.089
CO −7.563 −12.237 −13.127 −12.047 −13.395 −13.863 −13.383 −13.043
H2O −5.178 −8.010 −8.840 −8.122 −8.985 −9.285 −8.978 −9.274
CH4 −3.653 −5.755 −6.315 −5.815 −6.473 −6.692 −6.484 −6.891
Avg. error 4.120 0.867 0.127 0.899 −0.060 −0.390 −0.052
rms error 4.629 1.007 0.270 1.000 0.273 0.548 0.266
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performance of the 1P WDA is very similar to LDA (which
is known to be poor for molecules), while the 0P WDA has
unacceptably large errors.

V. SUMMARY

We have implemented the symmetrized weighted density
approximations [58] for exchange and tested them for atoms
and molecules. The two-point symmetrized weighted density
approximation based on the exchange hole of the uniform elec-
tron gas gives very good results for atoms and small molecules,
with results comparable to the best generalized gradient ap-
proximations. Even though 2P WDA is derived only from con-
siderations of the uniform electron gas, its rms error is signifi-
cantly smaller than the error in the other exchange functionals
we considered (LDA and PBE) that recover the uniform elec-
tron gas limit. We therefore believe the form of the 2P WDA
functional is a promising avenue for further development.

The calculations in this paper are not self-consistent; we are
testing the accuracy of the functional rather than its variational
properties. It is tedious, but not difficult, to obtain the func-
tional derivatives of WDA-type functionals; early results of
this sort are already in the papers of Alonso and Girifalco [46].
The cost of these functionals is not that different from other
essentially six-dimensional functionals, e.g., Langreth-style
dispersion functionals [9] or static correlation functionals that
use the exchange energy density [97,98]. We have formulated
numerical techniques (e.g., basis-set expansions for the hole)
that can be used to bring the cost of the functional down,
but we have not implemented these methods because it

seems wise to defer the tedious (but not difficult) work of
optimizing algorithms until after an accurate functional has
been developed.

There are many ways to improve these results. The choice
of a single value of p in Eq. (13) is too simplistic. We have
seen hints that a density-dependent value of p would give
better results, with smaller values of p appropriate in low-
density regions of atoms. This suggests that p should be made
a functional of the electron density. If this is done, a new type of
Jacob’s ladder of functionals can be envisioned [99,100], with
p depending on the density alone, derivatives of the density,
the local kinetic energy, or even the occupied Kohn-Sham
orbitals. As the form of p is made more elaborate, additional
constraints [not just the normalization condition, Eq. (6)] can
be satisfied.

Another way to improve these results is to use a different
approximate form for the exchange hole. The uniform electron
gas is a conductor, resulting in the slowly decaying behavior
of the exchange hole in Eq. (18). The exchange hole decays
exponentially with interelectronic separation in atoms and
molecules [101–104]. Choosing a model for the exchange hole
that respects that limit should give more accurate results. Using
a more nearsighted form of the exchange-(correlation) hole
would also mitigate the numerical difficulties noted in Sec. III.
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