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Scaling properties of exchange and correlation holes of the valence shell of second-row atoms
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We study the exchange and correlation hole of the valence shell of second-row atoms using variational Monte
Carlo techniques, especially correlated estimates, and norm-conserving pseudopotentials. The well-known scaling
of the valence shell provides a tool to probe the behavior of exchange and correlation as a functional of the density
and thus test models of density functional theory. The exchange hole shows an interesting competition between
two scaling forms—one caused by self-interaction and another that is approximately invariant under changes in
the particle number, related to the known invariance of exchange under uniform scaling to high density with the
particle number held constant. The correlation hole shows a scaling trend that is marked by the finite size of the
atom relative to the radius of the hole. Both trends are well captured in the main by the Perdew-Burke-Ernzerhof
generalized-gradient approximation model for the exchange-correlation hole and energy.
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I. INTRODUCTION

Density functional theory [1,2], the most widely used com-
putational tool for electronic structure calculations, is founded
upon the knowledge of the existence of a universal functional
mapping of the ground-state density to the ground-state energy,
with, however, a fundamental lack of knowledge on how to
construct this functional systematically. The key problem is
describing the effects of electron-electron interactions due
to Fermi statistics and Coulomb repulsion—the exchange
and correlation energies—in an essentially single-particle
description of nature. Considerable progress in constructing
approximate functionals has been made, using a number of
varied strategies to develop a “Jacobs ladder” hierarchy of
models of increasing complexity. Two such strategies which
have proved fruitful are the discovery and implementation of
scaling laws that describe limiting behavior of the universal
density functional and the analysis of auxiliary expectations,
particularly the exchange-correlation hole, to provide insight
into the role of interelectron correlations in determining this
functional.

In DFT, scaling laws provide a controlled way of varying
density, approaching the daunting task of understanding the
energy as a functional of the density by first tackling the more
approachable one of understanding its behavior as a function
of a scaling variable. Particularly useful is the limit of uniform
scaling to high density [3,4], a process intimately related to the
adiabatic connection approach to DFT [5], and asymptotically
approached by the isoelectronic series of atomic ions as nuclear
charge Z tends to infinity. The properties of exchange and
correlation under this transformation constrain the possible
dependence of the energy on local-density-based variables,
greatly simplifying the task of functional construction. An-
other fruitful scaling process is that of neutral atoms in
the Z→∞ limit, in which the charge density tends to a
well-known Thomas-Fermi limit [6,7]. The gradient correction
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of the latter has been used to diagnose a major limitation in
the widely used generalized gradient approximation (GGA) of
DFT, namely the limited ability to tune the GGA to predict
accurately both molecular and solid-state properties [8], and
to motivate effective recent remedies for this issue [9,10].

Another important tool in the development of DFT has been
the exchange-correlation (XC) hole. The XC hole essentially
is the measure of the change in electron number density
throughout a system given one electron observed to be at
a given position. The energy of interaction of an electron
with its own exchange-correlation hole yields the exchange-
correlation energy, the key theoretical input into DFT. The
unexpected degree of success of the original local density
approximation (LDA) stems from the universal properties of
the system-averaged XC hole (a hole averaged over angle and
position in the system) obeyed by the homogeneous electron
gas hole [2] from which the LDA is derived. Input from the
behavior of the XC hole has been important in the development
of effective nonempirical GGAs [11–13] and the hybrid
DFT–Hartree Fock approach [14]. More recent DFT models
have not been constructed from XC holes, but constructing
model XC holes consistent with a given functional remains an
important analysis tool [15].

The system-averaged exchange-correlation hole has a natu-
ral connection to the intracule [16] or density of electron pairs
as a function of their interelectron distance. The intracule has
been the subject of extensive study in quantum chemistry, as a
source of insight into the electron correlation problem. Several
classes of techniques have been used to study atoms and simple
molecules, including Hartree Fock [17–19], configuration
interaction methods [20–25], and quantum Monte Carlo
(QMC) [26–28]. Among the many applications include scaling
across isoelectronic series [27], scaling across the periodic
table [17–19], decomposition into approximate exchange and
correlation components [21,23,24] and shell analysis [18,20].
Pair densities are of additional interest because they can be
measured experimentally [24,29] and are the basis of some
density functional theory approaches [30,31].
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The decomposition of the intracule into Fermi, or Hartree-
Fock hole, and Coulomb hole, incorporating effects from
correlations, is a close but imperfect equivalent to exchange
and correlation in DFT. The former uses the Hartree-Fock
ground-state density as the reference point for defining both
Fermi and Coulomb correlations rather than the exact ground-
state density as required in DFT. This difference produces a
failure of the virial theorem at the level of correlation that can
be a 10% effect in the case of an atom or a major issue in the
case of a molecule near dissociation [32]. Secondly, standard
Coulomb holes account only for the correlation potential
energy. To obtain the correlation contribution to the kinetic
energy—the difference between the true and noninteracting-
system kinetic energies—an adiabatic integration of the
correlation hole with respect to the coupling constant must
be performed [5]. Calculations of “true” exchange-correlation
holes, using orbitals that reproduce at least the density of one’s
correlated wave function, have been done mainly in the QMC
approach [33–39].

In this paper, we calculate and analyze the exchange and
correlation holes of the valence shell of second-row atoms
in a pseudopotential model using the variational quantum
Monte Carlo (VMC) technique. We study this scaling phe-
nomenon, an important ingredient in the earliest attempts at
a pseudopotential description of atomic structure [40], in the
context of density functional theory. Uniform scaling of the
radial valence-charge density across a row of the periodic table
provides a convenient way to test the idea of “semilocality” of
the system-averaged hole by varying the ratio of correlation
length to atomic radius over a series of otherwise similar
systems. The second row of the periodic table is easy to
handle with pseudopotential methods and thus easy to isolate
strictly valence properties. The valence density that results is
very close to scale invariant. The systems studied are building
blocks of semiconductor materials, and probe a density regime,
lower than that of the first-row valence shell, typical of many
solids for which pseudopotential simulations are generally
used.

The variational Monte Carlo approach [41] makes feasible
the use of explicitly correlated trial wave functions, including
the electron-electron cusp condition that affects the pair
density at zero electron-pair separations. To obtain separate
system-averaged exchange and correlation holes, we construct
single-particle orbitals that reproduce the VMC single-particle
density. Exchange holes are then calculated numerically from
these orbitals. To reduce the errors from fluctuations in the
pair density due to random sampling, correlated estimate tech-
niques are used. These prove important for the measurement
of the correlation hole which is a small fraction of the total
pair density and thus more affected by noise. The resulting
exchange and correlation holes are analyzed with respect to
the scaling of the valence shell density across the row and with
respect to various density functional models.

The paper is organized as follows. Section II discusses
the theoretical underpinnings of the paper—exchange and
correlation holes, the GGA approximation, and the scaling
of the valence shell. Section III describes the computation
techniques used to generate holes and other expectations, Sec.
IV presents our results, and Sec. V our conclusions. All results
are expressed in Hartree atomic units.

II. THEORY

A. Expectations of interest

The exchange-correlation (XC) hole, nxc(r,r + u), is de-
fined as the reduction in the ground-state electron density from
its mean value at some point r+u given the observation of an
electron at r. It is obtained from a pair density fluctuation
relationship:

n(r)nxc(r,r + u) = n(2)(r,r + u) − n(r + u)n(r), (1)

where n(r) is the single-particle density, and

n(2)(r,r′) =
〈

N∑
i

N∑
j �=i

δ(r − ri)δ(r′ − rj)

〉
. (2)

is the pair density, measuring the expectation of simultaneously
finding electrons at r and r′. Equation (1) relates the XC hole
to the difference between the actual pair density and that of
the uncorrelated system with the same single-particle density.

The utility of the XC hole in density functional theory lies
in its relation to the exchange-correlation energy Exc through
an adiabatic connection [5]:

Exc = 1

2

∫ 1

0
dλ

∫
d3r

∫
d3u

1

u
nλ

xc(r,r + u). (3)

Exc takes into account both the gain in potential energy from
creating the exchange-correlation hole about an electron, and,
by means of the integration over the coupling constant λ, the
kinetic energy cost of creating the hole as well. The λ integral
is over a family of systems characterized by the same ground-
state density but varying coupling constant λe2. A λ-dependent
XC hole nλ

xc is defined as an expectation of the corresponding
ground-state wave function. The limits of the integral range
from a noninteracting system (λ=0), described by the Kohn-
Sham equations of DFT [42], to the fully interacting, physical
system (λ=1).

The λ=1 limit which describes the fully interacting
Hamiltonian is the focus of this paper. By ignoring the
integration over the coupling constant, we lose the ability to
calculate the correlation kinetic energy and thus lose some of
the information contained in the full XC energy. However, we
keep the ability to assess DFT models for this quantity since
one can use a scaling relation to convert the hole integrated
over λ into that evaluated at any specific value of λ. This
thereby eliminates a tedious chore for the quantum Monte
Carlo method and allows one to explore multiple systems more
readily [43].

As the Coulomb interaction depends only on the interpar-
ticle distance u, and not on the location or angular orientation
of the hole, it is convenient to define a system-averaged and
angle-averaged hole,

〈nxc(u)〉 = 1

4π

∫
d3r

∫
d�u n(r)nxc(r,r + u), (4)

where d�u is the solid angle of the pair displacement u. This
expression may be normalized by the number of particles N

or number of particle pairs N2. The system-averaged hole
contains that part of the XC hole that directly affects the
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determination of Exc, which simplifies to

Exc =
∫ 1

0
dλEλ

xc =
∫ 1

0
dλ

∫
du 2πu

〈
nλ

xc(u)
〉
, (5)

because of the isotropy of the Coulomb interaction. The
system-averaged hole is closely related to the intracule, defined
as

〈n(2)(u)〉 =
〈∑

i �=j

δ(u − rij )

〉
. (6)

The system-averaged hole is the difference between the
intracule of a quantum system and that of the uncorrelated
system with the same single-particle density.

The XC hole is usefully decomposed in several ways to
isolate various sources of electron correlation. The exchange
(X) hole nx is defined as the exchange-correlation hole at
zero coupling or nλ=0

xc . This is the hole associated with the
Slater determinant wave function that reproduces the ground-
state density of the fully interacting system and characterizes
the interelectron correlations due to the Pauli principle. The
correlation (C) hole is the difference between the exchange
and exchange-correlation holes and measures the additional
many-body correlations induced by the Coulomb interaction:

〈nc(u)〉 = 〈nxc(u)〉 − 〈nx(u)〉. (7)

In addition, it is useful to consider the spin decomposition
of the XC hole, particularly in spin-polarized systems. One
may define parallel- and antiparallel-spin holes by restricting
the sums in Eq. (2) to particles with the same or opposite
spins, respectively. The parallel-spin hole is dominated by
the exchange contribution, since the exchange hole already
creates distance between electrons of the same spin, so that
further effects due to correlation are small. On the other hand,
the antiparallel-spin channel, where the exchange hole is zero,
contributes the bulk of the correlation hole.

As it describes the noninteracting system, the spin-
decomposed exchange-only hole can be written exclusively
in terms of the Kohn-Sham single-particle orbitals that define
this limit. The system-averaged hole in this case is obtained
exactly as

〈
nσσ

x (u)
〉 = −

∫
d3r

∫
�u

4π

∣∣∣∣∣
Nσ∑
i=1

ψiσ (r)ψ∗
iσ (r + u)

∣∣∣∣∣
2

, (8)

where

〈nx(u)〉 =
∑

σ

〈
nσσ

x (u)
〉
, (9)

and ψiσ are Kohn-Sham orbitals for each spin.
Finally worth noting is that the XC hole obeys the sum rule:

1

N

∫
4πu2du〈nxc(u)〉 = −1. (10)

The overall effect of the hole is to remove exactly one particle
from the measurement of the density about any given electron,
essentially removing self-interaction. Given their respective
definitions, the exchange hole must satisfy the same sum rule
as the exchange-correlation hole, while the correlation hole,
being merely a redistribution of the N − 1 other electrons
around the one in consideration, integrates to zero.

B. Exchange-correlation hole in semilocal density
functional theory

In a “semilocal” density functional theory, the exchange-
correlation hole at some point r in space is constructed in terms
of various observables defined at that point: local spin densities
n↑(r) and n↓(r) in the local spin-density (LSD) variant of the
LDA [2,44], and adding density gradients ∇n↑(r) and ∇n↓(r)
in generalized gradient approximations (GGAs) [13,45–48].
Kinetic energy densities [49–52], and higher-order derivatives
of the density such as the Laplacian [46,53,54] are included in
the meta-GGA class of theories.

The LSD exchange-correlation hole at a point r is obtained
from the pair correlation function gxc of the spin-polarized
homogeneous electron gas (HEG):

nLSD
xc (r,r + u) = n(r)

{
gHEG

xc [u, rs(r), ζ (r)] − 1
}
. (11)

The pair correlation function is parametrized in terms of
the Wigner-Seitz radius rs , measuring the average distance
between electrons, and the spin polarization ζ , and both are
evaluated from the local value of the spin densities:

rs(r) =
(

3

4πn(r)

)1/3

, (12)

ζ (r) = n↑(r)−n↓(r)

n(r)
. (13)

The system-averaged hole and total XC energy may then
be obtained numerically by applying Eq. (4) and Eq. (5),
respectively.

Among the many variants of the GGA in current use, one
of particular interest here is that [13] of Perdew, Burke and
Ernzerhof (PBE), for which models of 〈nx(u)〉 [12,55] and
〈nc(u)〉 [12] have been constructed, building upon an accurate
HEG hole [56]. Holes within the PBE model are designed,
under integration, to reproduce PBE exchange and correlation
energies at any value of the density and its gradient within an
error of about 5%.

For the exchange hole and energy, the PBE and related
models introduce into Eq. (11) a unitless, scale-invariant
parameter s, defined as

s(r) = 1

2kF (r)

∣∣∣∣∇n(r)

n(r)

∣∣∣∣ , (14)

with kF = (9π/4)1/3/rs the Fermi wave vector. A value of
s greater than one at a given point indicates the breakdown
of the basic assumption of the LSD that the density varies
insignificantly on the length scale ∼ 1/kF of the XC hole.
For correlation, the PBE employs a second inhomogeneity
parameter [13],

t(r) = [kF (r)/φ(ζ )ks(r)] s(r), (15)

with the local Thomas-Fermi screening vector, ks =
[4kF (r)/π ]1/2, setting the hole length scale and φ(ζ ), an
additional scaling factor for spin-polarized systems.

As the quantity of interest in this paper is the system-
averaged hole rather than the local hole, it is helpful to
consider system averages of semilocal DFT parameters. A
simple definition of the system-averaged Wigner radius 〈rs〉
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for an atom is [57]

〈rs〉 =
∫

dr r2n(r)2rs(r)∫
dr r2n(r)2

, (16)

assuming the pair density for zero interparticle separation [22]
is a reasonable measure of the importance of the hole at r to
energy expectations, and ignoring the anisotropy of the density.
System-averaged spin polarization 〈ζ 〉 and inhomogeneity
factors 〈s2〉 and 〈t2〉 are similarly defined.

Finally, it is important to note that we are calculatiing the
system-averaged correlation hole at full coupling constant (λ=
1), and with it, the correlation potential energy. DFT models
for the correlation hole model the adiabatically integrated hole
and thus the total correlation energy. It is possible, however,
to construct the DFT correlation hole and energy density at
a given value of coupling constant λ from the adiabatically
integrated version. This can be derived from the scaling
properties of the hole under uniform scaling of the system [56].
For the GGA the following expression for the pair correlation
function is the result:

g1
c (rs,s,ζ,kF u) = ḡc(rs,s,ζ,kF u) − ∂ḡc(rs,s,ζ,kF u)

∂ ln rs

, (17)

with the correlation hole obtained from the expression,

nc(r,r + u) = n(r) [gc(r,u) − 1] , (18)

definable for both nλ
c and n̄c. The parameters kF u, ζ , and s2

(but not t2) are invariant under uniform scaling of position
coordinates ri [given by ri →ri/λ, and n(r)→n(r/λ)/λ3],
and thus held fixed in the derivative. In contrast, the exchange
hole is invariant under changes in scale or coupling constant,
and is constructed in terms of the scale-independent quantities
only.

C. Valence shell scaling of atoms

A well-known feature of the periodic table is the scaling
of the valence-shell electron density across the first- or
second-row atoms (the 2s and 2p or the 3s and 3p atoms,
respectively). As the number of valence electrons N increases,
the shell radius a(N ) shrinks with no change in the shape of
the distribution:

n(r; N ) = N

a(N )3
n̄[r/a(N )]. (19)

The scaling behavior strictly occurs for the valence density
outside the core radius. But with the use of pseudopotentials
to remove the complicated oscillatory behavior of the valence
shell inside the core, this scaling behavior becomes a global
feature of the density—one motive for the development of
pseudopotentials historically [40]. The radius a, usefully
defined as the radius of the peak in the radial distribution
function 4πr2n(r), is a function of valence number N , so
that, if the distribution were perfectly scaling, the density
should reduce to a function of N alone across the row. (We
consider neutral atoms, with N = ZV , the charge of the ion
core.) As a result all other expectations of the pseudopotential
system ground state should be reducible to simple functions
of N , in accordance to the Hohenberg-Kohn theorems [1].
Such a picture is limited by the nonscaling behavior of the
valence density in the ionic core, not a large contribution to the

probability distribution due to the relatively small volume of
the core. It is also affected by differences between the Mg atom
and atoms with 3p orbitals, and by the open-shell structure of
several of the atoms.

Important insights into this scaling can be gained by the
simple heuristic shielding model of the atom developed by
Slater [40]. This model assumes a self-consistent field felt by
an electron in energy shell i given by a shielded Coulomb
potential (Z − σi)/r , with σi the shielding charge felt by the
electrons of the shell. The orbitals for principle quantum num-
ber n are nodeless Slater-type orbitals rn−1 exp [(Z − σi)r/n],
imposing scaling of the density across a row. The effective
Bohr radius—the peak of the radial probability distribution
for the valence shell—occurs at

a = a0n
2

Z − σV

= a0n
2

A + BN
, (20)

with σV the valence-shell shielding charge. Slater’s “back-
of-the-envelope” rules for determining shielding coefficients
yield a shielded effective charge Z − σV that is a linear
function of N , with coefficients for the valence shell of the
second-row atoms of B =0.65 and A=1.55.

Energetic quantities can thus be constructed as functions
of N from consideration of the scaling form for the density
[Eq. (19)] and a(N ). The total energy of the valence shell in
the Slater model is (Z − σV )N/2a(N ) in Hartrees; expressing
the shielding charge in terms of a(N ) yielding a scaling
dependence of N/a2. The kinetic energy in this naive picture
scale in the same way, while the external potential due to the ion
scales as N2/a for ZV =N . The Hartree or classic electrostatic
energy scales as N (N − 1)/a provided that the self-interaction
error is removed. With these scaling assumptions, the virial
theorem relating potential and total energy is satisfiable by
a(N ) taking on the Pade function form of Eq. (20) [58].

The most interesting energetic quantity for our purposes
is the exchange energy. The heuristic picture for scaling
of valence-shell energies should be readily extended to the
exchange energy, as it in fact obeys an important universal
scaling law [3]:

Ex[nα] = αEx[n], (21)

where the density nα is defined by the uniform scaling of n(r)
at constant particle number:

nα(r) = α3n(αr). (22)

To touch base with the current situation, we note that particle
number N is not fixed as one fills up the valence shell, so
that the density scales with an additional prefactor N , with
an N -dependent length scale a(N ) playing the role of 1/α.
A similar situation is seen in the Thomas-Fermi scaling of
all-electron densities of atoms recently revisited in Ref. [8].
As with the Hartree energy, and in contrast to the all-electron
case, self-interaction is not negligible, varying with particle
number and becoming critical for the smallest systems. A
further complicating factor is that as the shell is filled, the
overall spin polarization does not stay constant—the process
of filling the shell is not a uniform scaling of the density itself
but at best of the radial component of the density.

To develop a scaling model for exchange within DFT, we
first construct scaling expressions for the system-averaged
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electron-gas parameters 〈rs〉 and 〈ζ 〉 defined in the previous
section. The scaling behavior for 〈rs〉 is that of fitting N

particles in a box of volume a:

〈rs〉 ∼ r̃s = R0a/N1/3, (23)

with R0 an unknown constant. This equation with Eq. (19)
generates similar scaling relations for the inhomogeneity
parameters s2 and t2, in terms of unknown constants S0 and
T0:

s̃2 = S2
0/N2/3, (24)

t̃2 = T 2
0 /aN1/3. (25)

A useful estimate of the system-averaged spin polarization 〈ζ 〉
is given by

ζ̃ = N↑ − N↓
N

. (26)

Note that s̃2 does not depend on the scaling parameter a,
but only on the number of particles N—it is invariant under
uniform scaling of the density but not, of course, under change
in N . The polarization ζ̃ is also scale invariant.

A scaling form for the exchange energy can be constructed
within the LSD in terms of the scaled parameters r̃s and ζ̃ ,
incorporating the invariance of exchange of the homogeneous
electron gas under uniform scaling of the density, and a similar
spin-density scaling relationship. The scaled version of the
exchange energy within the LSD becomes

Ex ∼ N

r̃s

φX(ζ̃ ), (27)

where

φX(ζ̃ ) = 1
2 [(1 + ζ̃ )4/3 + (1 − ζ̃ )4/3]. (28)

This is directly obtainable from the definition of the local
energy-per-particle in the LSD [59], replacing local definitions
for rs and ζ with system-averaged counterparts.

There is no simple scaling law for correlation to correspond
to that of exchange and the correlation energy is difficult to
model even for the homogeneous electron gas. The analog to
the exchange scaling of Eq. (21) does exist for the correlation
potential energy [4]:

U 1
c [nα] = αU 1/α

c [n], (29)

tying the process in which the density is scaled uniformly
by α3 to that in which the coupling constant is reduced at
fixed density [60]. This suggests that the Ar correlation hole
is equivalent to Mg with an electrostatic coupling reduced to
allow the binding of the full p shell. It does not relate the
two systems at full coupling. In systems where Z is varied
at constant particle number, Levy has shown [4] that Ec(Z)
must tend to a constant at large Z (that is, uniform scaling to
high density). It is possible to expect some analogous limiting
case for scaling of neutral atoms, but this limit is apparently
unknown.

III. SYSTEM AND CALCULATION METHODS

A. Hamiltonian

Our system of interest is described by a many-body
Hamiltonian for N valence electrons, with a nonlocal pseu-
dopotential [61] to replace the Ne (1s22s22p6) core:

N∑
i=1

[
∇2

i

2m
+ Vext(ri) + V KS

λ (ri)

]
+ 1

2

N∑
i

N∑
j �=i

λe2

rij

. (30)

The external pseudopotential describing the interaction of the
valence electrons with the ion core is given by

Vext(ri) = Vloc(ri) +
∑
lm

Wl(ri)|lm〉〈lm|, (31)

including a partially nonlocal term depending upon angular
momentum projectors |lm〉. For purposes of comparison to
DFT, the Hamiltonian is generalized to consider a family of
systems characterized by the same ground-state density and a
variable coupling-constant strength λe2. A λ-dependent Kohn-
Sham potential V KS

λ is added to the external potential to ensure
the invariability of the density. The range of interest of λ varies
from zero, describing the noninteracting system, for which the
Hamiltonian reduces to the Kohn-Sham equation of density
functional theory, to one, describing the physical system.

B. Variational Monte Carlo approach

For XC hole expectations, we need wave functions for zero
and full coupling, respectively. The λ=0 wave function, ψ0,
is the solution to Eq. (30) in the absence of electron-electron
coupling, and is given by a product of Slater determinants
of single-particle orbitals. For the noninteracting or Kohn-
Sham orbitals we take the output of an LSD pseudopotential
calculation, with the Kohn-Sham potential adjusted to match
the spin densities of the λ=1 wave function, following the
method described in Ref. [34].

For the λ=1 wave function, ψ1, we take a variational Slater-
Jastrow wave function of the form,

ψ1 = exp

⎡
⎣−

∑
i

∑
j �=i

u(ri ,rj ))

⎤
⎦∏

σ

Dσ [φiσ ] , (32)

where Dσ are Slater determinants composed of orbitals from
self-consistent LDA orbitals, before adjusting to match the
VMC density. These are close to, but do not exactly match
the orbitals of the noninteracting wave function. Interparticle
correlations are described through the Jastrow prefactor
parametrized by an effective pair potential u. We use a Boys
and Handy expansion of u [62,63], which treats explicitly
electron-electron, electron-ion, and electron-electron-ion cor-
relations:

u(N)(ri,rj) =
∑

lmn|l+m+n<N

ClmnRb(ri)
lRb(rj )mRb(rij )n, (33)

Here Rb(r)=r/(1 + br) and the order of the expansion is
determined by the factor N = l + m + n. Cusp conditions [64]
are used to determine the coefficients Clmn for the linear (N =
1) terms; otherwise terms even in N are used and coefficients
determined variationally.
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This form of wave function is in principle exact for the Mg
(3s2) spin-singlet system, the analog of the He atom for an
all-electron model, since there are no spatial nodes in the wave
function and the Jastrow exponential prefactor contains all
possible variables describing the correlation of three charges.
For larger systems, the main source of error is likely to be
the improper determination of the nodal surface of the wave
function. Multiconfigurational wave functions in which the
Jastrow prefactor is applied to a linear combination of Slater
determinants may be useful in this context. Particularly for Al
and Si, nondynamic correlations in which a (3s2) spin singlet
is promoted to a (3p2) singlet may be important. At the same
time, calculations for all-electron systems indicate that this
kind of effect is important primarily to determine the nodal
structure between shells, notably, such as the 1s and 2sp shells
of Be [65–67], and should not be as important for a single-shell
system.

The variational Monte Carlo (VMC) method [41,68,69] is
used to calculate expectations of the trial wave function and
optimize variational parameters. The core of the method is
to estimate the analytically intractable many-body integrals
that arise with the use of a Jastrow factor by integrating over a
randomly selected set of integration points R={r1,r2, · · · ,rN }
in the 3N -dimensional configuration space. These are sampled
with a probability proportional to |ψ1(R)|2 through a a random
walk mechanism. Evaluating the nonlocal pseudopotential for
an integration point requires an additional integration over
angle for each electron [70,71], which is done here on an
18-point angular grid. Given a set of M such sample points,
the energy may be estimated by the numerically accessible
expression,

Ē = 1

M

M∑
i

ψ−1
1 (Ri)Hψ1(Ri). (34)

The variational parameters are determined by the optimization
of the variance of the energy [72] over the sample set:

σ 2 = 1

M

M∑
i

[E(Ri) − Ē]2, (35)

where E(R) = ψ−1
T (R)HψT (R). The variance is positive

definite and approaches zero when the trial wave function
globally approaches an eigenfunction, making for a robust
minimization process with the Levenberg-Marquardt algo-
rithm.

C. Correlated estimates

The correlation hole is obtained from differences between
expectations of the λ=0 wave function ψ0 and that of the fully
coupled system ψ1, differences which may be small enough to
make their detection against statistical noise difficult, if each
expectation were calculated independently. Correlated esti-
mate techniques [69,73], specifically developed for calculating
arbitrarily small differences in expectations resulting from
small changes in system parameters or variational parameters,
prove to be useful here.

Taking the single-particle density as an example, the
difference between the radial densities of the two wave

functions is obtained from the following expression:

�n(r) = n̄1(r) − n̄0(r), (36)

with

n̄α(r) =
∑

k
|ψα(Rk)|2

P (Rk )

∑
i δ(r − ri)∑

k
|ψα(Rk)|2

P (Rk)

, α = 0,1. (37)

The δ function over the radial distance r can be estimated
for a finite sampling set by a histogram method [28]. The
crucial point for the technique is that each term in Eq
(36) is summed over the same set of random configurations
R={r1, . . . ,rN }, sampled from the probability distribution
P (R). By using the same random walk for each case, the
fluctuations in each evaluation become correlated and can
be partially removed in taking the difference. In a similar
fashion, the system-averaged correlation hole can be measured
by taking the correlated estimate of the difference between the
pair density expectation, or intracule, of the interacting and
noninteracting wave functions.

This technique does not specify the form of probability
distribution P (R) to use in calculating a correlated estimate;
normally either |ψ1|2 or |ψ0|2 might be used. Either choice
can be problematic due to undersampling—the instance in
which P (R) goes to zero while either ψ1 or ψ0 remains finite.
In this situation a rarely sampled region of space makes an
infinite contribution ∼ |ψ |2/P to an expectation. This can
occur if the two wave functions have different long-range
density distributions or nodal surfaces, and can ultimately lead
to infinite variances in the measurement of expectations.

To eliminate undersampling and optimize the efficiency of
the calculation, a probability distribution P can be chosen
consisting of a mixture of the probability functions for each
wave function [74]. We use

P = |(|ψ1|2 − α|ψ0|2)| + ε(|ψ1|2 + α|ψ0|2). (38)

By mixing both wave functions together to form P , it becomes
impossible for |ψi |2/P ever to become zero—should one wave
function go to zero while the other remain finite, P tends to a
nonzero constant. The choice of a difference in probabilities
emphasizes areas of configuration space where the difference
between the two wave functions ψ1 and ψ0 is largest, and
minimizes the time spent elsewhere. To obtain a balanced
mixture of the two states, α is chosen to be roughly the ratio
of the normalization of the two wave functions and may be
determined by measuring the expectation of |ψ1/ψ0|2 while
calculating ground-state energies. The small parameter ε is
chosen to avoid reintroducing undersampling should ψ1 and
ψ0 have the same value. With ε∼0.1, the method reduces the
noise in expectations for equal sample sizes by a factor of five
over noncorrelated sampling.

D. Calculation of exchange hole

The approach of correlated estimates is well adapted for
calculation of changes in an expectation between two wave
functions—for our case, the calculation of the correlation hole.
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To calculate the expectation for either wave function alone one
needs an independent calculation for at least one of the wave
functions. For an atom, it is straightforward to calculate the
λ=0 expectation, the exchange hole, directly from Eq. (8). For
an atom with only one occupied orbital ψ =R(r)Ylm(�) for
a given spin, this expression gives a hole proportional to the
radial component |R(u)|2. However, for any system with two
or more orbitals, Eq. (8) will involve convolutions between
different orbitals and a more spread-out hole.

This expression is the same up to choice of orbitals as
the Fermi hole, the system-averaged hole calculated in the
Hartree-Fock approximation. It is done here numerically,
using the theoretical formalism of the Hartree-Fock intracule
calculation of Ref. [18], Fourier-transforming and convolving
orbital pairs ψi(r)ψ∗

j (r) and summing over all possible pairs. It
proves important to keep track of the angular parts of the wave
functions so that radial transforms with high-order spherical
Bessel functions are used, as well as angular momentum
addition techniques.

IV. RESULTS

A. Variational calculations and computational details

Table I shows energies and energy variances of variational
Monte Carlo calculations. We show variational energies for
the silicon atom for the Slater determinant wave function, the
Slater-Jastrow correlated wave function of order N [Eq. (32)],
and a multideterminant-Jastrow wave function including the
low energy 3s2 to 3p2 substitution into the ground-state
determinant. These are compared to configuration interaction
and diffusion Monte Carlo results with the same form of
pseudopotential as used here [71]. Considering the CI results
as nearly exact, the bulk (92%) of the correlation energy has
already been achieved for the N =4 wave function. The quality
of this wave function is also indicated by the 90% reduction
in the variance from the noninteracting wave function. The
most accurate wave function, including multiple determinants,
misses only 2.1% of the correlation energy, while the most
accurate single-determinant method, the N =8 Slater-Jastrow,
with 24 variational parameters, misses 3.4%.

TABLE I. Optimized variational energies and variances for
second-row atoms. The symbol SJ is for the Slater-Jastrow wave
function, with the order N indicated; CIJ uses a multideterminant
plus Jastrow factor, S is the Slater determinant or λ=0 wave function,
DMC and CI are diffusion Monte Carlo and configuration interaction
calculations for the same type of pseudopotential from Ref. [71].

Energy (Error) Variance
Atom Wave function (Hartree) (Hartree)2

Si S 3.7188(14) 0.188
Si SJ, N = 4 3.8000(4) 0.0174
Si SJ, N = 8 3.80422(22) 0.00943
Si CIJ, N = 8 3.80524(28) 0.00942
Si DMC 3.8065(4)
Si CI 3.8071
Mg SJ, N = 8 0.84392(4) 0.000417
P SJ, N = 8 6.52072(25) 0.0187
Ar SJ, N = 8 21.1922(7) 0.1039

The general quality of the optimized wave functions across
the periodic table can be measured by the variance of the
variational energy, which is zero for the true ground-state wave
function. It is most nearly zero for the Mg atom, which is a
nodeless wave function and in principle exactly treated. The
variance for larger systems grows faster than the total energy
does, but remains relatively small with the standard deviation
in the energy for Ar about 1.5% of the total energy. The use of
multiconfiguration wave functions proves only to be significant
for Si and Al. They provide no discernible change in variational
energy for Mg—consistent with the SJ wave function being in
principle exact for a two-electron system. Atoms with half or
more of the p shell filled lack significant low-energy excited
state configurations and are assumed to be described primarily
by dynamic correlations.

Correlation holes are obtained using the correlated es-
timates technique with ψ1 taken to be the variationally
optimized N=8 Slater-Jastrow wave function and ψ0 the
Slater determinant adjusted to give the same single-particle
density. For 2 × 105 samples, the relative statistical error in
the correlation hole is roughly 1% in the physically relevant
regime. At long distances, as densities and thus Monte-Carlo
samples tend to zero, the use of correlated estimates eliminate
undersampling effectively; the worst case statistical errors are
about 100% of the vanishingly small density differences. For
presentation in figures, data are processed with a Gaussian
convolution [33] with a width of the order of three histogram
bins for single-particle data and two bins for the pair data.
This alters the integrated correlation energy with a systematic
upward shift of 1%–2% but eliminates the small residual noise
in the curves for better comparison between atoms. Energy
comparisons use the unsmoothed data.

B. Scaling of the valence density

Figure 1 shows the scaled radial probability distribution
4πr2an/N for the valence shell of the second-row atoms
from Mg (3s2) to Ar (3s23p6). The scaling parameter a is
the radius at which the radial probability distribution takes
on a peak value. The valence density across the periodic
table clearly reduces to the scaling form of Eq. (19). The

0.0 1.0 2.0 3.0 4.0
r/a
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Si

P
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FIG. 1. (Color online) The scaled radial probability distribution
for the valence electrons of the second-row atoms Mg through Ar, as
a function of distance in units of the radius a of peak radial density.
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FIG. 2. (Color online) Density functional parameters a as func-
tion of valence-electron number N . Part (a) shows the radius of peak
radial density a and the system-averaged Wigner-Seitz radius 〈rs〉,
and scaling predictions for each, in atomic units. (b) Shows the
system-averaged spin polarization 〈ζ 〉 as compared to the fractional
difference in occupation number (N↑−N↓)/N for each spin. (c)
Shows unitless system-averaged inhomogeneity parameters 〈t2〉 and
〈s2〉 as compared to scaling predictions.

scaling is slightly off for atoms Mg, Al, and Si with less than
half-filled shells but is almost perfect for the other systems.
This indicates the insensitivity of the radial distribution to the
repulsive pseudopotential in the ion core region, especially for
the larger Z atoms for which the core radius shrinks rapidly
relative to the peak radius a. The relative importance to the
density of the 3s orbital, with nonzero density inside the core,
also decreases with increasing Z.

The atom radius a is plotted in Fig 2(a) versus valence
number N ; it gradually decreases as the number of particles
increases, indicating a rapidly increasing density. A least-
squares fit to the Slater shielding model [Eq. (20)] with
n2 =9 for the second-row atoms yields an excellent fit to a

with shielding constants A=2.350(22) and B =0.611(4). This
corresponds to a 75% effective shielding of the nucleus from
electrons in the 3(s,p) shells by each electron in the 2(s,p)
shells and 39% shielding by each of the other 3(s,p) electrons
in the Slater model, close to Slater’s rule of thumb values of
85% and 35%.

Also shown in Fig. 2 are system averages [Eq. (16)] of
the parameters used in characterizing the semilocal density
functional theory of the exchange-correlation hole. Figure 2(a)
shows the system-averaged Wigner-Seitz radius 〈rs〉. This
decreases with N more rapidly than the atom radius a, varying
from 3 to roughly 0.9 as one goes from Mg to Ar. This reflects
the two simultaneous effects of an increasing number of
electrons and a shrinking atomic radius as one crosses the row.

The average polarization 〈ζ 〉 shown in Fig. 2(b) ranges
between zero for the closed-shell systems Mg and Ar, and a
maximum value near 0.6 for P, at half-filling of the 3p shell,
and varies smoothly in between. Although ζ is defined locally
[Eq. (13)], its system average approaches the natural global
measure, (N ↑−N ↓) /N , also shown in Fig. 2(b). It might
do this better if anisotropic densities were used in its system
average.

The inhomogeneity factor srms =
√

〈s2〉 for the exchange
hole and trms =

√
〈t2〉 for the correlation hole are shown in

Fig 2(c). They show, as expected, somewhat different scaling
behavior, with srms decreasing with system size and trms fairly
constant. The values indicate systems with a moderate degree
of inhomogeneity. As one might expect, an isolated atom
on average lies outside of the perturbative limit s2 < 0.3
characteristic of solids, but does not quite reach the threshold
of severe inhomogeneity, s2 =1, across the entire system.

Best-fit global scaled parameters r̃s ,
√

s̃2 and
√

t̃2

[Eqs. (23), (24), and (25)] are also shown in Fig. 2. The fits
are weighted toward the high-N end of the row, which shows
almost perfect scaling behavior. There is excellent agreement
between the actual trend of 〈rs〉 and that predicted by scaling,
with R0 =1.592(15). There is also quite good agreement
between the scaling form for 〈s2〉 and the observed value,
with a falloff in quality at small N because the gradient of the
density does not scale as cleanly with N as does the density.
The value of 〈t2〉 shows additional behavior that follows the
spin polarization. This is absent if the system average is taken
over the density of antiparallel-spin particle pairs rather than
the total pair density. Scaling values for these parameters are
S0 =0.969 and T0 =0.856.

C. Exchange and correlation holes

Shown in Fig. 3(a) are system-averaged exact exchange
holes evaluated numerically from Eqs. (8) and (9) and DFT
models of the same, for three atoms: Mg with a filled 3s shell,
P with a half-filled 3p shell, and Ar with a closed 3p shell.
The data for P and Mg have been shifted downward slightly
for clarity. Each curve is weighted by a factor of 2πu so that its
integral gives the potential energy per particle associated with
the hole. It thus shows where the most significant contributions
to the overall energy come from. The holes are scaled by
a factor 〈rs〉3/N and plotted versus the scaled interparticle
distance u/〈rs〉 to reflect the scaling [56] of a nonpolarized
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FIG. 3. (Color online) Scaled and weighted system-averaged
exchange hole (a), and correlation hole (b), plotted versus scaled
distance u/〈rs〉 for Mg, P, and Ar. VMC data are solid, the LSD
model are dotted, and the PBE GGA are dashed lines. Curves for P
and Mg are shifted downward for clarity; in reality they tend to zero
for small and large u.

exchange hole under uniform scaling of the density. The trends
for the atoms not shown are quite similar.

In comparison, the LSD hole [56] is excellent for small u,
out to around the maximum of the main “dip” that contributes
the most to the exchange energy. At the same time this main
feature is too narrow in width. The portion of the hole missing
is spread out into a long-range tail that reflects the abrupt
cutoff in occupation of states at the Fermi wave vector in
a homogeneous electron gas. This tail contains a noticeable
proportion of the total particle sum rule of the exchange hole
(calculated by weighting the hole by 4πu2) but because of
a negligible contribution (weighted by 2πu) to the exchange
energy, causes it to be underestimated.

The GGA hole, designed to reproduce the PBE exchange
energy [55], improves upon the LSD by truncating the long-
range tail and collecting this portion of the LSD hole to form
a broader hole at its minimum. While failing to capture exact
details, it mimics quite nicely on average what happens in
the exact exchange hole, and thus leads upon integration to
a much improved exchange energy. Interestingly, the GGA is
slightly less accurate than the LSD in the short-u range of the
hole, where presumably the gradient expansion upon which
the GGA is based should be most accurate.

The LSD quite faithfully scales with 〈rs〉, for example, the
position of the minimum in the curve is the same for all three
atoms. The numerical result for the exact hole agrees with the
LSD for Ar but is shifted to larger u for Mg. The GGA only
partly follows suit. The reasons for this shift will become clear
in Sec. IV E.

Figure 3(b) shows the energy-weighted correlation hole for
the three cases of Mg, P, and Ar. The hole data and interparticle
distances are scaled and shifted in the same fashion as the
exchange hole data. The plot shows VMC data as a thick solid
line, as well as the predictions of the LSD and the PBE GGA
model [12].

The correlation holes consist of a short-range region where
the density of electron pairs is reduced and a region at longer
distances where it is enhanced; an overall sum rule of zero
is required. The length scale of the hole roughly follows
〈rs〉, increasing as the number of particles decreases. The
overall hole has a well-defined finite range, with the density
removed at short range collected into a noticeable “bump”
with a maximum at a distance between 1.33 and 2 times that
of the valence shell radius a. This is intuitively reasonable
since there is little physical reason to enhance the pair density
at interelectron distances much larger than the diameter of
the atom. The shape of the hole varies noticeably from more
compact to more spread out as one moves across the periodic
table. Likewise, the strength of the correlation hole relative
to the exchange hole varies considerably, with the relative
strength of the Mg hole more than twice that of Ar. This
follows the trend in the homogeneous electron gas from highly
correlated to uncorrelated behavior as rs decreases [75]. Unlike
exchange, where the particle sum rule enforces more or less the
same size hole in units of rs , the zero sum rule of correlation
places little constraint on the size of the hole.

As with the exchange, the LSD hole tends to predict the
short-range shape of the hole quite well, with a disagreement
in the on-top (u=0) hole of 10% hidden by the 2πu weighting.
The hole tends to be too deep and too wide. The major
disagreement is at long distances: The HEG model for
correlation includes a long-ranged tail that screens out the
long-ranged behavior in exchange. To compound the effect,
the system-average hole at long distances is dominated by
contributions from the low-density asymptotic region of the
atom. These in the LSD approximation generate unrealistically
long tails to the system average. The LSD hole for an atom ends
up predicting that the electron pair density removed at short
range is redistributed out to infinity at a rate that surprisingly
decays even more slowly than in the HEG.

The GGA model includes gradient corrections at short
range, given by a gradient expansion of the HEG model.
These lift up the correlation hole at short and intermediate
distances, creating a markedly better match to the VMC
results, especially for Ar. The zero sum rule for correlation
is imposed by a finite-range cutoff of the correlation hole,
which has the added benefit of killing the long-range tails of
the LSD hole. One therefore finds a consistent, systematic
improvement on the LSD. However the GGA hole dies out
too slowly as compared to the VMC at long range, so that
the positive peak is too spread out and contributes less to the
energy integral than in the VMC case. It is thus easier than
in the case of exchange to detect the systematic error in the
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PBE model—an overestimate of the size of the correlation
energy.

D. Exchange-correlation energy

Figure 4 shows correlation, exchange, and exchange-
correlation energies for our VMC data, and for the LSD
and PBE density functional models. The VMC data are
taken from integrating numerically the associated holes
using Eq. (5) restricted to λ=0 for exchange and λ=1
for exchange-correlation. The density functional values are
evaluated directly from the VMC density using the energy-per-
particle definition conventional for DFT applications [2,13].
The energies are scaled by the exchange scaling factor of
Eq. (27), appropriate, within the LSD approximation, for
a density which uniformly scales as a function of particle
number N . This produces a nearly constant scaled value for
the exchange energy in the LSD, indicating the validity of
the underlying picture. The scaled exchange energy ĒLSD

x =
−0.390(2) Hartree may be compared to the homogeneous
electron gas value of −0.4582 Hartree, a reasonable agreement
considering the arbitrariness inherent in the definitions [Eq.
(16)] of 〈rs〉 and 〈ζ 〉. The spin scaling of the correlation energy
is not the same as for exchange, as demonstrated by a “bump”
at half-filling that correlates positively with 〈ζ 〉.

Figure 4 demonstrates the dramatic cancellation of errors
in the exchange and correlation components in the LSD.
The LSD underestimates the effect of exchange, having too
much of the sum rule of the hole in its long-range tail, and
overestimates the resulting screening of this long-range tail
in correlation. The overall error in the exchange-correlation
energy, however, is a full order of magnitude smaller than that
of either exchange or correlation alone. Having a hole derived
from an accurate many-body calculation of a true electronic
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FIG. 4. (Color online) Exchange, correlation, and exchange-
correlation potential energy per particle for the valence shell of
second-row atoms, scaled by the factor Nφx(〈ζ 〉/〈rs〉) as described
in text. Thick solid line is VMC data; short-dashed and long-dashed
lines are LSD and GGA predictions. Energy in atomic units. (Inset)
Relative differences between the two DFT models and the VMC data
for the exchange-correlation energy.

TABLE II. Mean absolute relative differences (MARD) and mean
absolute difference per electron (MAD), in milliHartrees, between
DFT models and numerical data for exchange, correlation, and
exchange-correlation (XC) potential energies.

Exchange Correlation XC

LSD PBE LSD PBE LSD PBE

MARD 0.105 0.017 0.657 0.117 0.0076 0.0035
MAD 28.4 4.7 26.0 4.6 2.6 1.0

system pays off in physically driven error cancellation. The
PBE GGA implements a consistent correction of these two
effects, by simultaneously creating a more compact exchange
hole and cutting off the correlation hole at long range. It
recovers the bulk of the errors in the LSD for exchange and
correlation separately. The averaged difference per electron
between numerical exchange energies or VMC-simulated
correlation energies and their DFT counterparts are shown
in Table II. The improvement from LSD to PBE is an order of
magnitude for both exchange and correlation but more modest
for the two combined.

The major source of error in our calculation of the exact
exchange energy is from the numerical integration of the
exchange hole, giving errors typically less than one part in
105 for the grid used, and is negligible here. The VMC
results for correlation should in principle be a variational upper
bound, assuming no numerical error in extracting them from
pair density data and the numerical calculation of exchange.
The true correlation energy, being lower in energy, should
be closer to the DFT predictions. To estimate this error in
the VMC, one can compare the roughly three milliHartree
error of our total VMC energy for Si (Table I), which we can
attribute to an incomplete treatment of correlation, with a 20
milliHartree difference between VMC and PBE correlation
energies for Si. On the other hand, the VMC is potentially
exact for the nodeless Mg valence shell—the variational wave
function used converges to the exact one—here the PBE has
a 10-milliHartree error with respect to the VMC, recovering
50% of the error in the LSD.

The relative difference between VMC and DFT exchange-
correlation energies is shown in the inset of Fig. 4. It is
basically on the order of the expected variational bias, with a
mean signed relative difference of less than 0.01%. A expected
downward shift of 5% in correlation energy due to variational
bias will cause a much smaller relative change in the XC
energy, given that correlation is a small fraction of this energy.
The shift is 0.5% in the case of Ar; those for smaller N

should be similar, involving smaller variational biases but
larger relative correlation energies. Overall, then, the PBE XC
energy may be roughly 0.5% higher than that of the exact
ground state, but systematically removing most of the LSD
error.

One may take the exchange scaling analysis one step
further to analyze the gradient contributions to the exchange
and correlation energies. In particular, the GGA predicts a
multiplicative correction to the LSD exchange energy per
particle of

εGGA
x /εLSD

x ∼ 1 + μs2, (39)
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for small values of s2. The PBE data in Fig. 4 show a slight
variation from LSD scaling for smaller N or larger s̃2 which
can be fit to Eq. (39). The value of μ thus obtained is 0.351 for
the GGA data as compared to 0.431 for the exact calculated
exchange, a roughly 20% stronger response to inhomogeneity
than the GGA prediction. These do not compare easily to the
value of μ=0.219 used in the PBE—our method of obtaining
the system-average s̃2 is intended to describe scaling behavior
rather than absolute values. However, the exact exchange
energy of the hydrogen atom has recently been obtained using
a PBE variant with a μ 23% larger than that of the PBE [76],
consistent with the trend found here.

E. Scaling trends of exchange and correlation holes

Under a uniform scaling of the density—and constant
particle number N—the exchange hole is invariant. As our
densities scale fairly uniformly, but with N =Z not constant,
it is informative to see what extent the exchange hole can
be reduced to a scaling form. This is most easily done by
considering the spin-decomposed exchange hole, Eq. (8). To
do so, we use an identifiable point of each hole—the minimum
of the energy-weighted hole—to determine a length scale
rσ
X for each spin species σ . The hole is normalized by the

number of particles of that spin to guarantee a sum rule of
−1. Uniform scaling then entails the same procedure as for
the radial probability density: nσ

x scales to (rσ
X)3nσ

x as distance
is scaled from u to u/rσ

X. The results are shown in Fig. 5.
We do see scaling behavior, but interestingly, two scaling

forms. There is a striking difference between the hole formed
from a single particle, (in Mg, and the minority spin channel of
Al through P) and that of two or more particles. The two cases
that disagree slightly from this trend are, quite naturally, the
two cases with only two electrons in a given spin channel, Al
and S. Otherwise the results neatly scale on top of each other.
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FIG. 5. (Color online) Scaled minority-spin (thinner lines) and
majority-spin (thicker lines) exchange holes for second-row pseu-
dopotential atoms plotted versus a spin-dependent, scaled interpar-
ticle distance u/rσ

X. Each hole is scaled by (rσ
X)3 and weighted by

2π times the scaled interparticle distance. The scaling length rσ
X

is determined by the distance at which the weighted hole has its
minimum value.

This result is not that surprising if we consider the form
of the exchange hole in Eq. (8). For one particle in a
given spin, the form reduces to a convolution of the spin
density nσ (r)=|ψσ

3s(r)|2 and leads to a relatively compact
function. The hole merely removes the self-interaction error
of the Hartree approximation, and in a sense is not a true
exchange hole. The Nσ >1 case also includes convolutions
of the overlap of two different orbitals ψ∗

i,σ (r)ψj,σ (r), that
describe the exchange of two electrons. Such overlap terms
are naturally more spread out than a single-orbital probability
and create a more slowly decaying hole. Note that the exchange
scaling law [Eq. (21)] requires that both forms scale uniformly
with an isolectronic (fixed N ) uniform scaling of the density,
but with significantly different asymptotic forms because of
their different origins. Finally it is interesting to note how
quickly the transition from the self-interaction dominated to
an exchange dominated hole occurs—the large number limit
is essentially reached starting at Nσ =2.

Figure 6 shows scaling lengths for the majority (up) spin
and minority (down) spin exchange holes, r

↑
X and r

↓
X, in units

of the valence-shell radius a for each atom in the second row.
In addition, the average Wigner-Seitz radius 〈rs〉 is plotted and
the equivalent spin-dependent radii 〈rσ

s 〉 = 〈rs〉(1 + σζ )−1/3,
proportional to the natural length scale (kσ

F )−1 of the spin-
decomposed LSD exchange hole. These are scaled by a factor
of 0.755 so that they match rσ

X for Ar. The comparison between
the actual length scales rX and the LSD equivalent shows the
separation of the single-particle and multiparticle cases seen
in Fig. 5. For spin occupation Nσ > 1, the rX values are well
predicted by LSD theory. For Nσ =1 the hole scales as a, and
is notably larger than the LSD prediction. In this case, the
length scale is set simply by the width ∼ a of the single orbital
occupied.

Mg Al Si P S Cl Ar

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r/
a

r
X↓

r
X↑

r
C-A

r
C-P

c<r
s
>

c<r
s↓>

c<r
s↑>

FIG. 6. (Color online) Various scaling lengths discussed in the
paper. Shown versus valence electron number are: the position of
maximum depth (rX) in the spin-up (red) and spin-down (blue)
energy-weighted exchange holes, the same (rC) for antiparallel
(green)- and parallel-spin correlation holes, all scaled by the effective
valence Bohr radius a. System-averaged Wigner-Seitz radius 〈rs〉 for
the total density (black) and each spin density (dotted lines) are also
shown, scaled by a factor of c=0.755 to aid in comparison.
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Unlike exchange, the universal scaling law for correlation
[Eq. (29)] is nontrivial, and the correlation energy and hole are
nontrivial to model even for the homogeneous electron gas.
Nevertheless, Fig. 3(b) shows that correlation holes for the
second-row atoms are qualitatively similar and it is instructive
to scale the holes to highlight the trends that occur as one
crosses the row.

To do this we use an empirical scaling relation that matches
the holes as closely as we find possible. It is again helpful
to spin decompose the holes, into antiparallel-spin (A) and
parallel-spin (P) channels. A scaled form n̄c(x) of the hole in
either channel may be constructed as

2πu
〈
nA,P

c (u)
〉 = 2π

(
u
/
r

A,P
C

)
NA,P n̄A,P

c

(
u
/
r

A,P
C

)
, (40)

where NA and NP are the number of electron pairs of either
spin channel and rA

C and rP
C are scaling lengths. These are again

chosen as the distance at which the energy-weighted holes take
their minimum value. This optimizes the match between holes
at short interparticle distances at the expense of that at longer
ones. The results are shown as a function of scaled interparticle
distance in Fig. 7; scaling lengths are shown in Fig. 6.

For the case of antiparallel-spin electron pairs [Fig. 7(a)],
the results at short distances match up closely. The minimum of
the holes shows some shell structure, with the closed spin-shell
atoms Mg, P, and Ar with the deepest holes. At long range,
there is a systematic trend as the 3p shell is filled, going from a
compact hole with a sharp positive peak, to a relatively wider
hole with a positive peak spread out over a large range of
distance relative to rA

C . The trend seems to be one of gradual
reduction of finite-size effects at long range, with the shape
of the hole trending to that of the homogeneous electron gas,
with its infinite-ranged hole.

The parallel-spin holes are shown in Fig. 7(b). That for
Mg is trivially zero since there are no same-spin pairs. As
shown in Fig. 6, rP

C is almost exactly twice that of rA
C across

the second row so that each subplot of Fig. 7 shows the same
physical range in distance for each atom despite the different
abscissas. The hole per pair is significantly smaller than in
the antiparallel-spin channel and is concentrated at longer
interparticle distance. Both effects are caused by the exchange
hole which removes most of the probability of finding particles
of the same spin at short range. As one goes across the shell,
the tendency is for gradually deeper and longer-ranged holes.
Finally, given the equivalence rP

C =2rA
C , one finds that the

scaled antiparallel and parallel holes per pair for each atom
match fairly closely at large distances (rA

C >5). At distances
longer than the effective exchange hole radius, it seems that
electrons no longer detect each other’s spins.

All-electron spherically averaged Coulomb hole data for
nearly spherical molecules and atoms show qualitatively
very similar results to ours, after taking into account the
4πr2 weighting typically used in the literature [20,24,27,28].
The hole at small interparticle distances typically shows the
evidence of shell and molecular structure, but significantly
reduced by the effects of system averaging, particularly in
the large-Z limit. The qualitative shape of the peak at large
interparticle distances seems to be a universal feature of the
Coulomb or correlation hole and closely matches the behavior
seen in Figs. 3(b) and 7. Shell analysis of the hole for small
atoms [20] tells us that this feature is caused by electrons in
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FIG. 7. (Color online) Scaled correlation holes for second-row
pseudopotential atoms. Part (a) shows the correlation hole at full
coupling for antiparallel-spin electrons, weighted by 2π times the
interelectron distance u. The holes are scaled by the number of
antiparallel electron pairs NA and plotted versus the scaled electron
distance x = u/rA, where rA is the distance at which each weighted
hole has a minimum. Part (b) shows the analog for the parallel-spin
correlation hole, in terms of parallel-spin pair number, NP and scaling
radius rP

C . Each hole is plotted in atomic units.

the valence shell and is thus apropos for comparison to our
data. Using the point of crossover rcr from negative hole to
positive peak as a point of reference, we find that our scaling
model provides a fairly good prediction for other data. A fit of
this point to our data yields rcr = 1.5R0a/N1/3 for Si; using
this formula and the naive Slater model for a we predict
Coulomb hole crossover points for the C isolectronic series
that range from 11.2 a.u. for C to 8.3 a.u. for Ne+4, which
are indistinguishable from those of the Coulomb hole plots of
VMC data for the series [27]. This suggests that our data may
be useful to analyze the long-range trends of correlation holes
of atoms and small molecules.

A few extra notes are in order—first of all, the point of
comparison between holes found to be most successful is
the correlation hole per pair and not per particle, as with
exchange. A particle number for the antiparallel-spin hole
cannot be unambiguously defined, and we find no scheme
for a per-particle hole that provides as consistent a scaling fit
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for the series. At the same time, the scaled hole used here is
not scale invariant, in which case the hole, having units of
volume, should scale as 1/r3

scale. It is therefore not unitless,
but rather varies as 1/a2

0 given the choice of atomic units. The
situation is reminiscent of that of the slowly varying electron
gas, in which the inhomogeneity in the exchange hole can be
described by the scale-invariant parameter s, but the correlation
hole depends on the non-scale-invariant t ∼ s/

√
rs . However,

it is not impossible to scale the correlation hole with a uniform
scaling hypothesis of the form,

〈nc(u)〉 = F (N↑,N↓)

(rscale)3
n̄c(u/rscale), (41)

for an arbitrary function F (N↑,N↓) of the number of valence
electrons of each spin. In this case, the absence of scaling
behavior is assumed to lie in the arbitrary amplitude F .
The two approaches may be considered equivalent since the
normalization used in Eq. (40) is implicitly a function of N↑
and N↓.

It is also worth noting that length scales for correlation and
exchange diminish as a proportion of atom radius a in going
from Mg to Ar (Fig. 6). Finite-size effects in exchange and
correlation become important as 〈rs〉/a approaches unity, that
is, the length scale of the XC hole approaches the system size of
the atom. We thus expect, and find, the largest errors for local
DFT’s for Mg, for which 〈rs〉/a is largest, and the smallest
for Ar. Nevertheless, the GGA parameter t2 used to estimate
this inhomogeneity error has a system average that increases as
one proceeds down the row. In the slowly varying electron gas,
the higher the electron density, the more sensitive correlation
is to inhomogeneity, but in atoms, the higher the density, the
less effect the finite size of the atom has on correlation. This
misidentification is a natural limitation of using a semilocal
parameter to measure the effect of inhomogeneity, which for
atoms as essentially zero-dimensional objects must necessarily
depend on global features. Interestingly, however, the PBE
correlation hole does take into account one global measure, the
zero particle-sum rule of the hole. For very inhomogeneous
systems, this constrains the hole to react more strongly at
larger rs to a given value of t2. Thus it follows to a fair degree
the observed finite-size effects, more so than one might have
expected.

F. Pair correlation function

One can gain more insight into the behavior of correlation
with atomic number, and in particular the role of finite-size
effects, by calculating a pair correlation function gc, defined
as the ratio of the pair density of the fully correlated (λ=1)
system to that of the equivalent noninteracting system (λ=0):

gc(u) = 〈n(2)
λ=1(u)〉

〈n(2)
λ=0(u)〉

. (42)

This maps the fractional change, because of Coulomb correla-
tion, in the expected number of particle pairs as a function of
distance. As the noninteracting-system pair density already
incorporates exchange, this measures a purely correlation
effect, and is somewhat different from the normal definition of
g measured relative to the pair density of independent particles.
The value at zero separation, gc(0), measures the on-top hole
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FIG. 8. The correlation contribution to the pair correlation func-
tion gc for the valence shell of the second-row atoms plotted versus
interparticle distance u. The curve for Ar and Mg are labeled at
u=0. Also shown (circles) is the system-averaged on-top or u=0
pair-correlation function for the LSD.

for antiparallel-spin correlation. Because of Fermi statistics,
the parallel-spin channel contributes zero to both numerator
and denominator of the on-top value of Eq. (42).

We show the VMC values for gc(u) for the second-
row atoms in Fig. 8. As a comparison, the equivalent
system-averaged on-top pair correlation function for the LSD,
〈gLSD

c (0)〉, calculated by the same system-averaging technique
as Eq. (16), is shown as circles at u=0. At short range the
pattern of the VMC data is similar to the correlation hole in the
HEG [75] except for deviations, due to small-number statistics,
from an expected cusp [77] at very short interparticle distances.
Given the noise in the VMC in this region, the LSD and VMC
values for the on-top hole are in reasonable agreement. At
long range one sees a marked enhancement of the distribution
of particle pairs relative to the uncorrelated pair density. The
long-range asymptotic value of the pair distribution function
in the HEG is one, indicating a vanishing difference between
correlated and uncorrelated distributions. In atoms, this is not
a requirement, and in fact the enhancement of pairs at long
range is surprisingly large for Mg. The distances in this case
are bigger than the distance from the peak of the valence
density on one side of the atom to that on the other, about
1.7 a or roughly 3.5 a.u. for Mg. There is a large fractional
enhancement of the relatively small density of pairs separated
by several atomic radii, in contrast to the modest enhancement
of the long-range pair density for more localized holes. This is
consistent with an “in-out” correlation where if one electron
is found on the inside of the valence shell the other is favored
to be found on the outside edge of the shell.

V. DISCUSSION

The valence shell of first- or second-row atoms, within the
pseudopotential approach, is an example of uniform scaling
that has been known from the earliest stages of atomic physics.
The form of scaling is related to that of the Thomas-Fermi
scaling of the all-electron density for large atoms, in that the
net charge of the system is kept fixed as the system is scaled,
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and so scaling parameters such as 〈rs〉 depend upon the number
of electrons N . It differs in that the scaling parameter a does
not have a simple power-law behavior with N , but essentially
a Pade-like dependence, as noted by Slater, because of the role
of self-interaction. At the same time, the scaling of a single
shell is a form of uniform scaling to high density, and might be
a useful complement to the standard example of isoelectronic
scaling. What happens in the current case, in the limit of a very
large-degeneracy shell, for which N � 1 is achievable?

Intriguingly, the exchange hole has not one, but two, scaling
forms—with the single-orbital hole fundamentally different
from those that are constructed with two or more orbitals.
Self-interaction effects spoil the invariance of the exchange
hole under uniform scaling with constant net charge that
would hold with constant particle number. But at the same
time, self-interaction effects die out astonishingly rapidly, with
systems of three or more electrons already showing large-N
scaling behavior. Correlation holes do not scale uniformly
and trends across the second row cannot be unambiguously
modeled. Nevertheless, a clear trend with the scaling of
the density does occur: the transition from more correlated,
low-density systems in which finite-size effects dominate the
correlation peak at large interparticle distances, to higher
density ones in which the system-averaged hole approaches
that of the HEG, and the GGA approximation is very good.
The natural parameter to characterize this trend, the ratio 〈rs〉/a
of average hole radius to atomic radius, cannot be modeled in
a semilocal DFT, but the use of a different constraint—a cutoff
based on the correlation hole sum rule—does a reasonable
job of following it. The qualitative behavior of the positive
correlation peak is seen in all-electron calculations and a crude
estimate indicates that scaling results for this feature should
apply to atoms and spherical molecules in general.

It is of interest to analyze the sources of error in the PBE
correlation hole by decomposing the system averaging. The
PBE hole near the valence peak determines the overall shape
of the system-averaged hole but, since gradients are small in
this region, has an unphysical long-range tail equivalent to that
of the LSD hole. Holes in the pseudopotential core and far from
the atom deviate dramatically from the system average but cut
off just at the right length scale. They end up contributing the
most to the positive peak of the system average that, physically,
is caused by finite size of the atom. It is not the local XC hole
but its system average that the PBE is capturing, as it was
designed to do.

Our data thus show that for the type of system studied
here, the semilocal PBE GGA model works essentially as
advertised. The significant defects of the XC hole in the LSD
approach are more or less fixed, especially for the crucial
aspect of the hole—the integral that produces the exchange
and correlation energy. The reason for this success is likely
related to the simplicity of the single-shell structure studied,
with the main physics being scaling behavior similar to that
which the PBE was built to represent. The main source of error,

the poor treatment of finite-size effects, occurs mainly in the
long-range tail of the GGA XC hole which does not contribute
much to the total energy.

The PBE does somewhat underestimate the gradient correc-
tion parameter μ [Eq. (39)] needed for valence-shell exchange
energies. Recent work on modifying the PBE for solids
[9,47,48] indicates that use of a value for μ half that of the
PBE, but consistent with the gradient expansion for a slowly
varying electron gas, leads to improved lattice constants and
bulk moduli (if poorer cohesive energies). The PBE choice
is instead best suited for predicting total energies of atoms
and binding energies of molecules. Our work thus emphasizes
the incompatibility between GGA’s designed for molecules
and those for solids. The large value of μ needed for total
atomic energies has been attributed [8] to using the gradient
correction to account for exchange energy corrections caused
by the cusp in electron density near the nucleus. This should
not be true in the present case since the nucleus has been
replaced by a smooth pseudopotential. It seems that another
mechanism is at play here, quite possibly self-interaction. This
is a significant problem in atoms as it represents a measurable
fraction of the Hartree energy in a finite-N system. To remove
its effects using a gradient correction requires the use of a large
gradient expansion coefficient, about 0.28 for the exchange
energy of a hydrogen atom or 0.22 for the exchange-correlation
energy [76]. The PBE, with a μ=0.219, predicts the energetics
of small-N systems extremely well as Fig. 4 shows. It does
so here by modeling self-interaction corrections well—for
example, the exchange hole for the Mg 3s2 spin singlet, which
is caused entirely by removal of the self-interaction error
at the Hartree level, and, as seen in Fig. 3(a), is described
very nicely by the PBE. In contrast, solids, many-electron
systems with delocalized orbitals, do not suffer so much from
self-interaction, and thus are presumably better described by
the smaller gradient correction derived from the slowly varying
electron gas.

Our work also points to the difficulty of imposing a self-
interaction correction to the GGA. To the extent that the GGA
may be correcting LSD error caused by self-interaction and
not by the imperfect treatment of inhomogeneity, applying a
self-interaction correction to the GGA would lead to correcting
the same problem twice. Any self-interaction correction based
on a GGA would require a remarkable degree of cancellation
of errors between the correction for exchange and that for
correlation to improve total energies for the systems studied
here. The exploration of self-interaction corrected GGA
models that could have this level of error cancellation might
thus be of interest.
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