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Paul W. Ayers,1 Mel Levy,2,3,4 and Agnes Nagy5

1Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada L8S 4M1
2Department of Physics, North Carolina A&T State University, Greensboro, North Carolina 27411 USA

3Department of Chemistry, Duke University, Durham, North Carolina 27708 USA
4Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 USA

5Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen, Hungary
(Received 31 January 2012; published 30 April 2012)

A Coulomb density is special because it determines not only its Hamiltonian but the degree of excitation
as well. We derive Euler equations for excited-state energies and densities that depend only on the electron
density. Unlike existing formulations, additional functions and indices are not required; with these functionals,
the equations of excited-state density functional theory strongly resemble those of ground-state theory. A critical
analysis of the new functionals is included.
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I. INTRODUCTION

The thermodynamic, electronic, and spectroscopic prop-
erties of atoms, molecules, and materials are determined by
the relative energies and electronic properties of the ground
and excited states. Consequently, computational methods for
characterizing the spectrum of energy levels play a pivotal
role in the description of experimental observations and the
prediction of new experimental phenomena. Unfortunately,
the most straightforward approach to characterizing elec-
tronic systems—i.e., solving the many electron Schrödinger
equation—is impractical except for very small systems,
because the wavefunction’s complexity grows rapidly with
increasing size. More practical approaches to the electronic
structure problem can be formulated using the electron density,
which, unlike the wavefunction, is always three-dimensional.
With this in mind, Hohenberg, Kohn, and Sham [1,2] ushered
in modern density-functional theory (DFT) for nondegenerate
ground states. (See Ref. [3] for a history of the extension
of ground-state DFT to degeneracies through the constrained
search.) It soon became apparent that it would be important
to extend DFT to describe excited states, which is an area
of active research. The overwhelming majority of excited-
state calculations, thus far, have utilized the time-dependent
approach, where information about excited states is extri-
cated from the response of the system to time-dependent
perturbations. (See, for instance, Refs. [4–7].) In conventional
wavefunction-based quantum mechanics, however, individual
excited states arise as stationary states of the energy, and no
reference to time-dependence is necessary. To many, then,
a most natural approach to excited-state DFT is one that
uses time-independent density functionals [8,9], where the
individual excited-state energies and electron densities arise
as stationary states of an energy expression of the form

E[ρ] =
∫

ρ(r)v(r)dr + F [ρ], (1)

where v(r) is the external potential (the attractive one-body
potential of interest), ρ(r) is the electron density, and F [ρ] is
the sum of the kinetic and electron-electron repulsion energies,
expressed as a functional of ρ(r).

Equation (1) is precisely the form of the energy expression
for the ground state. But does an analogous equation exist
for excited states? A main purpose of this article is to give
an affirmative answer for molecular systems when F [ρ]
explicitly incorporates the fact that v(r) is a Coulomb potential.
Specifically, we show that there exists, with certain caveats, a
universal functional F Coul[ρ], such that

δ

δρ(r)

{∫
vCoul(r)ρ(r)dr + F Coul[ρ]

}
ρ=ρk

= const, (2a)

with

Ek =
∫

vCoul(r)ρk(r)dr + F Coul[ρk], (2b)

where Ek is the energy of the kth stationary state of Coulomb
potential vCoul(r), with corresponding density ρk(r). Note that
k = 1 denotes the ground state. So, with a single F , Eq. (2) is
appropriate for the ground state as well as for all bound excited
states. One functional does it all. (We note in passing that there
are special cases where the ground-state constrained-search F

yields exact excited-state energies [10].)
We shall also introduce and analyze the functional F Coul

k [ρ].
The corresponding Euler equation with F Coul

k [ρ] is Eq. (2), but
with F Coul simply replaced by F Coul

k . That is,

δ

δρ(r)

{∫
vCoul(r)ρ(r)dr + F Coul

k [ρ]

}
ρ=ρk

= const (3a)

with

Ek =
∫

vCoul(r)ρk(r)dr + F Coul
k [ρk]. (3b)

Unlike F Coul, the functional F Coul
k explicitly incorporates

k, the excitation label of the state of interest. Both F Coul[ρ]
and F Coul

k [ρ] will be defined for any well-behaved density,
whether that density is Coulombic or not. However, when the
attractive potential v(r) is not Coulombic, the solutions to the
Euler equations will not necessarily correspond to stationary
states.

In contrast to F Coul[ρ] and F Coul
k [ρ], previous F ’s for

excited states, though certainly encouraging, have had to utilize
an ensemble of states [11–18] or have had to depend on
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additional information besides ρ(r), such as the incorporation
of the external potential or its ground-state density (to form
a bifunctional) [19–24] in order to take into consideration
orthogonality requirements to lower states during energy
minimization. The formulation of Ziegler et al. optimizes both
the density and a unitary matrix, which imposes orthogonality
at the Kohn-Sham level [25].

It has been shown that there exists no F [ρ] for excited states
such that the minimization [26] of E[ρ] in Eq. (1) would
guarantee exact excited-state energies, even for Coulomb
systems. With this in mind, Görling [27] derived a DFT
stationary principle for excited states that bypasses an energy
minimization. His formulation has strongly influenced our
development of Eqs. (2) and (3). Specifically, he put forth an
equation analogous to Eq. (3), but not with F Coul

k [ρ]. Instead,
although our F Coul

k [ρ] is in the spirit of Görling’s functional
in that his also depends on an index in addition to ρ(r), the
important difference is that his index ν, unlike the k in F Coul

k [ρ],
does not necessarily correspond to the level of excitation under
consideration. In other words, his ν = 3 might correspond to
the first excited state, etc. In contrast, if the first excited-state
energy is desired, one simply inserts k = g + 1 into F Coul

k [ρ],
where g is the order of the degeneracy of the ground state. As
will be seen, this follows from the fact that our formulation
specifically utilizes the fact that a Coulomb system is under
consideration—that is, v(r) = vCoul(r).

That Eqs. (2) and (3) exist might be surprising to most
readers, in view of the fact that it is well known that an excited-
state density of one Hamiltonian is commonly a ground-state
density of another Hamiltonian. Even more relevant, several
authors have provided theoretical and numerical evidence that
a given density might be an eigendensity associated with
the kth state of several different external potentials [28–31].
Consequently, it would appear that Eqs. (2) and (3) are
not valid, since they require that each solution, ρk(r), be
associated with only one external potential. This indicates the
path to a possible solution: find a set of external potentials,
encompassing as many as possible of the external potentials of
“practical” interest, and construct a density-functional theory
on this limited set of potentials. With this in mind, we shall
now show that Eqs. (2) and (3) are indeed valid for excited
states because v(r) = vCoul(r) in these equations, and there is
something special about Coulomb external potentials.

II. THEORY

For our development, assume that the Coulomb Hamilto-
nian of interest is

Ĥ Coul =
N∑

i=1

vCoul(ri) + T̂ + V̂ee, (4)

where T̂ is the kinetic energy operator, V̂ee is the electron-
electron repulsion operator, and

vCoul(r) =
M∑

α=1

−Zα

|r − Rα| , (5)

where Zα is the charge on nucleus α, r is the position of
the electron, Rα is the position of the nucleus (as represented
by a discrete point charge), and M < ∞ is the number of

nuclei. Our results will follow from the fact that a ρ(r) is
allowed to be an eigendensity for at most one vCoul(r) and
for only one of that system’s states. In other words, we shall
utilize our realization that Coulomb densities determine not
only the external potential but also the degree of excitation of
the system.

Building on the arguments of E. B. Wilson for Coulomb
ground states, Nagy formulated an excited-state DFT [32]
for Coulomb systems using the realization that the density
of a Coulomb stationary state (whether excited or ground)
determines the positions and charges of the atomic nuclei
[therefore, vCoul(r)] through conventional cusp conditions
[33–35] or, in cases where there is no electron density
at the nucleus, generalizations thereof [36–39]. Theorem 1
summarizes these results:

Theorem 1. Let ρ(r) be the electron density of a Coulomb
system, that is, a system whose external potential can be written
in the form of Eq. (5). Then, ρ(r) is not a stationary state wave
function for any other Coulomb external potential.

Theorem 1 is, by itself, not enough to construct an excited-
state density-functional theory for Coulomb systems, because
it does not exclude the possibility that two different excited
states of the same system might have the same electron density.
However, observe that this possibility is indeed excluded
because the asymptotic decay of the electron density in a
Coulomb system is given by [40–45]

lim
r→∞

∂ ln ρk(r)

∂r
= −

√
8
(
E

(N−1)
1 − E

(N)
k

)
, (6)

unless forbidden by symmetry, where ρ̄k(r) is the spherically
averaged density for the kth state of the N -electron system,
E

(N−1)
1 is the ground-state energy of the N − 1 electron system,

and E
(N)
k is the energy of the kth state of the N -electron system.

Because E
(N−1)
1 is independent of k, it follows from Eq. (6)

that ρk(r) has a unique E
(N)
k . Moreover, because the external

potential is known from Theorem 1, and because the number
of electrons, N , is known from direct integration of ρk(r), we
can determine the energy associated with any eigendensity
of any Coulomb system directly from Eq. (6).36 With this
information, we can then compute F Coul[ρ] for this system
directly from the definition Equation

F Coul[ρ] ≡ Ek[ρ] −
∫

ρ(r)vCoul[ρ; r]dr (7)

Equation (7) is valid for any bound stationary state of any
system with a Coulomb external potential, subject only to
the caveat that Eq. (6) holds. Equation (6) holds when the
Dyson amplitude, gk = 〈�(N−1)

1 |�(N)
k 〉, is not zero. A zero

amplitude occurs, for example, when the spin-multiplicity of
the excited-state and the ground-state ion differ by more than
one [41–43,46]. In all cases, a large manifold of bound excited
states can be obtained from this functional; in the absence
of spatial symmetry it seems likely that the only missing
excited states are those associated with an extra spin-flip,
relative to the ground-state ion. The key relation, Eq. (6), also
holds for unbound resonances. However, we will not address
unbound excited states except to note that recent results from
the literature suggest that our results could be extended to
resonances using complex scaling [47,48].
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It is important to emphasize that this entire analysis is
predicated on the fact that the given density, ρ(r), is known
to be Coulombic. Given an arbitrary density, this method will
fail, since there is no known way to determine whether the
given density is Coulombic without constructing the predicted
external potential from step 1 of the above algorithm, solving
the Schrödinger equation for this system, and then explicitly
testing whether or not the given density is associated with
one of the eigenstates. In particular, there are many densities
possessing the sorts of cusps and asymptotic decay that
typify a Coulomb density that are not themselves Coulombic.
For example, given an atomic density, ρatom(r), the electron
density,

ρ̃(r) = ρatom(r) + εr2(r2 − 1)e− 3
2 r2

(8)

(ε is any number for which ρ̃(r) remains positive), has the
same number of electrons, the same cusp, and the same
asymptotic decay as ρatom(r). Yet the revised density, ρ̃(r),
is not Coulombic.

Since electron densities that appear Coulombic might not
be, the approach proposed in the previous section possesses
what may be termed the Coulombic v-representable problem;
namely, there is no good way to discern whether a given density
is an eigendensity for a Coulomb system. Fortunately, we can
avoid this problem by defining a functional that exists for all
electron densities, even if they are not Coulombic.

In conventional ground-state DFT, this objective is usually
performed using the constrained search [3]. Accordingly,
consider the following definition:

Definition. Let ρ(r) be any trial N -representable electron
density and let ρCoul(r) be a Coulomb density corresponding
to the kth eigenstate of some Coulomb Hamiltonian, with
external potential vCoul[ρCoul;r]. The first k − 1 eigenstates
of this Hamiltonian are denoted {�Coul

n [ρCoul; r]}k−1
n=1. We then

define

F [ρ,ρCoul] = min〈�|T̂ + V̂ee|�〉;
(9)

subject to : � → ρ(r),
{〈

�
∣∣�Coul

n [ρCoul]
〉 = 0

}k−1
n=1.

That is, we minimize the sum of the kinetic and electron-
electron energies, subject to the constraint that each � yields
ρ(r) and is simultaneously orthogonal to the first k − 1 states
of the Coulomb system specified by ρCoul(r).

As stated, F [ρ,ρCoul] is a bifunctional, with a form similar
to the Levy-Nagy bifunctional [19]. In order to obtain a
universal functional that depends only on the electron density,
we need to write ρCoul(r) as a functional of the electron density,
ρ(r). Intuitively, it seems reasonable to establish this linkage
by choosing ρCoul(r) to be the Coulomb density that is closest
to ρ(r). (The distance can be measured using the L1 norm or,
better still, as

dH 1 (ρCoul,ρ) ≡
∫

(
√

ρCoul(r) − ρ(r))2dr

+
∫

∇
√

ρCoul(r) − ρ(r)

· ∇
√

ρCoul(r) − ρ(r)dr. (10)

In this work, we will not dwell on the nuances of choosing
the best measure for the distance.)

This approach assumes that there is a unique Coulomb
density, ρCoul[ρ;r] that is closest to the non-Coulomb ρ(r)
in question. If there are several Coulomb densities that are
the same minimum distance from ρ(r), then we can choose
Eq. (9) to be the smallest attainable value of F [ρ,ρCoul].
Mathematically, we construct this functional in the following
way. First, we define the functional

F Coul
ε [ρ] = min︸︷︷︸

ρ(r)

F [ρ,ρCoul] where ‖ρCoul − ρ(r)‖ � ε,

(11)

where ε is large enough to ensure there exists at least one
stationary state Coulomb density, ρCoul(r), within ε units of
ρCoul(r). Let εmin denote the smallest attainable value of ε in
Eq. (11). F Coul[ρ] is simply

F Coul[ρ] = F Coul
εmin

[ρ]. (12)

Let’s now generate F Coul
k [ρ]. For this purpose, first consider

F Coul
ε,k [ρ], which we define as

F Coul
ε,k [ρ] = min︸︷︷︸

ρCoul
k

F
[
ρ,ρCoul

k

]
where ‖ρCoul

k − ρ(r)‖ � ε,

(13)

where ε is large enough to ensure there exists at least one
kth stationary state Coulomb density, ρCoul

k (r)within ε units of
ρ(r). F Coul

k [ρ] is then given by

F Coul
k [ρ] = F Coul

εmin,k
[ρ]. (14)

In other words, we find the closest density to ρ(r) that
is the kth stationary state density for a Coulomb system,
and then construct F Coul

k [ρ] using wavefunctions that are
orthogonal to the states of that Coulomb system. (If several
kth-state Coulomb densities are the same minimal distance
from the density of interest, we select the Coulomb system that
yields the smallest value for F Coul

k [ρ].) Incidentally, ensembles
could be used instead of pure states in the constrained-search
definitions of both F Coul[ρ] and F Coul

k [ρ].
Finally, following the reasoning of Görling [27], we observe

that Eqs. (2) and (3) arise from the analogous stationary
principle involving the Schrödinger equation. Namely,

δ

δ�

{∫
v(r)ρ[ψ,r]dr + 〈�|T̂ + V̂ee|�〉

}
�

= �k = const,

(15)

where, in accordance with their definitions, the �’s in Eq. (15)
are the wavefunctions associated with εmin in either Eq. (12)
or (14).

The constrained-search formulation formally addresses the
problem of Coulombic-v representability, but it does not
guarantee that the functionals are well-behaved. In particular,
we do not know if F Coul[ρ] and F Coul

k [ρ] are functionally
differentiable or, for that matter, even if they are continuous. It
is important, then, to attempt to characterize these functionals.
This requires a mathematical analysis of the structure of the
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set of Coulomb external potentials and the associated electron
densities, which is provided in the Appendix.

We conclude with a summary of the preceding arguments.
Because no two stationary states of Coulomb systems can have
the same electron density, it follows that a Coulomb density de-
termines not only the external potential but also the excitation
level of the Coulomb external potential to which it corresponds.
This lays the foundation for the universally defined excited-
state functionals, F Coul[ρ] and F Coul

k [ρ], which give exact
results for Coulomb systems like molecules. Although there
is no practical general method for determining whether a
given electron density is an eigendensity for a Coulomb
system (this may be termed the Coulombic-v-representability
problem), it is fortunate that, just as in conventional DFT,
the Coulombic-v-representable problem can be circumvented
via constrained search. We show two ways of doing this,
obtaining the functionals F Coul[ρ] [cf. Eq. (12)] and F Coul

k [ρ]
[cf. Eq. (14)]. The former functional is particularly enticing be-
cause it is stationary for every eigendensity of every Coulomb
system; that is, this functional is the most direct analogue
to the stationarity principle for excited-state wave functions
in wave-function-based quantum mechanics. However, it is
possible that F Coul[ρ] is a jagged, discontinuous functional:
this could occur if extremely similar Coulomb densities have
very different values of F Coul[ρ], so that F Coul[ρ] would
be discontinuous (or, less severely, barely continuous). The
functional F Coul

k [ρ], on the other hand, is somewhat less
ambitious, since it has an additional dependence on the level
of excitation, k. However, because the level of excitation in
F Coul

k [ρ] is explicitly accommodated, discontinuities are less
likely and its properties for approximation purposes are more
transparent (e.g., F Coul

k+1 [ρ] � F Coul
k [ρ]).

Computational work in time-independent excited-state
DFT is based upon the Kohn-Sham formulation [19–21,27,30,
31,49–57], and practical applications of the present functionals
also demand the formulation of a Kohn-Sham theory. We
will describe a Kohn-Sham theory involving F Coul

k [ρ] in a
future publication. The basic idea is that the KS kinetic energy
may be defined by minimizing 〈�|T̂ |�〉 with respect to all
wavefunctions that (a) yield ρ(r) and (b) are orthogonal to
the first k − 1 states of the noninteracting Hamiltonian with
the same ground-state density as the interacting Coulomb
Hamiltonian whose kth state density is associated with εmin

in Eq. (14). The corresponding non-Coulombic Kohn-Sham
effective potential is generated in a manner that is analogous
to that of the ground state and the resulting orbitals form the
kth state of the effective potential.

III. CONCLUSION

Universal functionals are the theoretical foundation for
present-day approaches to DFT. However, among the entire
universe of possible systems, only a tiny galaxy of them
are relevant to molecular science. This motivates the search
for subuniversal functionals [58–60]. Based on the favorable
formal characteristics presented here, subuniversal functionals
focused on Coulomb systems are certainly worthy of further
investigation. The functionals F Coul[ρ] and F Coul

k [ρ] are
universal in the sense that they are defined for all well-behaved
electron densities, independent of the external potential under

consideration. However, we classify these functionals as
subuniversal because they yield exact excited-state energies
and densities only for Coulomb potentials. It will be particular
important to rigorously characterize the continuity and differ-
entiability of these functionals, to explore different methods
for characterizing Coulomb densities and external potentials,
and to formulate noninteracting reference systems that can be
used in practical calculations. Most generally, however, this
work serves to emphasize that subuniversal functionals could
be useful tools in excited-state DFT.
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APPENDIX

The following analysis seeks to analyze the properties
of the functionals F Coul[ρ] and F Coul

k [ρ]. In particular, it is
important that the functionals be continuous, since it probably
would be very difficult to construct useful approximations
to a discontinuous functional. This requires a mathematical
analysis of the structure of the set of Coulomb external
potentials and the associated electron densities, which is
provided as supplementary material.

To begin, consider that many (if not all) external potentials
of interest can be viewed as being generated by some
distribution of electric charge, P (r) [61]:

v(r) =
∫

P (r′)
|r − r′|dr′. (A1)

We call these external potentials “generalized Coulomb
external potentials” to distinguish them from the special case
where P (r′) is an assemblage of point charges as in Eq. (5).

Evaluating Eq. (A1) using a K-point quadrature formula,

vCoul
K (r) ≡

K∑
i=1

wi

P (r′
i)

|r − r′
i | =

K∑
i=1

qi

|r − r′
i | ≈ v(r), (A2)

where the charge, qi , is identified with wiP (r′
i). It follows

from Eq. (A2) that by choosing an appropriately large value
of K , one may approximate—to arbitrary accuracy—any
generalized Coulomb external potential with a system of point
charges [62]. The nature of this approximation is peculiar and
requires further study. Note that in Eq. (A2) there are a few
places (specifically, the K points {r′

i}Ki=1) where the Coulomb
potential diverges to infinity, but the target potential, v(r),
generally does not diverge. That is, though the approximation
in Eq. (A2) may be very accurate almost everywhere, where
it fails it can be extraordinarily poor. This is most readily
apparent when one takes the Laplacian of both sides of
Eq. (A2), obtaining

P (r′) �≈
K∑

i=1

qiδ(r′ − r′
i). (A3)
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On the other hand, for functions f (r) that are sufficiently
well behaved,∫

f (r)vCoul
K (r)dr =

K∑
i=1

∫
f (r)

(
qi

|r − r′
i |

)
dr

≈
∫

f (r)v(r)dr,

(A4)

with the approximation converging to an equality as
K → ∞.

Suppose ρ(r) is an ensemble-v-representable density cor-
responding to a stationary state of the N -electron system with
generalized Coulomb external potential v(r), as per Eq. (A1).
Using the density of the Coulomb external potentials, we
can constructing a sequence of Coulomb potentials, vCoul

K (r),
that converges to v(r), at least for the purposes of evaluating
integrals like Eq. (A4). Based on this, what can we say about
the sequence of Coulomb densities corresponding to vCoul

K (r),
ρCoul

K (r)? Do theyconverge to the density in question?
In one sense, it seems likely that ρCoul

K (r) → ρ(r). Specifi-
cally, if we regard the change in external potential, vCoul

K (r) −
v(r), as a perturbation, we can express the change in
density as

ρCoul
K (r) − ρ(r)

=
∫ (

δρ(r)

δv(r′)

)
N

[
vCoul

K (r′) − v(r′)
]
dr′

+ 1

2

∫ ∫ [
vCoul

K (r′′) − v(r′′)
] (

δ2ρ(r)

δv(r′′)δv(r′)

)
N

× [
vCoul

K (r′) − v(r′)
]
dr′dr′′ + · · · . (A5)

We expect the functional derivatives to be well-behaved
functionals, so based on Eq. (A4), as K becomes large, the
corrections to the electron density should become increasing
small (and the perturbation series should be rapidly conver-
gent). In this sense, we expect that ρCoul

K (r) → ρ(r).
There is also a sense in which the Coulomb densities may

not converge to the target density: Based on the discussion
surrounding Eq. (A3), we expect that the derivatives of the
Coulomb density may differ markedly from ρ(r). Indeed,
this is the case: The Coulomb density, ρCoul

K (r), has K cusps,
while the target density, ρ(r), may lack cusps altogether. As
K becomes large, ρCoul

K (r) becomes very jagged. Thus, while
it may be true that∫ ∣∣ρCoul

K (r) − ρ(r)
∣∣dr → 0, (A6)

it is probably not true that∫ ∣∣∇√
ρCoul

K (r) − ρ(r)
∣∣2

dr → 0. (A7)

This is the primary reason we preferred the Sobolev-type
norm in Eq. (10). Exploring further, we expect that the
Weisacker kinetic-energy bound∫

|∇
√

ρ(r)|2dr < T [ρ] < F Coul[ρ] (A8)

could be much larger for the jagged Coulomb density, ρCoul
K (r),

than it is for the target electron density, ρ(r). Using the L1

distance [Eq. (A6)] to measure the distance between electron
densities would be very problematic, because we would have
two electron densities that were “close together” [in the sense
of Eq. (A6)] that, owing to Eq. (A8), could have vastly
different values for F Coul[ρ]. That is, if the L1 distance were
used, then F Coul[ρ] would be a discontinuous functional.
Not only is it difficult to conceive of any practical way
to construct approximate functional that are discontinuous,
discontinuous functionals are necessarily nondifferentiable.
Throughout DFT we assume that the functionals of interest are
differentiable [in fact, we already implicitly assumed this in
writing the variational identities in Eqs. (2) and (3)]; practical
considerations require, then, that our approximate functional
at least be continuous.

The preceding analysis indicates that we must be very
careful in how we choose to evaluate the “distance” be-
tween electron densities in defining these constrained search
functionals. Unlike the simple L1 distance [Eq. (A6)], there
seems to be no obvious reason why the distance formula in
Eq. (10) should be problematic. Even if this distance does
prove problematic, however, there is no reason to suspect that
another measure of the distance (perhaps one that depends
more strongly on the similarity of the densities’ cusps and/or
asymptotic characteristics) would not suffice.

A necessary (and, for an appropriate choice of the distance,
perhaps sufficient) condition for F Coul[ρ] to be continuous
is that F Coul[ρ] be continuous on the subset of Coulomb
densities. That is, for any ε > 0, there exists a δ(ε) > 0 such
that if two Coulomb densities, ρCoul

1 (r)and ρCoul
2 (r), satisfy∥∥ρCoul

1 (r) − ρCoul
2 (r)

∥∥ < δ(ε), (A9)

then ∣∣F Coul
[
ρCoul

1

] − F Coul
[
ρCoul

2

]∣∣ < ε. (A10)

Equation (A10) can be rewritten using Eq. (7),∣∣∣∣∣Ek1

[
vCoul

1

] − Ek2

[
vCoul

2

] −
( ∫

ρCoul
1 (r)vCoul

1 (r)dr

−
∫

ρCoul
2 (r)vCoul

2 (r)dr

)∣∣∣∣∣ < ε. (A11)

The biggest difference between this approach and the usual
approaches to excited-state functionals is that the excitation
levels of the two densities, k1 and k2, may be different. It is
reasonable to assume that Coulomb densities that are close
together will always have external potentials that are similar
enough to ensure that the second term in Eq. (A11) is small.
However, if Coulomb densities that are close together can have
vastly different excitation levels, then we would still not expect
the functional to be continuous. That is, our biggest concern
regarding the continuity of F Coul[ρ], is that there might
exist two Coulomb densities, arbitrarily close together, that
corresponded to very different levels of excitation; this may
make it difficult to satisfy inequality Eq. (A11). Unfortunately,
we do not know whether this occurs.
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Possible problems associated with similar Coulomb densi-
ties corresponding to dissimilar levels of excitation are avoided
when we use F Coul

k [ρ]. In this case, continuity on the set of
Coulomb densities dictates that for any ε > 0, there exists a
δ(ε) > 0 such that if the kth eigendensities of two distinct
Coulomb systems, ρCoul

1 (r) and ρCoul
2 (r) satisfy inequality

Eq. (A9), then∣∣F Coul
k

[
ρCoul

1

] − F Coul
k

[
ρCoul

2

]∣∣ < ε. (A12)

This inequality can be replaced with∣∣∣∣∣Ek

[
vCoul

1

] − Ek

[
vCoul

2

] −
( ∫

ρCoul
1 (r)vCoul

1 (r)dr

−
∫

ρCoul
2 (r)vCoul

2 (r)dr

)∣∣∣∣∣ < ε. (A13)

Based on our discussion of the continuity of F Coul[ρ], it
seems likely that F Coul

k [ρ] is continuous, at least on the set of
subset of densities associated with Coulomb systems. Since
this is the case, the extension of F Coul

k [ρ] to non-Coulomb
systems is expected to yield a well-behaved functional.

The differentiability of density functionals is an issue
that pervades density functional theory [10,63–70]. Since our
excited-state functionals include the ground-state functional as
a special case, they exhibit the same derivative discontinuities
as the conventional ground-state density functionals. It is
often supposed [71–73], but it has not been rigorously proved
[26,74], that the fundamental ground-state density functional
is continuous. (The ensemble-constrained search functional
[75] is at least lower semicontinuous [74].) All discus-
sions of functional differentiability and continuity in DFT
must be prefaced by the caveat that only “nice” densi-
ties and “nice” variations of the density are being con-
sidered; otherwise, the functionals are manifestly discon-
tinuous and nondifferentiable. Ideally the density will be
strictly positive with compact (or essentially compact) sup-
port, and the variations will be local and “conventional”
[10,70,76].

Our functionals definitely have discontinuous derivatives at
integer particle number [64,77], as can be inferred by extending
ground-state arguments [64,66,78]. For a given number of
electrons, N , there are derivative discontinuities associated
with degenerate states [66,79]. The functionals might even be

discontinuous here. Consider a fixed number of electrons, N ,
and then adjust the positions of the point charges (alternatively,
adjust the size of the point charges) so that one encounters a
crossing between two potential energy surfaces, corresponding
to the states labeled with k and k + 1. Very near the seam
(or conical intersection) of the surfaces, the energy of the two
states is almost the same but the components of the energy
(the electron-external potential interaction energy of the two
states and the values of F Coul

k [ρ] and F Coul
k+1 [ρ]) are usually

different. On the other side of the seam, the roles of the k

and k + 1 states are exchanged; therefore, F Coul
k [ρ] changes

discontinuously as a function of the position (and/or sizes) of
the point charges. However, the electron density also changes
discontinuously as a function of the position (and/or sizes) of
the point charges at the surface crossing (because the response
kernel diverges for degenerate states), so F Coul

k [ρ] might be
continuous (though it generally will be nondifferentiable)
along the seam of degenerate densities. Note that this issue
is present already in the ground-state theory (k = 1) [80].
For the ground-state theory, there are arguments that F Coul

k=1 [ρ]
should be not only continuous but differentiable in a certain
generalized sense, with respect to constant-N variations in the
electron density [71–73]. We suspect that similar arguments
can be extended to excited states of the F Coul

k [ρ] functional,
but probably not to F Coul[ρ].

A few of the fundamental theorems presented here have
already been introduced in the context of shape-functional
theory [36,81,82], wherein the fundamental variable is not
the electron density but the density per particle, σ (r) =
ρ(r)/N [83]. (The shape function satisfies all of the preceding
results because both the cusp conditions and the asymptotic
condition, Eq. (6), depend only on the logarithmic derivative of
the density, and these properties are unaffected by the number
of electrons.) However, the density-functional analogue of
these results is to be preferred. If the Hohenberg-Kohn
functional for the shape function, F Coul[σ ] is continuous,
then the Hohenberg-Kohn functionals for the electron density
will also be continuous. However, the converse is not true.
Insofar as practical application of these results will depend
on the ability to construct good approximations to F Coul[ρ]
or F Coul

k [ρ], it is advisable to focus efforts, at least initially,
on the density functionals, as they are more likely to be
continuous.
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