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Quantum electrodynamic calculation of the hyperfine structure of 3He
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The combined fine and hyperfine structure of the 2 3P states in 3He is calculated within the framework of
nonrelativistic quantum electrodynamics. The calculation accounts for the effects of order mα6 and increases the
accuracy of theoretical predictions by an order of magnitude. The results obtained are in good agreement with
recent spectroscopic measurements in 3He.
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I. INTRODUCTION

Spectroscopic measurements of the helium atom have
presently reached the level of accuracy at which they are
sensitive to uncertainties of fundamental constants and the
nuclear effects. This fact can be utilized for improving our
knowledge on fundamental constants and nuclear parameters.
A recent example is the independent determination of the
fine structure constant α [1] made by comparison of the
theoretical prediction and the experimental results for the 4He
fine structure. Good agreement of the obtained value of α

with the more precise determinations [2,3] provided a highly
sensitive test of consistency of different theories across a wide
range of energy scales.

Recent optical measurements in 3He [4,5] and 4He [6]
achieved the relative precision of about 10−11 and thus became
sensitive to the uncertainties of the Rydberg constant and the
nuclear charge radius. These experiments created a possibility
for the spectroscopic determination of the nuclear charge
radii of 3He and 4He, with a significantly higher accuracy
than can be reached by the electron scattering methods [7].
Such determination is of particular interest now, in view
of the discrepancy for the proton charge radius observed
in the muonic hydrogen experiment [8] and the proposed
follow-up experiment on the muonic helium [9]. Realization
of this project requires progress in theory, namely a complete
calculation of the m α7 corrections to the energy levels. Such
calculation is difficult but probably feasible, at least for the
low-lying triplet states.

While the present theory is not accurate enough to provide
the nuclear charge radii of 3He and 4He separately, it can
provide their difference δr2, as the isotope shift is consid-
erably simpler to calculate than the energy levels. Two such
determinations have recently been reported by experiments of
the Amsterdam [4] and the Florence [5] groups, their results
being in disagreement of four standard deviations. There was
also the older spectroscopic value of δr2 by Shiner et al. [10],
which relied on the theory of the hyperfine splitting available
at that time.

The main goal of the present investigation is to calculate the
combined fine and hyperfine structure of the 2 3P levels of 3He
with the complete treatment of the mα6 corrections. The results
obtained represent an order-of-magnitude improvement over

the previous theory [11,12] and are in good agreement with
the experimental data available [5,13]. The improved theory
allows us to make a reevaluation of the δr2 determination by
Shiner et al. [10], in reasonable agreement with the Florence
result [5]. We also update the previous results for the hyperfine
splitting of the 2 3S state of 3He [14], making its treatment fully
consistent with that of the 2 3P states.

II. GENERAL APPROACH

The 2 3P energy level in 3He is split by the hyperfine and
fine structure effects. The hyperfine splitting is induced by the
interaction between the dipole magnetic moment of the nucleus
and that of the electrons, whereas the fine structure is due to the
interaction between the electron spin and the electron orbital
angular momentum. For heavy atoms, it is common that the
hyperfine splitting (being suppressed by the electron-to-proton
mass ratio) is much smaller than the fine structure splitting, and
so the hyperfine and fine structure effects can be investigated
separately. For the 2 3P states of 3He, however, both effects are
of the same order of magnitude and thus should be calculated
together.

The general method of calculation of the combined fine
and hyperfine structure is the nonrelativistic perturbation
theory for quasidegenerate states. The active space of (strongly
interacting) quasidegenerate states is defined as 2 3P F

J , where
F is the total angular momentum of the atomic state and
J = 0, 1, 2 is the electronic angular momentum. In the case of
3He, the nuclear spin I = 1

2 , so F = J ± 1
2 > 0 and the active

space consists of five levels. Note that, unlike in previous
studies [11,12,15], we do not include the 2 1P state in the
active space, as its mixing with the 2 3P levels is relatively
weak. The contribution of this state is accounted for by the
standard perturbation theory for nondegenerate states.

The energies of the 2 3P F
J states are the eigenvalues of the

5 × 5 matrix of the effective Hamiltonian H , whose elements
are

EF
J,J ′ ≡ 〈FJMF |H |FJ ′MF 〉, (1)

where MF is the projection of the total angular momentum
F . (Since the energies do not depend on MF , it can be fixed
arbitrary.) In practical calculations, it is convenient to consider
the shifts of the individual 2 3P F

J levels with respect to the 2 3P
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centroid. In other words, we require that∑
F

(2 F + 1)
∑

J

EF
J,J = 0. (2)

In this case, all effects that do not depend on the nuclear
and/or electron spin do not contribute and can be omitted in
the calculations.

The matrix elements of the effective Hamiltonian (1) are
obtained in this work by expansion in terms of the fine structure
constant α,

EF
J,J ′ = 〈Hfs〉J δJ,J ′ + 〈

H
(4+)
hfs

〉 + 〈
H

(6)
hfs

〉
+2

〈
H

(4)
hfs

1

(E − H )′
[
H

(4)
nfs + H

(4)
fs

]〉

+
〈
H

(4)
hfs

1

(E − H )′
H

(4)
hfs

〉
+ 〈Hnucl&ho〉, (3)

where Hfs is the effective operator responsible for the fine-
structure splitting in the absence of the nuclear spin and
the other terms are the nuclear-spin-dependent contributions.
H

(4+)
hfs is the leading hyperfine Hamiltonian with the recoil and

anomalous magnetic moment additions; it is of nominal order
mα4 and contains parts of higher-order contributions. H

(6)
hfs is

the effective Hamiltonian of order mα6 and is derived in the
present work. The next two terms in Eq. (3) are the second-
order corrections that also contribute to order mα6. H

(4)
hfs is

H
(4+)
hfs without the recoil and anomalous magnetic moment

additions, H (4)
fs is the effective Hamiltonian responsible for the

leading fine-structure splitting of order mα4, and H
(4)
nfs is the

effective Hamiltonian responsible for spin-independent effects
of order mα4. Finally, Hnucl&ho represents the nuclear effects
and the higher-order (∼mα7) QED corrections proportional
to the δ function at the origin. This part cannot be accurately
calculated at present, because of insufficient theoretical knowl-
edge of the nuclear structure. It will be obtained from the
experiment on the ground-state hyperfine splitting in 3He.

In order to facilitate the evaluation of the matrix elements
in Eq. (3), it is convenient to factorize out their dependence
on the nuclear degrees of freedom F and MF and on the
electronic angular momentum J . It can be achieved by
observing that any operator contributing to Eq. (3) can be
represented in terms of six basic angular-momentum operators:
(�S · �L), ( �I · �L), ( �I · �S), (Si Sj )(2) (Li Lj )(2), I i Sj (Li Lj )(2),
and I i Lj (Si Sj )(2), where the second-order tensors are defined
by (Li Lj )(2) ≡ 1

2 LiLj + 1
2 LjLi − 1

3
�L2δij and the summa-

tion over the repeated indices is assumed. Since the nuclear
spin of helion I = 1

2 , there are no operators quadratic in I . So,
Eq. (3) can be represented as

EF
J,J ′ = Asl 〈�S · �L〉 + Ass 〈(Si Sj )(2) (Li Lj )(2)〉

+As〈 �I · �S〉 + Al〈 �I · �L〉 + Asll 〈I i Sj (Li Lj )(2)〉
+Assl 〈I i Lj (Si Sj )(2)〉, (4)

where the constants Ai do not depend on F , MF , J , J ′, and
are represented by expectation values of purely electronic
operators between the spatial 2 3P wave functions. The
matrix elements of the basic angular-momentum operators are
calculated analytically by means of the Racah algebra and
listed in Appendix A.

The first two terms in the right-hand side of Eq. (4) do not
depend on the nuclear spin and correspond to the fine structure.
The fine structure splitting in the absence of the nuclear spin
was investigated in our previous investigations [1,16], so we
use results obtained there.

III. LEADING HYPERFINE STRUCTURE

The leading hyperfine-structure Hamiltonian H
(4+)
hfs is well

known. For our purposes, it is convenient to write it in the
following form:

H
(4+)
hfs = m3

r

m M
(1 + κ) α4

[ �I · �S Q + �I · �Q + I i Sj Qij

+ �I · �SA QA + I i S
j

A Q
ij

A

]
, (5)

where �S and �SA are the electron spin operators, �S = (�σ1 + �σ2)/
2 and �SA = (�σ1 − �σ2)/2, mr is the reduced mass of the
electron-nucleus system, M is the nuclear mass, and κ is
the magnetic moment anomaly related to the nuclear dipole
magnetic moment μ by

m

M
(1 + κ) ≡ μ

μB

1

2ZI
, (6)

where μB is the Bohr magneton. The electronic operators are
given by (in atomic units)

Q = (1 + ae)
Z

3
4π [δ3(r1) + δ3(r2)], (7)

QA = (1 + ae)
Z

3
4π [δ3(r1) − δ3(r2)], (8)

�Q = Z

[ �r1

r3
1

× �p1 + �r2

r3
2

× �p2

]

+ m

M

1 + 2κ

1 + κ

Z

2

[ �r1

r3
1

+ �r2

r3
2

]
× ( �p1 + �p2), (9)

Qij = −(1 + ae)
Z

2

[
1

r3
1

(
δij − 3

ri
1r

j

1

r2
1

)
+ 1

r3
2

(
δij−3

ri
2r

j

2

r2
2

)]
,

(10)

Q
ij

A = −(1 + ae)
Z

2

[
1

r3
1

(
δij − 3

ri
1r

j

1

r2
1

)
− 1

r3
2

(
δij−3

ri
2r

j

2

r2
2

)]
,

(11)

where ae is the anomalous magnetic moment of the electron.
The matrix element of the Hamiltonian between the 2 3P F

J

states can be represented as

〈
H

(4+)
hfs

〉F
JJ ′ = m3

r

m M
(1 + κ) α4

[
〈3 �P |Q|3 �P 〉 〈 �I · �S〉

+1

2
〈3 �P | �Q|3 �P 〉 〈 �I · �L〉

−3

5
〈3 �P |Q̂|3 �P 〉 〈I i Sj (Li Lj )(2)〉

]
, (12)
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TABLE I. Expectation values of the mα4 hyperfine operators for
the 2 3P state of 3He, with the mass polarization included, in a.u. The
expected numerical uncertainty is less than 1 on the last significant
digit.

Q 〈Q〉
2 Z
3 4π δ3(r1) 21.092 193

2 Z
�r1

r3
1

× �p1 0.277 443

Z

(
�r1

r3
1

+ �r2

r3
2

)
× �p1 − 0.060 491

−Z 1
r3

1

(
δij − 3

ri
1r

j

1

r2
1

)
0.140 325

where the shorthand notations for the matrix elements of the
electronic operators are

〈 �φ|Q| �ψ〉 = 〈φi |Q|ψi〉, (13)

〈 �φ| �Q| �ψ〉 = −i εijk〈φi |Qj |ψk〉, (14)

〈 �φ|Q̂| �ψ〉 = 〈φi |Qij |ψj 〉, (15)

and the spatial triplet odd P wave function is represented as

ψi(r1,r2,r) = ri
1 f (r1,r2,r) − (r1 ↔ r2), (16)

with f (r1,r2,r) being a real scalar function of r1, r2, and r ≡
|�r1 − �r2|. The P -state wave function defined above is real and
normalized to 〈 �P | �P 〉 = 〈Pi |Pi〉 = 1.

Matrix elements of the operators Q, �Q, and Q̂ in Eq. (12)
are evaluated between the wave functions that include the
mass polarization term in the nonrelativistic Hamiltonian.
Numerical results for the expectation values of these operators
are presented in Table I. We observe that the Fermi contact
interaction yields a dominating contribution, which could be
anticipated, as it comes from both 1s and 2p electrons. This
also explains why the hyperfine splitting is of the same order
as the fine splitting, since the latter comes mainly from the 2p

electron.

IV. mα6 CORRECTIONS

Calculation of the mα6 contribution to the hyperfine
structure of the 2 3P state is the principal objective of this
work. Analogous calculation for the 2 3S1 state have already
been performed in Ref. [14]. Here we verify the calculation
for the 2 3S state and extend it to the 2 3P state.

Derivation of the effective Hamiltonian to order mα6 for an
arbitrary state of helium is given in Appendix B. The result is

H
(6)
hfs = m3

r

m M
(1+κ) α6[ �I · �S (Prad+Pnrad) + �I · �P +I i Sj P ij ],

(17)

where

Prad = Z

(
ln 2 − 5

2

)
Z

3
4π [δ3(r1) + δ3(r2)], (18)

is the effective operator induced by the radiative QED effects,

Pnrad = Z2

3

1

r4
1

− Z

3
p2

1 4 π δ3(r1)

−Z
�r
r3

· �r1

r3
1

+ 8

3

(
ln 2 − 5

2

)
Z2 π δ3(r1), (19)

�P =−Z p2
1

�r1

r3
1

× �p1 − Z
�r1

r r3
1

× �p2 − Z

( �r1

r3
1

× �r
r3

)
(�r · �p2),

(20)

and

P ij = −Z

2

(
Z

3 r1
+ p2

1

)(
3

ri
1 r

j

1

r 5
1

− δij

r 3
1

)

+Z

2

(
3

rj

r3

ri
1

r3
1

− δij �r
r3

· �r1

r3
1

)
. (21)

It can be immediately seen that the operator Pnrad involves
highly singular operators, whose matrix elements between
the 3P functions diverge. However, the divergence cancels
out if Pnrad is considered together with the second-order mα6

contribution, as is explained below.
The second-order mα6 correction δEsec is given by

δEsec = 2

〈
H

(4)
hfs

1

(E − H )′
[
H

(4)
nfs + H

(4)
fs

]〉
, (22)

where H
(4)
hfs is obtained from H

(4+)
hfs from Eq. (5) by dropping

the electron magnetic moment anomaly ae and the recoil part,
and

H
(4)
nfs + H

(4)
fs = T + �S · �T + Si Sj T ij + �SA · �TA, (23)

where H
(4)
nfs ≡ T is the spin-independent part of the effective

Hamiltonian of order mα4,

T = −p4
1 + p4

2

8
+ Zπ

2
[δ3(r1) + δ3(r2)]

−1

2
pi

1

(
δij

r
+ rirj

r3

)
p

j

2 , (24)

and the remaining operators are responsible for the fine
structure to order mα4,

�T = Z

4

[ �r1

r3
1

× �p1 + �r2

r3
2

× �p2

]
+ 3

4

�r
r3

× ( �p2 − �p1), (25)

�TA = Z

4

[ �r1

r3
1

× �p1 − �r2

r3
2

× �p2

]
+ 1

4

�r
r3

× ( �p2 + �p1), (26)

and

T ij = 1

2

1

r3

(
δij − 3

rirj

r2

)
. (27)

Let us now consider the sum of singular contributions,

δsingE = m3
r

m M
(1 + κ) α6 �I · �S

[
〈Pnrad〉

+
〈
Q

1

(E − H )′
T + H.c.

〉]
. (28)

While the expectation values of the operators Q and T are
finite, the second-order matrix element of these operators
diverges. In order to eliminate the divergences, we regularize
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the Coulomb electron-nucleus interaction by introducing an
artificial parameter λ,

Z

ra

→ Z

ra

(1 − e−λ m Z ra ), (29)

All other electron-nucleus interaction terms are regularized
in the same way. This entails the following replacements in
effective Hamiltonians,

4 π Z δ3(ra) ≡ −∇2 Z

ra

→ −∇2 Z

ra

(1 − e−λ m Z ra ), (30)

Z2

r4
a

≡
(

�∇ Z

ra

)2

→
[

�∇ Z

ra

(1 − e−λ m Z ra )

]2

. (31)

Once the electron-nucleus interaction is regularized, one can,
in principle, calculate all matrix elements and take the limit
λ → ∞. However, since matrix elements can be calculated
only numerically, it is more convenient to transform the
effective operators to the regular form, where λ can be taken
to infinity before numerical calculations.

To this end, we transform the operators in the second-order
matrix element T → T ′ and Q → Q′ by

T ′ ≡ T − 1

4

∑
a

{
Z

ra

,E − H

}
, (32)

Q′ ≡ Q + 2

3

∑
a

{
Z

ra

,E − H

}
, (33)

where {. . . , . . .} is the commutator and the implicit λ regular-
ization is assumed. After this transformation, the singular part
takes the form

δsingE = m3
r

m M
(1 + κ) α6 �I · �S

[
〈P ′

nrad〉

+
〈
Q′ 1

(E − H )′
T ′ + H.c.

〉]
, (34)

where both the first- and second-order terms are separately
finite and thus the limit λ → ∞ can be evaluated analytically.
The result for the regularized operator P ′

nrad is

〈P ′
nrad〉 = 2

3

〈(
E − 1

r

)2 (
Z

r1
+ Z

r2

)
+

(
E − 1

r

)(
Z2

r2
1

+ Z2

r2
2

+ 4
Z

r1

Z

r2

)
+ 2

Z

r1

Z

r2

(
Z

r1
+ Z

r2

)

−
(

E − 1

r
+ Z

r2
− p2

2

2

)
4 π Z δ3(r1) − 5 Z

4

ri

r3

(
ri

1

r3
1

− ri
2

r3
2

)
+ pi

1
Z2

r2
1

pi
1 + p2

2
Z2

r2
1

− p2
2

Z

r1
p2

1

+2 pi
2

Z

r1

(
δij

r
+ ri rj

r3

)
p

j

1

〉
− 1

6

〈
Z

r1
+ Z

r2

〉
〈4 π Z [δ3(r1) + δ3(r2)]〉 + 4

3

〈
Z

r1
+ Z

r2

〉
〈T 〉. (35)

Matrix elements of the regularized mα6 Hamiltonian are
obtained by

〈
H

(6)
hfs

〉 = m3
r

m M
(1 + κ) α6

[
〈3 �P |(Prad + P ′

nrad)|3 �P 〉 〈 �I · �S〉

+1

2
〈3 �P | �P |3 �P 〉 〈 �I · �L〉

−3

5
〈3 �P |P̂ |3 �P 〉 〈I i Sj (Li Lj )(2)〉

]
. (36)

The numerical results for the expectation values of the
electronic operators are listed in Table II.

TABLE II. Expectation values of the mα6 hyperfine operators for
the 2 3P state of 3He, in a.u. The expected numerical uncertainty is
less than 1 on the last significant digit.

P 〈P 〉
Prad − 76.220 978

P ′
nrad 0.367 674

�P − 0.529 385

P̂ − 0.361 070

The second-order mα6 correction Eq. (22) is conceptually
simple but its calculation is rather involved technically.
This is partly because of the coupling with intermediate
states of different symmetries (3P , 1P , 3D, 1D, and 3F ) and
partly due to the presence of nearly singular operators. For
achieving numerically stable results, some operators had to
be transformed to the regular form by using the same method
as for the singular part. Details of the calculation and the
regularization procedure are described in Appendix C.

Numerical results for the second-order mα6 corrections
are presented in Table III. Note a large contribution of the
1P intermediate states, which is mainly due to the 2 3P -2 1P

mixing. We also mention that the numerical uncertainties of
the second-order corrections are completely negligible on the
level of the total theoretical error.

V. SECOND-ORDER HFS CORRECTION

The fifth term in Eq. (3) is the second-order hyperfine
correction. Its nominal order is (m2/M) α6. However, it
is enhanced by the small 2 3P -2 1P energy difference in
the denominator, which makes it numerically significant.
Rigorous calculation of this contribution is difficult because
of divergences, which are canceled by the corresponding
contribution from the nuclear-structure effects. In the present
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work, we approximate the second-order hyperfine contribution
by keeping only the lowest lying 1P F

1 intermediate state in the
sum over spectrum.

The second-order hyperfine correction induces contribu-
tions to the isotope shift (i.e., to the centroid of the 2 3P

level),

〈
H

(4)
hfs

1

(E − H )
H

(4)
hfs

〉
iso

≈ m5
r

m2 M2
(1 + κ)2 α6 1

E(2 3P ) − E(2 1P )

[
1

4
〈2 3 �P |QA|2 1 �P 〉2 + 1

20
〈2 3 �P |Q̂A|2 1 �P 〉2

]
, (37)

to the fine structure,〈
H

(4)
hfs

1

(E − H )′
H

(4)
hfs

〉
fs

≈ m5
r

m2 M2
(1 + κ)2 α6 1

E(2 3P ) − E(2 1P )

[
〈2 3 �P |QA|2 1 �P 〉 〈2 3 �P |Q̂A|2 1 �P 〉

〈
3

10
(Si Sj )(2) (Li Lj )(2)

〉

+〈2 3 �P |Q̂A|2 1 �P 〉2

〈
− 9

160
�L · �S + 21

400
(Li Lj )(2) (Si Sj )(2)

〉]
, (38)

and to the hyperfine structure,〈
H

(4)
hfs

1

(E − H )′
H

(4)
hfs

〉
hfs

≈ m5
r

m2 M2
(1 + κ)2 α6 1

E(2 3P ) − E(2 1P )

[
〈2 3 �P |QA|2 1 �P 〉2

〈
−1

2
�I · �S

〉

+〈2 3 �P |QA|2 1 �P 〉 〈2 3 �P |Q̂A|2 1 �P 〉
〈
− 3

10
I i Sj (Li Lj )(2)

〉

+〈2 3 �P |Q̂A|2 1 �P 〉2

〈
− 3

40
�I · �L + 1

20
�I · �S + 21

200
I i Sj (Li Lj )(2) − 9

200
I i Lj (Si Sj )(2)

〉]
. (39)

Numerical results for the second-order hyperfine corrections
are presented in Table IV.

The approximate treatment of the second-order hyperfine
contribution yields, in our opinion, the dominant uncertainty
of our theoretical predictions for the hyperfine structure. It is,

TABLE III. Individual second-order matrix elements for different
types of intermediate states sL, in a.u. The expected numerical
uncertainty is less than 1 on the last significant digit, when not given
explicitly.

sL (A,B)
〈
A 1

(E − H )′
B

〉
3P (Q′, T ′) 63.531 80

( �Q, T ) 0.085 734
(Q̂, T ) 0.044 830
(Q, �T ) 0.030 473
( �Q, �T ) 0.010 782
(Q̂, �T ) − 0.051 433
(Q, T̂ ) − 0.048 826
( �Q, T̂ ) 0.237 962
(Q̂, T̂ ) 0.114 340

1P (QA, �TA) 157.531 64
(Q̂A, �TA) − 1.150 (5)

3D ( �Q, �T ) 0.001 148
( �Q, T̂ ) − 0.000 434
(Q̂, �T ) 0.020 6 (2)
(Q̂, T̂ ) − 0.000 740

1D (Q̂A, �TA) 0.001 8 (3)
3F (Q̂, T̂ ) 0.011 100

therefore, important to estimate the neglected part. To this end,
we introduce a different approximation for the second-order
hyperfine contribution, which is obtained from Eq. (39) by the
following substitution:

1

E(2 3P ) − E(2 1P )
〈2 3 �P |QA|2 1 �P 〉2

→
∑

n

1

E(2 3P ) − E(n 1P )
〈2 3 �P |Q′

A|n 1 �P 〉2, (40)

where Q′
A is the regularized δ function operator given by

Eq. (C20). The difference between these two approximations
(of about a half percent) is used as the estimated error of the
theoretical hyperfine structure.

VI. NUCLEAR-STRUCTURE CONTRIBUTION

The last term in Eq. (3) is the nuclear-structure and
higher-order QED contribution. Accurate calculation of the
nuclear contribution is presently not possible due to insufficient
knowledge of the nuclear dynamics. However, one may claim
that the dominant part of this effect comes from a local
operator proportional to the δ function at the origin. Using

TABLE IV. Second-order hyperfine matrix elements, in a.u.;
all figures shown are exact. Notations are (A,B) = 〈2 3P |A|2 1P 〉
〈2 1P |B|2 3P 〉/[E(2 3P ) − E(2 1P )]. The expected numerical uncer-
tainty is less than 1 on the last significant digit.

(QA, QA) − 47 774.980
(QA, Q̂A) 249.528
(Q̂A, Q̂A) − 1.303
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this assumption, one can infer the nuclear-structure correction
in neutral 3He from the experimental value of the ground-state
hyperfine splitting in 3He+, measured very accurately by
Schlüsser et al. [17] half a century ago. This approach has
been used also in the previous studies of the 3He hyperfine
structure [11,12].

In order to infer the nuclear-structure contribution, we
subtract from the 3He+ experimental result the hydrogenic
limit of all corrections accounted for in the previous sections.
The remainder is the nuclear-structure contribution plus some
(small) higher-order QED corrections. Specifically, we de-
fine the nuclear-structure and higher-order QED contribution
Cnucl&ho as

Eexp(1s,3He+)

= m3
r

m M
(1 + κ) α4

{
1 + ae + α2

[
3

2
Z2 + Z

(
ln 2 − 5

2

)]

+α Cnucl&ho

}
2Z

3
〈4πδ3(r)〉, (41)

where Eexp(1s,3He+)/h = 8 665 649.867 (10) kHz is the ex-
perimental result of Ref. [17]. The above equation yields

Cnucl&ho = −0.031 891. (42)

This value does not have any theoretical uncertainty (by
definition) and thus is accurate to all figures given. The
corresponding contribution to the hyperfine structure in neutral
helium then is

〈Hnucl&ho〉 = m3
r

m M
(1 + κ) α5 Cnucl&ho

×
〈
2 3 �P |Z

3
4π [δ3(r1) + δ3(r2)]|2 3 �P

〉
〈 �I · �S〉.

(43)

VII. SMALL CORRECTIONS

Here we pick up some higher-order contributions, which
are not accounted for by Cnucl&ho but might be relevant for
comparison with experiment. Since the mixing of the 2 3P and
2 1P levels by the fine-structure operator is large, we calculate
here the anomalous magnetic moment and recoil corrections
to this mixing, which are of orders α7 m2/M and α6 m3/M2,
respectively.

The nuclear-spin-dependent 2 3P -2 1P fine-structure mixing
is given by

〈Hmix〉 = m3
r

m M
(1 + κ) α6 m2

r

m2

1

E(2 3P ) − E(2 1P )

[
〈2 3 �P |QA|2 1 �P 〉 〈2 1 �P | �TA|2 3 �P 〉

〈
1

3
�I · �L − I i Lj (Si Sj )(2)

〉

+〈2 3 �P |Q̂A|2 1 �P 〉 〈2 1 �P | �TA|2 3 �P 〉
〈
−1

6
�I · �L + 9

20
I i Sj (Li Lj )(2) + 1

20
I i Lj (Si Sj )(2)

〉]
, (44)

where the QA and �TA operators include the anomalous
magnetic moment and the recoil additions,

QA = (1 + ae)
Z

3
4π [δ3(r1) − δ3(r2)], (45)

�TA = (1 + 2ae)
Z

4

[ �r1

r3
1

× �p1− �r2

r3
2

× �p2

]
+1

4

�r
r3

× ( �p2 + �p1)

+ m

M
(1 + ae)

Z

2

( �r1

r3
1

− �r2

r3
2

)
× ( �p1 + �p2), (46)

and the matrix elements are calculated between the wave
functions that include the mass polarization correction.

The higher-order mixing contribution is obtained from
Eq. (44) after subtracting the part that is already accounted

TABLE V. Nuclear-spin-dependent fine-structure mixing matrix
elements, with the anomalous magnetic moment and mass polar-
ization (upper entry) and without (lower entry), in a.u.; all figures
shown are exact: (A,B) ≡ 〈2 3P |A|2 1P 〉 〈2 1P |B|2 3P 〉/[E(2 3P ) −
E(2 1P )]. The expected numerical uncertainty is less than 1 on the
last significant digit.

(QA, �TA) 156.1127
155.9034

(Q̂A, �TA) − 0.815 35
− 0.814 28

for [namely, the n = 2 term in Eq. (C6)]. Numerical results
for the corresponding matrix elements are given in Table V.
The recoil correction is due to both the the mass polarization
and the recoil addition to TA. Further corrections to this mixing
(e.g., those coming from higher-order relativistic corrections)
are not known and contribute to the uncertainty of final results.

VIII. RESULTS AND DISCUSSION

In this section we present the total theoretical predictions
for the mixed fine and hyperfine structure of the 2 3P states in
3He. The numerical values of nuclear parameters used in the
calculations are [18]

μ/μB = −1.158 740 958(14) × 10−3, (47)

m/M = 1.819 543 076 1(17) × 10−4. (48)

The conversion factors relevant for this work are
m3

r

m M
(1 + κ) α4 = −202 887.3247 kHz × h, (49)

m3
r

m M
(1 + κ) α6 = −10.8040 kHz × h, (50)

m5
r

m2 M2
(1 + κ)2 α6 = 0.0063 kHz × h, (51)

where h is the Planck constant.
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TABLE VI. Theoretical results for individual 2 3P F
J levels in 3He,

relative to the 2 3P centroid energy, in comparison with available
experimental data, in kHz. The first error of the theoretical values is
the uncertainty due to the hyperfine structure and the second error is
the uncertainty due to the fine structure.

2 3P
F=1/2
0 27 923 393.7 (0.2)(2.5)

27 923 394.7 (2.2) Smiciklas [13]
27 923 398.3 (1.9) Cancio et al. [5]

2 3P
F=3/2
2 498 547.3 (1.4)(0.4)

498 543.7 (2.1) Smiciklas [13]
498 547.3 (2.1) Cancio et al. [5]

2 3P
F=1/2
1 − 169 462.2 (0.5)(0.8)

− 169 463.3 (1.7) Smiciklas [13]
− 169 460.2 (1.8) Cancio et al. [5]

2 3P
F=3/2
1 − 4 681 676.3 (0.7)(0.2)

− 4 681 676.3 (1.5) Smiciklas [13]
− 4 681 672.1 (1.6) Cancio et al. [5]

2 3P
F=5/2
2 − 6 462 557.8 (0.7)(1.0)

− 6 462 555.3 (1.5) Smiciklas [13]
− 6 462 562.8 (1.6) Cancio et al. [5]

The fine structure splitting in the absence of the nuclear
spin was calculated in our previous investigations [1,16], with
numerical results reported for 4He. In this work, we reevaluate
all nuclear-mass-dependent corrections to the fine structure in
order to extend our calculation to 3He. The numerical results
for the 2 3PJ levels of 3He are

TABLE VII. Experimental and theoretical hyperfine transitions,
in kHz. The first error in the theoretical prediction is the uncertainty
due to the hyperfine splitting and the second error is the uncertainty
due to the fine-structure splitting.

(J,F )-(J ′,F ′) Value Reference

(0,1/2)-(1,1/2) 28 092 855.9 (0.5) (1.7)
28 092 870 (60) Morton et al. [11]
28 092 858 (3) Smiciklas [13]
28 092 858.6 (2.1)a Cancio et al. [5]

(0,1/2)-(2,3/2) 27 424 846.4 (1.4) (2.9)
27 424 837 (12) Wu and Drake [12]
27 424 851.0 (3.0) Cancio et al. [5]

(2,3/2)-(1,1/2) 668 009.5 (1.4) (1.2)
668 033 (9) Wu and Drake [12]
668 007 (3) Smiciklas [13]
668 007.5 (3.2) Cancio et al. [5]

(1,3/2)-(2,5/2) 1 780 881.5 (1.0) (1.2)
1 780 880 (1) Wu and Drake [12]
1 780 879 (3) Smiciklas [13]
1 780 890.7 (3.5) Cancio et al. [5]

(1,1/2)-(1,3/2) 4 512 214.1 (0.8) (0.5)
4 512 191 (12) Wu and Drake [12]
4 512 213 (3) Smiciklas [13]
4 512 211.9 (2.7) Cancio et al. [5]

(2,3/2)-(2,5/2) 6 961 105.1 (1.5) (0.5)

aAveraged value of the two differences between the measured optical
transitions.

〈Hfs〉J=0 = h

9
(8 f01 + 5 f12), (52)

〈Hfs〉J=1 = h

9
(−f01 + 5 f12), (53)

〈Hfs〉J=2 = h

9
(−f01 − 4 f12), (54)

where

f01 = 29 616 676.5(1.7) kHz, (55)

f12 = 2 292 167.6(1.7) kHz. (56)

We now have all contributions to the elements of the
Hamiltonian matrix EF

J,J ′ in Eq. (3). Diagonalizing the matrix,
we obtain the positions of the energy levels of the 2 3P F

J states
in 3He, relative to the centroid of the 2 3P level. The numerical
results are listed in Table VI for the individual energy levels and
in Table VII for the transitions between the fine and hyperfine
levels. Our theoretical values have two uncertainties, the first
one being due to the hyperfine effects and the second one
due to the fine-structure effects. The nuclear-spin-dependent
effects are calculated with an accuracy of about 1 kHz (and
even better in some cases). This accuracy is limited mainly
by the incomplete treatment of the second-order hyperfine
correction. The second uncertainty of the theoretical energies
is due to the fine-structure effects. It comes from the 1.7-kHz
error of f01 and f12 in Eqs. (55) and (56), which is exactly
the same as for the fine structure in 4He. Interestingly, the
sensitivity of different levels to the error of the fine-structure
effects is very much different, varying from 0.2 kHz for the
2 3P

3/2
1 level to 2.5 kHz for 2 3P

1/2
0 . As could be expected, the

transitions between the levels with the same value of J are less
sensitive to the error of the fine-structure effects than the J -J ′
transitions.

The present theoretical results can be compared with
the experiment by Smiciklas [13] and with our recently
reported absolute frequency measurements of the 2 3S-2 3P

transitions [5]. The latter experiment was carried out by
using the optical frequency comb assisted multiresonant
precision spectroscopy [19] and by measuring simultaneously
both optical and microwave hyperfine transition frequencies.
Agreement found between the microwave frequencies and the
difference of the optical transition frequencies was used as a
confirmation of the obtained experimental results. Comparison
of the two independent measurements (see Table VII) shows
good agreement in all cases except for the P

3/2
1 -P 5/2

2 transition.
The experimental values for individual energy levels listed

in Table VI are obtained from the transition energies reported
in the original references [5,13] by using the definition of the

TABLE VIII. Hyperfine splitting of the 2 3S state of 3He, in kHz.

H (4+) 6 740 451.46
H (6) − 1 313.99
(H (4)

hfs ,H
(4)
nfs + H

(4)
fs ) 2 189.81

(H (4)
hfs ,H

(4)
hfs ) − 60.52 ± 1.7

Hnucl&ho − 1 566.83
Total 6 739 699.93 ± 1.7
Experiment [20] 6 739 701.177 (16)
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TABLE IX. Determination of the difference of the mean square nuclear charge radii δr2 of 3He and 4He from the measurement by Shiner
et al. [10]. The remainder δE is proportinal to δr2, δE = C δr2, with C = −1212.2(1) kHz/fm2, see text for details. Units are kHz.

E(3He,2 3P
1/2
0 -2 3S

3/2
1 ) − E(4He,2 3P2-2 3S1) 810 599(3) Experiment [10]

δEhfs(2 3S
3/2
1 ) − 2 246 567.059(5) Experiment [17]

δEfs(2 3P2) − 4 309 074.2(1.7) Theory, [1] and this work, Eq. (54)
−δEhfs(2 3P

1/2
0 ) − 27 923 393.7(1.7) Theory, this work, Table VI

−δEiso(2 3P -2 3S) (point nucleus) 33 667 143.2(3.9) Theory [5]
δE − 1 292.8(5.2)

centroid Eq. (2) and the experimental hyperfine shift of the 2 3S

state [17]. We observe that theoretical and experimental results
are at the same level of accuracy of about 2–3 kHz and in very
good agreement with each other. It can be concluded that our
calculation of the mα6 correction represented an important
advance over the previous theory [11,12] and significantly
improved agreement between theory and the experiment.

Table VIII shows our numerical results for the hyperfine
splitting of the 2 3S state of 3He. The results listed represent
an update of the calculation described in detail in Ref. [14].
As compared to that work, we have (i) slightly improved the
numerical accuracy and (ii) made the treatment of the second-
order hyperfine and the nuclear-structure contributions to be
fully consistent with that for the 2 3P states. The uncertainty
of the theoretical prediction comes from the second-order
hyperfine correction and was estimated in the same way as
for the 2 3P state. Very good agreement of the 2 3S theoretical
result with the experimental value [17] gives us additional
confidence in our estimation of errors for the 2 3P state.

Having calculated the hyperfine and fine structure of the
2 3P levels, we are now in a position to obtain an improved
determination of 3He-4He nuclear charge radii difference δr2

from the isotope shift measurement by Shiner et al. [10]. In
order to extract δr2 from the measured energy difference,
E(3He,2 3P

1/2
0 -2 3S

3/2
1 )–E(4He,2 3P2-2 3S1), we subtract the ex-

perimental hyperfine shift of the 2 3S state [17], the theoretical
shift of the 2 3P

1/2
0 level with respect to the centroid energy

(obtained in this work), the theoretical fine shift of the 2 3P2

level with respect to the centroid [1], and the theoretical isotope
shift of the centroids for the point nucleus [5] (see Table IX).
The remainder δE comes from the finite nuclear size effect
and is proportional to the difference of the mean square charge
radii, δE = C δr2, where coefficient C is evaluated in this
work to be C = −1212.2(1) kHz/fm2. The resulting value,

δr2 ≡ r2(3He) − r2(4He) = 1.066(4) fm2, (57)

FIG. 1. (Color online) Different determinations of the difference
of the squared nuclear charge radii of 3He and 4He.

is in reasonable agreement with the result by Cancio et al.
[5], δr2 = 1.074(3) fm2, and in significant disagreement with
the result of Ref. [4] (updated in Ref. [5] by recalculation
of the isotope shift), δr2 = 1.028(11) fm2. Figure 1 shows
graphically the comparison of different determinations of δr2,
including the results from nuclear theory [21,22] and from
nuclear electron-scattering measurements [7,23].

IX. SUMMARY

In summary, we have calculated the mixed hyperfine and
fine structure of the 2 3P states of 3He. Our investigation
advances the previous theory by a complete calculation of
the mα6 correction, which leads to an order-of-magnitude
improvement in accuracy. Theoretical predictions for most
of the transitions are accurate to better than 2 kHz. The
2 3P

1/2
1 -2 3P

3/2
1 transition is calculated up to 0.9 kHz, which

is currently the most precise theoretical result for the helium
transitions. Both the hypefine and fine-structure transitions are
in good agreement with measurements by Cancio et al. [5] and
by Smiciklas [13].

Since the present theoretical accuracy for the fine-structure
transitions in 3He is comparable to that for 4He, one can, in
principle, use the 3He spectroscopy for the determination of
the fine structure constant α, as in was done for 4He in Ref. [1].
However, such determination does not bring much advantage at
present, since the experimental accuracy for 3He is lower than
for 4He [24,25]. Because of this, we do not determine α from
the 3He transitions in this work. However, if the experimental
precision of the 3He hyperfine structure is improved to the
sub-kHz level, one will be able to use these results for the
spectropic determination of the fine structure constant.

Another application of the hyperfine structure measure-
ments in 3He might be determination of the dipole magnetic
moment of helion. The principal problem here is that the
present theory obtains the nuclear-structure contribution from
the experimental value of the hyperfine splitting in 3He+. This
greatly reduces the sensitivity of the final theoretical prediction
on the nuclear magnetic moment. Our calculation shows that at
present, the hyperfine structure of 3He allows for determination
of the dipole magnetic moment of helion with an accuracy of
about 5 × 10−5 only.

APPENDIX A: ANGULAR-MOMENTUM
MATRIX ELEMENTS

In this section we calculate the matrix elements of the basic
angular-momentum operators that are relevant for the present
work. The angular-momentum algebra is conveniently done
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with formulas from Ref. [26]. The results are

〈FIJLSMF | �I · �S|FIJ ′L′S ′MF 〉 = (−1)I+J+F

{
I J F

J ′ I 1

} √
I (I + 1)(2I + 1)δL,L′ δS,S ′ (−1)L+S+J+1

×
√

S(S + 1)(2S + 1)(2J + 1)(2J ′ + 1)

{
S L J ′
J 1 S

}
, (A1)

〈FIJLSMF | �I · �L|FIJ ′L′S ′MF 〉 = (−1)I+J+F

{
I J F

J ′ I 1

} √
I (I + 1)(2I + 1)δL,L′ δS,S ′ (−1)L+S+J ′+1

×
√

L(L + 1)(2L + 1)(2J + 1)(2J ′ + 1)

{
L S J

J ′ 1 L

}
, (A2)

〈I i Sj (Li Lj )(2)〉 = 1
4 [J (J + 1) + J ′(J ′ + 1) − 2L(L + 1) − 2S(S + 1)] 〈 �I · �L〉 − 1

3 L(L + 1) 〈 �I · �S〉, (A3)

〈I i Lj (Si Sj )(2)〉 = 1
4 [J (J + 1) + J ′(J ′ + 1) − 2L(L + 1) − 2S(S + 1)] 〈 �I · �S〉 − 1

3 S(S + 1) 〈 �I · �L〉, (A4)

〈(Si Sj )(2)(Li Lj )(2)〉 = 〈 �L · �S〉2 + 1

2
〈 �L · �S〉 − L (L + 1) S (S + 1)

3
. (A5)

APPENDIX B: DERIVATION OF H (6)
hfs

We start with the Breit Hamiltonian HBP of the atomic system in the external magnetic field,

HBP =
∑

a

Ha +
∑

a,b;a>b

Hab, (B1)

Ha = �π2
a

2 m
− Z α

ra

− e

2 m
�σa · �Ba − �π4

a

8 m3
+ π Z α

2 m2
δ3(ra) + Z α

4 m2
�σa · �ra

r3
a

× �πa + e

8 m3

(�σa · �Ba �π2
a + �π2

a �σa · �Ba

)
, (B2)

Hab = α

rab

+ π α

m2
δ3(rab) − α

2 m2
πi

a

(
δij

rab

+ ri
ab r

j

ab

r2
ab

)
π

j

b + α

4 m2r3
ab

[�σa · �rab × (2 �πb − �πa) − �σb · �rab × (2 �πa − �πb)]

+ α

4 m2

σ i
a σ

j

b

r3
ab

(
δij − 3

ri
ab r

j

ab

r2
ab

)
, (B3)

where �π = �p − e �A. Magnetic fields �A and �B induced by the nuclear magnetic moment are

e �A(�r) = e

4 π
�μ × �r

r3
= −Z α

(1 + κ)

M
�I × �r

r3
, (B4)

e �Bi(�r) = ( �∇ × �A)i = −Z α
(1 + κ)

M

8 π

3
δ3(r) I i + Z α

(1 + κ)

M

1

r3

(
δij − 3

ri rj

r2

)
I j . (B5)

The leading-order interaction between the nuclear spin �I and the electron spin �σa is obtained from the nonrelativistic terms
1

2 m
�π2

a and e
2 m

�σa · �Ba , yielding

H
(4)
hfs = −

∑
a

[
e

m
�pa · �A(�ra) − e

2 m
�σa · �B(�ra)

]
, (B6)

in agreement with Eq. (5). The relativistic correction to the hyperfine interaction is similarly obtained from the relativistic terms
in the Breit Hamiltonian HBP ,

H
(6)
hfs =

∑
a

Z α

4 m2
�σa · �ra

r3
a

× [−e �A(�ra)] + e

8 m3

(�σa · �Ba �p 2
a + �p 2

a �σa · �Ba

) +
∑

a,b;a =b

α

4 m2r3
ab

�σa · �rab × [−2 e �A(�rb) + e �A(�ra)]

(B7)

+ e

4 m3

∑
a

[ �p 2
a �pa · �A(�ra) + �pa · �A(�ra) �p 2

a

] −
∑
a =b

α

2 m2
pi

a

(
δij

rab

+ ri
ab r

j

ab

r3
ab

)
[− e Aj (�rb)]. (B8)

Using �A and �B from Eqs. (B4) and (B5), we derive Eq. (17).
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APPENDIX C: SECOND-ORDER MATRIX ELEMENTS

The second-order mα6 correction δEsec [see Eq. (22)] is split into several parts in accordance with the symmetry of the
intermediate states,

δEsec = m3
r

m M
(1 + κ) α6 [δEsing(3P ) + δEreg(3P ) + δE(1P ) + δE(3D) + δE(1D) + δE(3F )]. (C1)

The angular momentum algebra for different intermediate states is simple but rather tedious and is performed with the help of
the symbolic algebra computer program. Below we list the resulting formulas expressed in a form convenient for the numerical
evaluation.

The singular part with the 3P intermediate states is given by (after removing all divergencies)

δEsing(3P ) =
〈
Q′ 1

(E − H )′
T ′

〉
2 〈 �I · �S〉, (C2)

where E ≡ E(2 3P ),

Q′ ≡ Q + 2

3

∑
a

{
Z

ra

,E − H

}
= −2 Z

3

( �r1

r3
1

· �∇1 + �r2

r3
2

· �∇2

)
, (C3)

T ′ ≡ T − 1

4

∑
a

{
Z

ra

,E − H

}
= −1

2

(
E + Z

r1
+ Z

r2
− 1

r

)2

− pi
1

1

2 r

(
δij + ri rj

r2

)
p

j

2

+ 1

4
�∇2

1
�∇2

2 − Z

4

�r1

r3
1

· �∇1 − Z

4

�r2

r3
2

· �∇2 + 1

2

�r
r3

· ( �∇1 − �∇2), (C4)

and it is assumed that the operators T ′ and Q′ act on the function on the right-hand side that satisfies the Schrödinger equation
with the energy E.

The regular part with the 3P intermediate states is

δEreg(3P ) =
∑
n>2

1

E(2 3P ) − E(n 3P )

[
〈2 3 �P |Q|n 3 �P 〉 〈n 3 �P | �T |2 3 �P 〉

〈
2

3
�I · �L + I i Lj (Si Sj )(2)

〉

+〈2 3 �P |Q|n 3 �P 〉 〈n 3 �P |T̂ |2 3 �P 〉
〈
−3

5
I i Sj (Li Lj )(2)

〉
+ 〈2 3 �P | �Q|n 3 �P 〉 〈n 3 �P |T |2 3 �P 〉 〈 �I · �L〉

+ 〈2 3 �P | �Q|n 3 �P 〉 〈n 3 �P | �T |2 3 �P 〉
〈

1

3
�I · �S + 1

2
I i Sj (Li Lj )(2)

〉

+〈2 3 �P | �Q|n 3 �P 〉 〈n 3 �P |T̂ |2 3 �P 〉
〈
− 3

10
I i Lj (Si Sj )(2)

〉
+ 〈2 3 �P |Q̂|n 3 �P 〉 〈n 3 �P |T |2 3 �P 〉

〈
−6

5
I i Sj (Li Lj )(2)

〉

+〈2 3 �P |Q̂|n 3 �P 〉 〈n 3 �P | �T |2 3 �P 〉
〈
−1

3
�I · �L + 9

20
I i Sj (Li Lj )(2) − 1

20
I i Lj (Si Sj )(2)

〉

+〈2 3 �P |Q̂|n 3 �P 〉 〈n 3 �P |T̂ |2 3 �P 〉
〈

1

5
�I · �S − 21

100
I i Sj (Li Lj )(2) − 27

100
I i Lj (Si Sj )(2)

〉]
. (C5)

The other parts are

δE(1P ) =
∑

n

1

E(2 3P ) − E(n 1P )

[
〈2 3 �P |QA|n 1 �P 〉 〈n 1 �P | �TA|2 3 �P 〉

〈
1

3
�I · �L − I i Lj (Si Sj )(2)

〉

+〈2 3 �P |Q̂A|n 1 �P 〉 〈n 1 �P | �TA|2 3 �P 〉
〈
−1

6
�I · �L + 9

20
I i Sj (Li Lj )(2) + 1

20
I i Lj (Si Sj )(2)

〉]
, (C6)

δE(3D) =
∑

n

1

E(2 3P ) − E(n 3D)

[
〈2 3 �P | �Q|n 3D̂〉 〈n 3D̂| �T |2 3 �P 〉

〈
2

3
�I · �S − 1

5
I i Sj (Li Lj )(2)

〉

+〈2 3 �P |Q̂|n 3D̂〉 〈n 3D̂|T̂ |2 3 �P 〉
〈

2

9
�I · �S + 7

30
I i Sj (Li Lj )(2) − 1

10
I i Lj (Si Sj )(2)

〉

+〈2 3 �P |Q̂|n 3D̂〉 〈n 3D̂| �T |2 3 �P 〉
〈
−2

3
�I · �L − 3

10
I i Sj (Li Lj )(2) − 1

10
I i Lj (Si Sj )(2)

〉

+〈2 3 �P | �Q|n 3D̂〉 〈n 3D̂|T̂ |2 3 �P 〉
〈
−3

5
I i Lj (Si Sj )(2)

〉]
, (C7)
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δE(1D) =
∑

n

1

E(2 3P ) − E(n 1D)
〈2 3 �P |Q̂A|n 1D̂〉 〈n 3D̂| �TA|2 1 �P 〉

〈
−1

3
�I · �L − 3

10
I i Sj (Li Lj )(2) + 1

10
I i Lj (Si Sj )(2)

〉
,

(C8)

δE(3F ) =
∑

n

1

E(2 3P ) − E(n 3F )
〈2 3 �P |Q̂|n 3F̃ 〉 〈n 3F̃ |T̂ |2 3 �P 〉

〈
1

3
�I · �S − 1

10
I i Sj (Li Lj )(2) + 3

10
I i Lj (Si Sj )(2)

〉
.

(C9)

The matrix elements with the D- and F -state wave functions are defined by

〈 �φ| �Q|ψ̂〉 ≡ −i 〈φi |Qj |ψij 〉 = i 〈ψij |Qj |φi〉 ≡ 〈ψ̂ | �Q| �φ〉, (C10)

〈 �φ|Q̂|ψ̂〉 ≡ εijk〈φi |Qjl|ψkl〉 = εijk〈ψkl|Qjl|φi〉 ≡ 〈ψ̂ |Q̂| �φ〉, (C11)

〈 �φ|Q̂|ψ̃〉 ≡ 〈φi |Qjk|ψijk〉 = 〈ψijk|Qij |φk〉 ≡ 〈ψ̃ |Q̂|φ̂〉, (C12)

where ψ̂ denotes the odd D wave function,

ψij = (
εiklrk

1 rl
2r

j

1 + εjklrk
1 rl

2r
i
1

)
f (r1,r2,r) ± (r1 ↔ r2), (C13)

and ψ̃ denotes the odd F wave function,

ψijk =
[
ri

1r
j

1 rk
1 − r2

1

5

(
δij r

k
1 + δikr

i
1 + δjkr

i
1

)]
f (r1,r2,r) + 1

3

[
ri

1r
j

1 rk
2 + ri

1r
j

2 rk
1 + ri

2r
j

1 rk
1

−δij

5

(
r2

1 rk
2 + 2rl

1r
l
2r

k
1

) − δik

5

(
r2

1 r
j

2 + 2rl
1r

l
2r

j

1

) − δjk

5

(
r2

1 ri
2 + 2rl

1r
l
2r

i
1

)]
g(r1,r2,r) ± (r1 ↔ r2). (C14)

All wave functions are real and normalized by 〈ψi |ψi〉 = 〈ψij |ψij 〉 = 〈ψijk|ψijk〉 = 1.
The second-order corrections listed above are finite. However, some matrix elements are too singular for the direct numerical

evaluation and need to be transformed to a more regular form. The regularization method is described in Sec. IV. So the operator
T is transformed by Eq. (32), thus yielding∑

n>2

1

E(2 3P ) − E(n 3P )
〈2 3 �P | �Q|n 3 �P 〉〈n 3 �P |T |2 3 �P 〉 =

∑
n>2

1

E(2 3P ) − E(n 3P )
〈2 3 �P | �Q|n 3 �P 〉〈n 3 �P |T ′|2 3 �P 〉

+ 〈2 3 �P |1

4

∑
a

Z

ra

�Q|2 3 �P 〉 − 〈2 3 �P |1

4

∑
a

Z

ra

|2 3 �P 〉〈2 3 �P | �Q|2 3 �P 〉. (C15)

We observe that, after the transformation, the singular part of the operator T is absorbed in the first-order matrix element, whereas
the second-order correction contains only the (more regular) operator T ′.

Similarly, the operator Qij is transformed by

Q′ij ≡ Qij − {δQij , E − H } = −Z

6

∑
a

(
−δij rk

a

r3
a

− 3 δik r
j
a

r3
a

− 3 δjk ri
a

r3
a

+ 9
ri
a r

j
a rk

a

r5
a

)
∇k

a , (C16)

where E ≡ E(2 3P ),

δQij = 1

6

∑
a

Z

ra

(
δij − 3

ri
a r

j
a

r2
a

)
, (C17)

and it is assumed that the function on the right-hand side of Q̂′ satisfies the Schrödinger align with energy E. The second-order
matrix elements with Qij then are transformed by∑

n>2

1

E(2 3P ) − E(n 3P )
〈2 3 �P |Q̂|n 3 �P 〉〈n 3 �P | �T |2 3 �P 〉 =

∑
n>2

1

E(2 3P ) − E(n 3P )
〈2 3 �P |Q̂′|n 3 �P 〉〈n 3 �P | �T |2 3 �P 〉

+ (−iεklm)〈2 3Pi |δQikTl|2 3Pm〉 − 〈2 3 �P |δQ̂|2 3 �P 〉〈2 3 �P | �T |2 3 �P 〉, (C18)

and∑
n>2

1

E(2 3P ) − E(n 3P )
〈2 3 �P |Q̂|n 3 �P 〉〈n 3 �P |T |2 3 �P 〉 =

∑
n>2

1

E(2 3P ) − E(n 3P )
〈2 3 �P |Q̂′|n 3 �P 〉〈n 3 �P |T ′|2 3 �P 〉

+ 〈2 3 �P |1

4

∑
a

Z

ra

Q̂|2 3 �P 〉 − 〈2 3 �P |1

4

∑
a

Z

ra

|2 3 �P 〉〈2 3 �P |Q̂|2 3 �P 〉 + 〈2 3 �P |δQ̂T ′|2 3 �P 〉 − 〈2 3 �P |δQ̂|2 3 �P 〉〈2 3 �P |T ′|2 3 �P 〉. (C19)

042517-11



K. PACHUCKI, V. A. YEROKHIN, AND P. CANCIO PASTOR PHYSICAL REVIEW A 85, 042517 (2012)

The operator QA is transformed as

Q′
A ≡ QA + 2

3

{
Z

r1
− Z

r2
, E − H

}
= 2 Z

3

(
− �r1

r3
1

· �∇1 + �r2

r3
2

· �∇2

)
, (C20)

where it is assumed that the function on the right-hand side of Q′
A satisfies the Schrödinger equation with the energy E. The

regularized form of the second-order matrix element then is∑
n

1

E(2 3P ) − E(n 1P )
〈2 3 �P |QA|n 1 �P 〉 〈n 1 �P | �TA|2 3 �P 〉 =

∑
n

1

E(2 3P ) − E(n 1P )
〈2 3 �P |Q′

A|n 1 �P 〉 〈n 1 �P | �TA|2 3 �P 〉

− 2

3
〈2 3 �P |

(
Z

r1
− Z

r2

)
�TA|2 3 �P 〉. (C21)
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