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Effective-potential model for high-L Rydberg atoms
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A description of fine-structure patterns in nonpenetrating high-L Rydberg atoms and ions is derived in a
perturbative model in which the energy denominators occurring in the second-order perturbation theory are
evaluated using the adiabatic expansion. The patterns of Rydberg energies that result are dominated by the
expectation value of an effective potential containing a range of tensor orders and increasing negative powers of
the Rydberg electron’s radial coordinate. The coefficients of each term in the effective potential are expressed
in terms of matrix elements and energies of the free ion at the core of the Rydberg system. Smaller corrections
to these patterns due to application of the effective potential in second order and due to relativistic and spin
contributions are also described. The effective potential provides a framework for extracting ion properties from
measurements of high-L fine-structure patterns.
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I. INTRODUCTION

The wave functions and energies of a single Rydberg
electron bound to an atomic ion approach purely hydrogenic
values as the angular momentum of the Rydberg electron
increases. Since the inner classical turning point of the Rydberg
electron’s radial motion is greater than

rITP � L(L + 1)

2Q
, (1)

where L is its angular momentum and Q is the net charge
of the core ion, Rydberg electrons of sufficiently high L are
effectively confined outside of the region of space occupied
by the ion core. Their interactions with the ion core are
dominated by the fully screened Coulomb attraction that binds
them in their orbit. Any additional interactions are weak and
long-ranged. In the absence of these additional interactions,
all high-L Rydberg levels of the same principal quantum
number would be degenerate except for small relativistic
effects. The presence of the weak long-range interactions lifts
this degeneracy and produces a pattern of binding energies
that reflects the strength and character of these interactions.
Measurement of these “fine-structure patterns” is therefore
a convenient probe of the core properties that control the
strength of the long-range interactions, such as polarizabilities
and permanent electric moments. Many of these properties are
very difficult to measure for neutral atoms, and consequently
the ion properties extracted from high-L Rydberg spectroscopy
represent a unique probe of atomic structure theory.

The complexity of these fine-structure patterns depends
directly on the angular momentum of the core ion, Jc. These
patterns represent an example of “pair coupling” where the
spin of the Rydberg electron is nearly negligible and the
intermediate angular momentum,

�K = �Jc + �L, (2)

describes the eigenstates [1]. In general, there are 2Jc + 1
energies possible for each value of the Rydberg electron’s
orbital angular momentum, L. Consequently, in what follows,
K will be considered to be the total angular momentum of the
Rydberg system, and the small effect of the Rydberg electron’s
spin will be treated separately.

The basic idea of using the spectroscopy of nonpenetrating
Rydberg levels to extract information about the properties of
the ion core was discussed very early by Mayer and Mayer in
1933 [2]. In the case of Rydberg atoms or ions with S-state
cores, the deviation of the term energies from their hydrogenic
values was related to the dipole and quadrupole polarizabilities
of the ion with a model considering the electric field and field
gradient produced by a stationary Rydberg electron. This led
to a simple expression for the energy change in terms of the
expectation value of an effective potential:

�E =
〈
−1

2

αD

r4
− 1

2

αQ

r6

〉
nL

. (3)

The two basic assumptions underlying this approach are
common to all treatments of high-L Rydberg structure,
including the following report.

(A1) The Rydberg electron is distinguishable from the
electrons in the ion core.

(A2) The Rydberg electron is always farther from the
nucleus than any of the core electrons.

In addition, this early approximation neglects the dynamics
of the Rydberg electron, effectively assuming that the core
adjusts adiabatically to the motion of the Rydberg electron.
A number of approaches were later advanced to incorporate
corrections to this adiabatic model [3–5]. If the corrections
to the adiabatic picture are small, Kleinman, Hahn, and
Spruch showed that adding a term proportional to r−6 to the
potential could account approximately for the nonadiabatic
effects [5]:

αQ ⇒ (αQ − 6βD), (4)

where βD was an additional core property often referred to as
the “nonadiabatic dipole polarizability.”

A major step in the further development of the effective po-
tential model for high-L Rydberg structure was the treatment
of Rydberg levels of helium by Drachman [6–8]. In a sequence
of papers, he systematically derived an effective potential
for helium Rydberg electrons that contained additional terms
proportional to higher inverse powers of the Rydberg radial
coordinate up to r −10. The dynamics of the Rydberg electron
were found to lead to significant deviations from the adiabatic
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model, and these were systematically included. Since the core
ion in this case was He+, whose nonrelativistic wave functions
were known, all the coefficients occurring in the effective
potential were calculated analytically. Although Drachman
used the Feshbach projection operator technique to organize
his calculation, in essence it consisted of systematically
applying the following three expansions.

(i) Static perturbation theory.
(ii) Multipole expansion of the perturbing term.

(iii) A power-series expansion of the energy denominators
occurring in (i), described fully below, which we refer to as the
“adiabatic expansion” because the leading term corresponds
to the adiabatic model.

Because the zeroth-order wave functions of the Rydberg
electron satisfy the hydrogenic radial equation, it was possible
to manipulate the resulting expressions into a form where suc-
cessive terms were proportional to increasing negative powers
of r , yielding the effective potential. The expectation value of
each term could be evaluated using standard expressions for
the radial expectation values of hydrogenic functions. In the
case of helium Rydberg levels, the results of this approach
were confirmed with completely independent variational
calculations [9] and with precise experimental measurements
[10,11]. The precision of the predictions obtained with the
effective potential method is limited by the convergence of
the asymptotic series of terms, but this approach has the
great advantage that it can be applied to any Rydberg level,
(n,L), without the necessity of a specific calculation for that
state’s wave function. The variational method is much more
computationally intensive.

The calculation presented here is modeled after the work
of Drachman. Its key feature is use of the adiabatic ex-
pansion and manipulation of the perturbation expressions
using the hydrogenic radial equation satisfied by the zeroth-
order Rydberg electron wave function. However, the present
calculation extends the work of Drachman in two significant
ways. First, the core properties that occur in the effective
potential are expressed as functions of the matrix elements
and energies of the core ion instead of being evaluated
analytically as was possible for the He+ core. Second, the
angular momentum of the core ion, Jc, is not restricted. This
gives rise to higher rank tensor operators not present in the
helium case. Taken together, these extensions make the results
applicable to a wide range of Rydberg systems. Some of
the terms derived here are well known, such as the terms
in Eq. (3) and the related tensor polarization terms. Others
are new. Many of the higher-order terms occur in a related
treatment of Rydberg electrons bound to anisotropic core ions,
treated in a coupled-channel approach by Clark, Greene, and
Miecznik [12]. The approach presented here differs from that
calculation in several ways. The main difference is that this
report, based on a perturbation expansion, calculates only the
differences from the known zeroth-order Rydberg energies.
In contrast, the approach of Clark, Greene, and Miecznik
depends on a specific calculation of the radial function and full
energy eigenvalue for each level in the appropriate channel
potential. Another difference between the calculations is in
the method of including corrections to the adiabatic approxi-
mation. The effective potential model presented here has the
advantage that it is easily applied to describe a wide range

of high-L Rydberg systems without the need for extensive
calculations.

II. DERIVATION

For simplicity, we assume initially a completely nonrela-
tivistic system of N electrons, bound to a nucleus of charge Z.
Using assumption (A1) above, the N th electron is taken to be
the distinguishable Rydberg electron, and the Hamiltonian is
written in a form that makes that distinction. The zeroth-order
Hamiltonian is the sum of a Hamiltonian describing the free ion
and a Hamiltonian describing a hydrogenic Rydberg electron
bound by the net charge of the core ion. Everything left
over from the full nonrelativistic Hamiltonian represents the
perturbation V ,

H = (
H 0

core + H 0
Ryd

) + V, (5)

where

H 0
core =

N−1∑
i=1

( | �pi |2
2

− Z

ri

)
+

N−1∑
i=1
j>i

1

rij

, (6)

H 0
Ryd = | �pN |2

2
− Q

rN

, (7)

and

V =
N−1∑
i=1

1

riN

− (N − 1)

rN

, (8)

and where Z is the nuclear charge, Q = Z − N + 1 is the
charge of the ion core, and N − 1 is the number of electrons
within the ion core. The further assumption (A2) allows the
potential to be written as a multipole expansion with no scalar
(i.e., κ = 0) term:

V =
∞∑

κ=1

N−1∑
i=1

rκ
i C[κ](r̂i) · C[κ](r̂N )

rκ+1
N

=
∞∑

κ=1

M [κ] · C[κ](r̂N )

rκ+1
N

, (9)

where

M [κ] =
N−1∑
i=1

rκ
i C[κ](r̂i). (10)

The operators M [κ ] with κ = 1,2,3,4 represent the dipole,
quadrupole, octupole, and hexadecapole moment operators
acting on the core ion wave function. At this point, the subscript
on rN may be dropped since the positions of the core electrons
are not explicitly mentioned again.

The zeroth-order wave functions are written as products of
the form

|�0〉 = ∣∣�0
core

〉∣∣�0
Ryd

〉
,

where |�0
core〉 is the wave function of the free ion core

and |�0
Ryd〉 is the hydrogenic wave function of the Rydberg

electron. We assume that the core functions are eigenstates
of parity, angular momentum, and H 0

core. They are denoted by
|λ,Jc,mJ 〉, where λ stands for any additional quantum numbers
required to specify a particular state. These functions, of
course, are known only in the abstract. The Rydberg functions
are specified by |n,L,m〉 and are the well-known hydrogenic
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wave functions corresponding to a core charge of Q and a reduced mass μ = memc/(me + mc). Ignoring the spin of the electron,
these wave functions couple together to form the angular momentum K:

�K = �L + �JC,

where K ranges from | �L − �JC | to | �L + �JC |. In general, we denote an arbitrary state of the combined system as |λ′J ′
c,nL; K〉. We

seek to describe the energies of Rydberg levels that correspond in zeroth order to states in which the core is in its ground state,
denoted as |gJc〉, the Rydberg electron is in the (n,L) level, and the total angular momentum, exclusive of Rydberg spin, is K .
We denote these as |gJc,nL; K〉, or by the shorthand notation |nLK〉.

A. Zeroth- and first-order energies

Applying static perturbation theory, the energy of the nLK state is given by

E(nLK ) = E[0] + E[1] + E[2] + · · · . (11)

The zeroth-order energy is the sum of that of a free ion and a hydrogenic electron:

E[0](n) = E(gJc) − 1

2

mc

(mc + me)

Q2

n2
, (12)

where mc is the core mass and me is the electron mass.
The first-order energy perturbation energies come from the permanent electric moments of the core ion. There are no odd

permanent moments because of parity constraints. An ion core with angular momentum of Jc � 1, however, may have a
quadrupole moment, while a nonzero hexadecapole moment is possible if Jc � 2:

E[1](nLK ) = 〈
gJc,nL; K

∣∣ ∞∑
κ=1

M [κ] · C[κ](r̂)

rκ+1

∣∣gJc,nL; K
〉

= −Q〈r−3〉nL

〈X[2](Jc) · C[2](r̂)〉(
Jc 2 Jc

−Jc 0 Jc

) − �〈r−5〉nL

× 〈X[4](Jc) · C[4](r̂)〉(
Jc 4 Jc

−Jc 0 Jc

) + · · · , (13)

where

Q ≡ −〈
gJc,mJ = Jc

∣∣M [2]
0

∣∣gJc,mJ = Jc

〉
(14)

is the core’s electric quadrupole moment, and

� ≡ −〈
gJc,mJ = Jc

∣∣M [4]
0

∣∣gJc,mJ = Jc

〉
(15)

is the core’s electric hexadecapole moment. X[b](Jc) is a unit bth rank tensor in the space of the ion core, while C[b](r̂) is a
spherical bth rank tensor in the Rydberg electron’s angular position. The next possible permanent moment, of order κ = 6,
requires Jc � 3.

B. Second-order energy (core excited intermediate states)

Equation (16) shows the general expression for the second-order energies:

E[2](nLK ) =
∑

λ′,J ′
c,n

′,L′

〈
gJc,nL; K

∣∣ ∞∑
κ1=1

M [κ1] · C[κ1](r̂)
rκ1+1

∣∣λ′J ′
c,n

′L′; K
〉〈
λ′J ′

c,n
′L′; K

∣∣ ∞∑
κ2=1

M [κ2] · C[κ2](r̂)
rκ2+1

∣∣gJc,nL; K
〉

[E(gJc) + E(n)] − [E(λ′J ′
c) + E(n′)]

. (16)

We initially consider only the portion of the total second-order energy that is due to intermediate states where the core is
electronically excited. This excludes intermediate states where the core is in its ground electronic state, either the true ground
state or an excited fine-structure level of the ground electronic state. The total second-order energy is the sum of terms consisting
of the various multipole orders occurring in the potential V ,

E[2](nLK ) =
∑
κ1,κ2

E[2](κ1,κ2).
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Using the methods of Ref. [13], the core and Rydberg electron parts of the matrix elements may be factored and the partial
contribution due to specific multipole terms κ1 and κ2 written as

E[2](κ1,κ2) = −
∑

λ′,J ′
c,n

′,L′

[
(−1)J

′
c−Jc

{
K L Jc

κ1 J ′
c L′

} {
K L′ J ′

c

κ2 Jc L

}(
L κ1 L′
0 0 0

) (
L′ κ2 L

0 0 0

)
(2L + 1)(2L′ + 1)

× 〈gJc‖M [κ1]‖λ′J ′
c〉〈λ′J ′

c‖M [κ2]‖gJc〉[nL|r−(κ1+1)|n′L′][n′L′|r−(κ2+1)|nL]

�E(λ′J ′
c) + E(n′) − E(n)

]
, (17)

where

�E(λ′J ′
c) = E(λ′J ′

c) − E(gJc).

As Eq. (17) indicates, only multipole terms with κ1 + κ2 even can contribute to E[2].
Further simplification of this expression relies upon the “adiabatic expansion.” This expansion is based on the assumption that

the energy difference in the denominator is primarily due to the core energy difference, allowing the denominator to be expanded
as

1

�E(λ′J ′
c) + E(n′) − E(n)

= 1

�E(λ′J ′
c)

− [E(n′) − E(n)]

[�E(λ′J ′
c)]2

+ [E(n′) − E(n)]2

[�E(λ′J ′
c)]3

+ · · · . (18)

If it is valid, the adiabatic expansion allows the sums over n′ to be carried out explicitly using the properties of hydrogenic
radial functions. The leading term, for instance, corresponds to the adiabatic approximation where the dynamics of the Rydberg
electron are neglected. When this is substituted into Eq. (17), the only dependence on n′ is in the radial matrix elements and the
completeness of the radial functions for fixed L′ allows the summation over n′ to be carried out:∑

n′
〈nL|r−s |n′L′〉〈n′L′|r−q |nL〉 = 〈r−(s+q)〉nL. (19)

Note that in this and similar sums, the sum over n′ includes continuum levels of the same L′. This leads to expressions, described
below, for all the adiabatic terms in the effective potential.

The second term in the adiabatic expansion also leads to expressions that can be simplified using properties of the Rydberg
radial functions. Making use of the radial wave equation satisfied by hydrogenic functions, and using repeated application of
integration by parts, it can be shown that

∑
n′

[E(n′) − E(n)]〈nL|r−s |n′L′〉〈n′L′|r−q |nL〉 = 1

2
[sq − L(L + 1) + L′(L′ + 1)]〈r−(s+q+2)〉nL. (20)

This leads to a sequence of terms, detailed below, which we refer to as the first nonadiabatic terms.
The expressions obtained by substituting the third term of the adiabatic expansion into Eq. (17) can also be simplified. Using

the radial equation satisfied by the Rydberg radial functions, it can be shown that [14]∑
n′

[E(n′) − E(n)]2〈nL|r−s |n′L′〉〈n′L′|r−q |nL〉

= − sq

s + q + 1
(Q〈r−(s+q+3)〉nL − L(L + 1)〈r−(s+q+4)〉nL)

+ 1

4
(s + q)(s + q + 3)[−L(L + 1) + L′(L′ + 1)]〈r−(s+q+4)〉nL

+ 1

4
[−s(s + 1) − L(L + 1) + L′(L′ + 1)][−q(q + 1) − L(L + 1) + L′(L′ + 1)]〈r−(s+q+4)〉nL. (21)

We refer to the resulting additional terms in the effective potential as the second nonadiabatic terms.
The second-order energy for a particular κ1 and κ2 may thus be written as an adiabatic term,

E[2](κ1,κ2)AD = −
∑

λ′,J ′
c,L

′

[
(−1)J

′
c−Jc

{
K L Jc

κ1 J ′
c L′

} {
K L′ J ′

c

κ2 Jc L

}(
L κ1 L′
0 0 0

) (
L′ κ2 L

0 0 0

)
(2L + 1)(2L′ + 1)

× 〈gJc‖M [κ1]‖λ′J ′
c〉〈λ′J ′

c‖M [κ2]‖gJc〉
�E(λ′J ′

c)
〈r−(κ1+κ2+2)〉nL

]
, (22)
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a first nonadiabatic term,

E[2](κ1,κ2)1st NA = −
∑

λ′,J ′
c,L

′

[
(−1)J

′
c−Jc

{
K L Jc

κ1 J ′
c L′

}{
K L′ J ′

c

κ2 Jc L

} (
L κ1 L′
0 0 0

)(
L′ κ2 L

0 0 0

)
(2L + 1)(2L′ + 1)

× 〈gJc‖M [κ1]‖λ′J ′
c〉〈λ′J ′

c‖M [κ2]‖gJc〉
[�E(λ′J ′

c)]2

(
−1

2
[(κ1 + 1)(κ2 + 1) − L(L + 1) + L′(L′ + 1)]

)
〈r−(κ1+κ2+4)〉nL

]
,

(23)

and a second nonadiabatic term,

E[2](κ1,κ2)2nd NA = −
∑

λ′,J ′
c,L

′

[
(−1)J

′
c−Jc

{
K L Jc

κ1 J ′
c L′

} {
K L′ J ′

c

κ2 Jc L

}(
L κ1 L′
0 0 0

) (
L′ κ2 L

0 0 0

)
(2L + 1)(2L′ + 1)

×〈gJc‖M [κ1]‖λ′J ′
c〉〈λ′J ′

c‖M [κ2]‖gJc〉
[�E(λ′J ′

c)]3

(
− (κ1 + 1)(κ2 + 1)

κ1 + κ2 + 3
Q〈r−(κ1+κ2+5)〉nL +

(
(κ1 + 1)(κ2 + 1)

κ1 + κ2 + 3
L(L + 1)

+ 1

4
(κ1 + κ2 + 2)(κ1 + κ2 + 5)[−L(L + 1) + L′(L′ + 1)] + 1

4
[−(κ1 + 1)(κ1 + 2) − L(L + 1)

+L′(L′ + 1)][−(κ2 + 1)(κ2 + 2) − L(L + 1) + L′(L′ + 1)]

)
〈r−(κ1+κ2+6)〉nL

)]
. (24)

Taken together this gives a total second-order energy, from electronically excited core levels, of

E[2](nLK ) =
∑
κ1,κ2

[E[2](κ1,κ2)AD + E[2](κ1,κ2)1st NA + E[2](κ1,κ2)2nd NA]. (25)

Note that each successive term in the adiabatic expansion is proportional to higher inverse powers of the Rydberg radial
coordinate.

The contributions to the second-order perturbation energy from a fixed multipole order (κ1, κ2) and adiabatic order (AD,
1st NA, 2nd NA) can each be decomposed into contributions of different tensor orders. This decomposition is most easily
accomplished by noting that the entire dependence on K is contained in the product of two 6J symbols that occurs in each of
the expressions above. The (2Jc + 1)-dimensional space corresponding to the different values of K for a common L is spanned
by the basis vectors,

Vb(K) = (−1)Jc+L+K

{
K L Jc

b Jc L

}√
2b + 1 (b = 0,1,2,...), (26)

which satisfy ∑
K

(2K + 1)Vb(K)Vb′ (K) = δbb′ . (27)

The 6J -symbol products that occur in the energy expressions may be written as linear combinations of these basis vectors
using Eq. (6.2.12) of Ref. [13], {

K L Jc

κ1 J ′
c L′

}{
K L′ J ′

c

κ2 Jc L

}
=

∞∑
b=0

ab(J ′
c,L

′)Vb(K), (28)

where

ab(J ′
c,L

′) =
[

(−1)L+L′
{

L′ κ1 L

b L κ2

}] [
(−1)Jc+J ′

c

{
J ′

c κ1 Jc

b Jc κ2

}]
[(−1)b

√
2b + 1]. (29)

Notice that this substitution factors the dependence on L′ and J ′
c. Notice also that the 6J symbols restrict the possible tensor

orders, b, to between |κ1 − κ2| and |κ1 + κ2|, with an upper limit of the smaller of 2L and 2Jc.
Substituting this result into the energy expressions allows each to be written as a sum of tensor orders:

E[2](nLK ) =
∑

b

E
[2]
b (nLK ), (30)

where

E
[2]
b (nLK ) =

∑
κ1,κ2

E
[2]
b (κ1,κ2)AD + E

[2]
b (κ1,κ2)1st NA + E

[2]
b (κ1,κ2)2nd NA. (31)
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Since the resulting expressions separate the terms involving L′, the sum over L′ may be evaluated term by term. The result is a
sequence of terms of increasing negative powers of r for each tensor order whose coefficients are functions of the matrix elements
and energies of the excited core levels.

The resulting scalar terms (b = 0) are

E
[2]
0 (nLK ) = −1

2

(
αD,0〈r−4〉nL + (αQ,0 − 6βD,0)〈r−6〉nL − 16Q

5
γD,0〈r−7〉nL

+
(

αO,0 − 6βQ,0 + 72γD,0

(
1 + L(L + 1)

10

))
〈r−8〉nL

)
, (32)

where the coefficients in front of the core parameters follow the convention of Ref. [6]. The core parameters are given by

αD,0 = 2

3

1

2Jc + 1

∑
λ′,J ′

c

〈gJc‖M [1]‖λ′J ′
c〉2

�E(λ′J ′
c)

, (33)

αQ,0 = 2

5

1

2Jc + 1

∑
λ′,J ′

c

〈gJc‖M [2]‖λ′J ′
c〉2

�E(λ′J ′
c)

, (34)

αO,0 = 2

7

1

2Jc + 1

∑
λ′,J ′

c

〈gJc‖M [3]‖λ′J ′
c〉2

�E(λ′J ′
c)

, (35)

βD,0 = 1

3

1

2Jc + 1

∑
λ′,J ′

c

〈gJc‖M [1]‖λ′J ′
c〉2

[�E(λ′J ′
c)]2

, (36)

βQ,0 = 1

2

J1

2Jc + 1

∑
λ′,J ′

c

〈gJc‖M [2]‖λ′J ′
c〉2

[�E(λ′J ′
c)]2

, (37)

and

γD,0 = 1

6

1

2Jc + 1

∑
λ′,J ′

c

〈gJc‖M [1]‖λ′J ′
c〉2

[�E(λ′J ′
c)]3

. (38)

Notice that the summed quantities are positive definite, so each of the scalar coefficients is a simple sum of the contributions
from the several possible branches characterized by J ′

c. The terms proportional to r−4 and r−6 are well known. The later terms
are analogous to those derived by Drachman, but are not restricted to the special case Jc = 0. The terms proportional to r−4 and
r−6 agree with the results of Clark, Greene, and Miecznik [12] except that their expression for the coefficient analogous to βD,0

contains an additional contribution [the second term in their Eq. (28)].
The vector term of the second-order energy (b = 1) can be written as

E
[2]
1 (nLK ) = (βD,1〈r−6〉nL + (βQ,1 + γD,1)〈r−8〉nL) �L · �Jc, (39)

where the core parameters are defined by

βD,1 =
√

6√
2Jc(2Jc + 1)(2Jc + 2)

∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 1 Jc

1 Jc 1

} 〈gJc‖M [1]‖λ′J ′
c〉2

[�E(λ′J ′
c)]2

, (40)

βQ,1 = −3

√
6

5

1√
2Jc(2Jc + 1)(2Jc + 2)

∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 2 Jc

1 Jc 2

} 〈gJc‖M [2]‖λ′J ′
c〉2

[�E(λ′J ′
c)]2

, (41)

and

γD,1 = −9
√

6
1√

2Jc(2Jc + 1)(2Jc + 2)

∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 1 Jc

1 Jc 1

} 〈gJc‖M [1]‖λ′J ′
c〉2

[�E(λ′J ′
c)]3

. (42)

In this case, the contributions of the several J ′
c branches may either add or subtract from the total coefficient. Notice also that

there is no adiabatic vector term. This is due to a cancellation between the contributions of adiabatic terms with different L′. A
similar cancellation does not occur in the nonadiabatic terms because of the extra factors of L and L′ that occur in Eqs. (20) and
(21). The vector term in high-L Rydberg fine structure has an interesting history that is discussed in Sec. III. The existence of a
vector term in Rydberg electric fine structure was first predicted by Zygelman [15]. Its coefficient was first calculated by Clarke,
Greene, and Miecznik [12], who also emphasized its essentially nonadiabatic nature. Our expression for βD,1 agrees with their
result. The terms proportional to r−8 are new. In nature these terms compete with a much larger vector term due to the magnetic
dipole moment of the core electron, discussed in Sec. II D. Nevertheless, the electric vector structure has been measured in both
argon [16] and neon [17].
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For consistency with previous publications and with the leading term from Sec. II A proportional to the quadrupole moment,
the b = 2 term is written as proportional to

〈X[2](Jc) · C[2](r̂)〉(Jc 2 Jc

−Jc 0 Jc

) . (43)

This leads to tensor terms of the form

E
[2]
2 (nLK ) = −1

2

(
αD,2〈r−4〉nL + (αQ,2 − 6βD,2 + αDO,2)〈r−6〉nL − 16Q

5
γD,2〈r−7〉nL

+
(

αO,2 − 6βQ,2 + αQH,2 − 6βDO,2 + 72

(
L(L + 1)

10
+ 1

4

)
γD,2

)
〈r−8〉nL

) 〈X[2](Jc) · C[2](r̂)〉(
Jc 2 Jc

−Jc 0 Jc

) , (44)

where the core parameters are given by

αD,2 = 2

√
10

3

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 1 Jc

2 Jc 1

} 〈gJc‖M [1]‖λ′J ′
c〉2

�E(λ′J ′
c)

, (45)

αQ,2 = −2

√
10

7

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 2 Jc

2 Jc 2

} 〈gJc‖M [2]‖λ′J ′
c〉2

�E(λ′J ′
c)

, (46)

αO,2 = 4

3

√
15

7

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 3 Jc

2 Jc 3

} 〈gJc‖M [3]‖λ′J ′
c〉2

�E(λ′J ′
c)

, (47)

αDO,2 = −4

√
15

7

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)2J ′
c

{
J ′

c 1 Jc

2 Jc 3

} 〈gJc‖M [1]‖λ′J ′
c〉〈λ′J ′

c‖M [3]‖gJc〉
�E(λ′J ′

c)
, (48)

αQH,2 = 4

√
10

7

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)2J ′
c

{
J ′

c 2 Jc

2 Jc 4

} 〈gJc‖M [2]‖λ′J ′
c〉〈λ′J ′

c‖M [4]‖gJc〉
�E(λ′J ′

c)
, (49)

βD,2 = 1

2

√
10

3

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 1 Jc

2 Jc 1

} 〈gJc‖M [1]‖λ′J ′
c〉2

[�E(λ′J ′
c)]2

, (50)

βQ,2 = −2

√
10

7

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 2 Jc

2 Jc 2

} 〈gJc‖M [2]‖λ′J ′
c〉2

[�E(λ′J ′
c)]2

, (51)

βDO,2 = −4

√
15

7

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)2J ′
c

{
J ′

c 1 Jc

2 Jc 3

} 〈gJc‖M [1]‖λ′J ′
c〉〈λ′J ′

c‖M [3]‖gJc〉
[�E(λ′J ′

c)]2
, (52)

γD,2 = 1

2

√
10

3

(
Jc 2 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 1 Jc

2 Jc 1

} 〈gJc‖M [1]‖λ′J ′
c〉2

[�E(λ′J ′
c)]3

. (53)

The term proportional to r−4 is standard, and the expression for αD,2 agrees with that first described by Angel and Sandars [18].
The terms proportional to r−6 agree with the results of Clark, Greene, and Miecznik [12], except for an additional term that is
included in their Eq. (29). The additional terms are new.

The portion of E[2] proportional to the scalar product of third rank tensors is initially found as a multiple of V3(K):

V3(K) =
√

7〈X[3](Jc) · X[3](r̂)〉, (54)

where X[3](Jc)and X[3](r̂) are unit tensors. Since only matrix elements diagonal in L are desired for this term, it is convenient to
write it in terms of a specific third-rank tensor

T [3](r̂) ≡ (C[2](r̂) ⊗ �L)[3], (55)

whose reduced matrix elements are given by

〈L|T [3](r̂)|L〉 = −1

4

√
3

5

√
(2L − 2)2L(2L + 1)(2L + 2)(2L + 4)

(2L − 1)(2L + 3)
. (56)
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The resulting contributions to E[2] are

E
[2]
3 (nLK ) = (βQ,3 + βDO,3)〈r−8〉nL〈X[3](Jc) · T [3](r̂)〉, (57)

with the core parameters defined as

βQ,3 =
√

21

2

∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 2 Jc

3 Jc 2

} 〈gJc‖M [2]‖λ′J ′
c〉2

[�E(λ′J ′
c)]2

(58)

and

βDO,3 =
√

35
∑
λ′,J ′

c

(−1)2J ′
c

{
J ′

c 1 Jc

3 Jc 3

} 〈gJc‖M [1]‖λ′J ′
c〉〈λ′J ′

c‖M [3]‖gJc〉
[�E(λ′J ′

c)]2
. (59)

Notice, again, that there is no adiabatic term in the third-rank tensor portion of E[2]. This is similar to the vector term and
suggests that all odd-order adiabatic contributions will be zero. To date, no experimental evidence of such third-rank tensor
structure has been seen. As with the vector structure, it is possible that magnetic structure, in this case magnetic octupole
structure, could compete with third-rank electric fine structure. This would be expected to be proportional to the permanent
octupole moment of the core ion (requiring Jc > 1) and to the inverse fifth power of the Rydberg radial coordinate.

For b = 4, the leading term from Sec. II A is proportional to the core’s hexadecapole moment. For consistency, the terms in
the effective potential of this order are also written as proportional to

〈X[4](Jc) · C[4](r̂)〉(
Jc 4 Jc

−Jc 0 Jc

) . (60)

The energy thus becomes

E
[2]
4 (nLK ) = −1

2
((αQ,4 + αDO,4)〈r−6〉nL + (αO,4 − 6βQ,4 + αQH,4 − 6βDO,4)〈r−8〉nL)

〈X[4](Jc) · C[4](r̂)〉(
Jc 4 Jc

−Jc 0 Jc

) , (61)

where

αQ,4 = 18

5

√
10

7

(
Jc 4 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 2 Jc

4 Jc 2

} 〈gJc‖M [2]‖λ′J ′
c〉2

�E(λ′J ′
c)

, (62)

αO,4 = −18

√
2

77

(
Jc 4 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 3 Jc

4 Jc 3

} 〈gJc‖M [3]‖λ′J ′
c〉2

�E(λ′J ′
c)

, (63)

αDO,4 = 24

√
1

7

(
Jc 4 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)2J ′
c

{
J ′

c 1 Jc

4 Jc 3

} 〈gJc‖M [1]‖λ′J ′
c〉〈λ′J ′

c‖M [3]‖gJc〉
�E(λ′J ′

c)
, (64)

αQH,4 = −24

√
5

77

(
Jc 4 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)2J ′
c

{
J ′

c 2 Jc

4 Jc 4

} 〈gJc‖M [2]‖λ′J ′
c〉〈λ′J ′

c‖M [4]‖gJc〉
�E(λ′J ′

c)
, (65)

βQ,4 = 3

2

√
10

7

(
Jc 4 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)J
′
c+Jc

{
J ′

c 2 Jc

4 Jc 2

} 〈gJc‖M [2]‖λ′J ′
c〉2

[�E(λ′J ′
c)]2

, (66)

βDO,4 = 10

√
1

7

(
Jc 4 Jc

−Jc 0 Jc

) ∑
λ′,J ′

c

(−1)2J ′
c

{
J ′

c 1 Jc

4 Jc 3

} 〈gJc‖M [1]‖λ′J ′
c〉〈λ′J ′

c‖M [3]‖gJc〉
[�E(λ′J ′

c)]2
. (67)

The two terms proportional to r−6 agree with the results of Clark, Greene, and Miecznik [12]. The other terms are new.
This completes the list of terms which contribute to E[2] proportional to r−s with s � 8, as long as Jc < 3. This is sufficient

to account for all cases studied experimentally to date. The full effective potential to this point consists of the sum of all the
second-order terms listed above plus the two first-order terms from Sec. II A.

C. Rydberg intermediate states

The expression for the second-order perturbation energy derived in Sec. II B excluded the contributions to E[2] from intermediate
states where the core was in its ground electronic state. The number of such states depends on the ion in question. For an ion with
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an S-state ground electronic state, for example, there is only one ground state. However, for ions with higher angular momentum
there may be two or more fine-structure levels within the same electronic state. For example, the ion Ar+ has a 2P3/2 ground
state and a 2P1/2 excited level within the same electronic state. We consider any state of the combined system in which the core
is in the ground electronic state to be a “Rydberg state” and denote it by

(gJ ′
c)n′L′

K. (68)

The contribution of such states to the second-order perturbation energy, omitted in Sec. II B, is given by

E
[2]
RS(nLK ) = − �′

J ′
c,n

′,L′

〈(gJc)nLK |V |(gJ ′
c)n′L′

K〉〈(gJ ′
c)n′L′

K |V |(gJc)nLK〉
�E(gJ ′

c) + E(n′) − E(n)
, (69)

where the prime on the summation symbol indicates that the intermediate states do not include the initial state (gJc)nLK . This
term describes the shift in energy of a particular Rydberg level (gJc)nLK due to its coupling with other Rydberg states, either
bound to the same core fine-structure level (Jc) or to a different fine-structure level (J ′

c). Note that only the even operators in
V give nonzero results given the constraints due to parity. In low-L Rydberg levels, it is usual for these couplings to be strong,
leading to perturbation of one Rydberg series by another. When these perturbations are strong compared to the spacing between
adjacent Rydberg states, they make it necessary to describe the Rydberg structure using the formalism of multi-channel quantum
defect theory. In high-L Rydberg levels the effects of these couplings are generally very small, partly because all the matrix
elements of V decrease rapidly with L. For example, even the diagonal elements of the leading multipole (quadrupole) term
in V decrease approximately as L−3. Thus, as L increases, all the effects of interseries coupling decrease rapidly and become
small corrections to the Rydberg energies. Of course, an exception would occur if, by chance, two Rydberg states bound to two
different core levels happened to be very nearly degenerate so that even a small coupling matrix element would produce a large
shift in energy. Another possible near degeneracy arises between Rydberg levels bound to the core ground state (Jc) and having
the same n but different L. One might assume that the quadrupole term in V would lead to strong coupling between the (Jc)nLK

and (Jc)n(L±2)K levels, which are nearly degenerate even after the first-order perturbation energies are applied. However, in
this case, the quadrupole coupling is identically zero for hydrogenic wave functions because of the selection rule〈

nL

∣∣∣∣ 1

r3

∣∣∣∣n,L ± 2

〉
= 0. (70)

Higher permanent moments could, in principal, couple such levels, but in practice the energies of these Rydberg levels
differ as a result of the first- and second-order energies discussed in Secs. II A and II B above. The weak couplings due to the
hexadecapole and higher multipoles in V produce only very minor energy shifts even when J ′

c = Jc and n′ = n. The main effect
of the quadrupole couplings is through nondegenerate intermediate states. It is given by

E
[2]
RS(QQ) = − �′

J ′
c,n

′,L′

〈
(gJc)nLK

∣∣M [2] · C[2](r̂)
r3

∣∣(gJ ′
c)n′L′

K

〉〈
(gJ ′

c)n′L′
K

∣∣M [2] · C[2](r̂)
r3

∣∣(gJc)nLK

〉
�E(gJ ′

c) + E(n′) − E(n)

= − �′
J ′

c,n
′,L′

{
K L Jc

2 J ′
c L′

}2 (
L 2 L′

0 0 0

)2

(2L + 1)(2L′ + 1)〈gJc‖M [2]‖gJ ′
c〉2 [nL|r−3|n′L′]2

�E(gJ ′
c) + E(n′) − E(n)

. (71)

Evaluation of this expression requires the off-diagonal matrix elements of the quadrupole operator between the ground-state
fine-structure levels. The diagonal element is easily estimated from the gross features of the high-L Rydberg fine structure,
which reveal the ground-state quadrupole moment. Assuming that the ground-state levels are approximately LS coupled leads
to an estimate of the off-diagonal element that is typically of sufficient precision. The selection rules for couplings due to the
quadrupole term are �Jc = 0, ±1, ±2, and �L = 0, ±2.

The primary difficulty in evaluating Eq. (71) is carrying out the sum over n′, which includes both discrete and continuum
levels. Because of the quadratic dependence of the centrifugal potential on L′, the L′ = L + 2 sum is especially dependent on
the continuum contributions. The sum may be evaluated by explicit summation over a range of discrete levels and integration
over continuum levels. Alternatively, it can be evaluated using the method of Dalgarno and Lewis [19] where∑

n′

[nL|r−s |n′L′][n′L′|r−q |nL]

�E(gJ ′
c) + E(n′) − E(n)

= 〈nL|r−s |f (r)〉, (72)

where the function f (r) is the first-order correction to the wave function |nL〉 and satisfies a differential equation specific to each
(J ′

c, L′) series [20].
The results of Secs. II A and II B can be described as an effective potential in the space of Rydberg levels whose expectation

value gives the most important contributions to the Rydberg energies. Since the quadrupole term is the leading term in the
effective potential and Eq. (69) describes its effect through mixing different Rydberg levels, it begins to represent application of
the effective potential in “second order” within the space of Rydberg levels. It is useful to consider whether other terms in the
effective potential could also have significant effects of this type.
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The simplest example of this is the shift caused by application of the leading scalar term in Veff proportional to αD,0. This was
considered by Drachman in his treatment of the case of helium Rydberg levels (Jc = 0). He showed that the lowest multipole
term in the fourth-order perturbation energy containing an intermediate Rydberg level corresponded, after making the adiabatic
approximation to the two other energy denominators, to application of the αD,0 term in second order, giving the result

E[4](nLK ) = −
∑
n′

〈
(gJc)nLK

∣∣− 1
2

αD,0

r4

∣∣(gJc)n′LK

〉2
E(n′) − E(n)

+ · · · . (73)

This led to a significant shift of the energy levels in helium [6]. The shift is a universal function of (n,L) and αD,0, and it was
later evaluated analytically by Drake and Swainson [21].

In considering the more general case of Jc � 0, the leading terms in the effective potential have the form

Veff ≈ −1

2

αD,0

r4
−

(
Q

r3
+ 1

2

αD,2

r4

)
X[2](Jc) · C[2](r̂)(

Jc 2 Jc

−Jc 0 Jc

) . (74)

The terms proportional to the scalar and tensor dipole polarizabilities also have the potential to mix different Rydberg series and
produce energy shifts to a particular level. These energy shifts occur formally as parts of the third- and fourth-order perturbation
in V . They are likely the largest contributions from third- and fourth-order perturbation since they include contributions of one
intermediate state where the core is not electronically excited. Terms proportional to Qα occur in the third-order perturbation
energy, while terms proportional to αα occur in the fourth-order perturbation energy. Both types of terms include one Rydberg
intermediate level [denoted (gJ ′

c)n′L′
K in Eq. (75)] and contain the factor

∑
λ′′,J ′′

c ,n′′,L′′

〈
(gJc)nLK

∣∣M [1] · C[1](r̂)
r2

∣∣(λ′′J ′′
c )n′′L′′

K

〉〈
(λ′′J ′′

c )n′′L′′
K

∣∣M [1] · C[1](r̂)
r2

∣∣(gJ ′
c)n′L′

K

〉
�E(λ′′J ′′

c )
, (75)

which can be shown to be equal to

〈
(gJc)nLK

∣∣1

2

αD,0

r4
+ 1

2

αD,2(J ′
c)

r4

X[2](Jc) · C[2](r̂)(
Jc 2 Jc

−Jc 0 Jc

) ∣∣(gJ ′
c)n′L′

K

〉
, (76)

where the reduced matrix elements of X[2](Jc), both diagonal and off-diagonal in Jc, are equal to 1. The coefficient αD,0 is the
usual scalar polarizability, given in Sec. II B, and the term proportional to it satisfies the selection rules �Jc = �L = 0. The
coefficient αD,2 (J ′

c) is given by the expression

αD,2(J ′
c) = 2

√
10

3

(
Jc 2 Jc

−Jc 0 Jc

)
(−1)J

′
c−Jc

∑
λ′′,J ′′

c

(−1)2J ′′
c

{
J ′′

c 1 Jc

2 J ′
c 1

} 〈gJc‖M [1]‖λ′′J ′′
c 〉〈λ′′

cJ
′′
c ‖M [1]‖gJ ′

c〉
�E(λ′′J ′′

c )
. (77)

Note that this reduces to the result shown in Sec. II B if J ′
c = Jc, i.e., for terms diagonal in Jc, but it differs for nondiagonal

terms. For example, if Jc = 5/2, there are contributions to αD,0 and αD,2 from branches with J ′
c = 3/2, 5/2, and 7/2, but an

off-diagonal αD,2 coupling to levels with J ′
c = 3/2 can have no contribution from the J ′

c = 7/2 branch. This restriction is enforced
by the 6J symbol in Eq. (77). This term satisfies the same selection rules as the quadrupole term: �Jc = 0, ±1, ±2, and �L =
0, ±2.

This implies that the leading “second-order” effects of Veff can be written as

E
[2]
eff (nLK ) = �′

J ′
c,n

′,L′

〈(gJc)nLK |Veff|(gJ ′
c)n′L′

K〉〈(gJ ′
c)n′L′

K |Veff|(gJc)nLK〉
�E(gJ ′

c) + E(n′) − E(n)
, (78)

where

Veff ≈ −1

2

αD,0

r4
−

(
Q(J ′

c)

r3
+ 1

2

αD,2(J ′
c)

r4

)
X[2](Jc) · C[2](r̂)(

Jc 2 Jc

−Jc 0 Jc

) , (79)

in which αD,2(J ′
c ) is given by Eq. (77) and

Q(J ′
c) = (−1)J

′
c−Jc

√
2J ′

c + 1

2Jc + 1

{
Sc Lc Jc

2 J ′
c Lc

}
{

Sc Lc Jc

2 Jc Lc

} 〈gJc‖M [2]‖gJc〉
(

Jc 2 Jc

−Jc 0 Jc

)
, (80)
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where Lc and Sc are the assumed L and S values, respectively,
for the core ground electronic state. This expression reduces
to the usual quadrupole moment for diagonal terms and gives
the result indicated by pure LS coupling for the off-diagonal
quadrupole coupling.

When E[2]
eff [Eq. (78)] is evaluated, it reduces to terms

analogous to Eq. (71) while containing sums like Eq. (72)
with (s,q) = (3,3), (3,4), and (4,4). The higher inverse powers
generally correspond to smaller shifts, and examining the
dependence of the calculated shift on the total inverse power
can provide a clue to the probable precision of a result truncated
with these terms. If necessary, higher terms in Veff can also be
included.

D. Spin and relativistic terms

There are several small additional terms not included in the
nonrelativistic model described above. The first is the standard
relativistic correction to the kinetic energy of a hydrogenic
Rydberg electron, given by

Erel = α2
FSQ

2

2n4

(
3

4
− n

L + 1
2

)
, (81)

where αFS is the fine-structure constant. This term is due to
the “p4” contributions to the kinetic energy.

The next two terms describe the magnetic interaction
between the Rydberg electron and the core ion’s magnetic
moments. The dominant effect is due to the magnetic dipole
moment of the core, given by

EcoreM1 =
〈
−gJ α2

FS

2r3
�L · �Jc

〉
, (82)

where gJ is the core’s g value. This term is gener-
ally much larger than the electric vector terms discussed
in Sec. II B. Another possible magnetic interaction with the
core ion is through its permanent magnetic octupole moment.
An octupole moment could occur in any ion with Jc > 1 and
thus contribute to the Rydberg fine structure through a term
similar to the third-order tensor terms in Veff . We will simply
parametrize such a term as

EcoreM3 =
〈
CM3

r5
(X[3](Jc) · T [3](r̂))

〉
, (83)

where T [3](r̂) is defined in Eq. (55).
An additional magnetic interaction is with the magnetic

moment of the Rydberg electron, either through spin-orbit
interaction from its own orbital motion or with the magnetic
field from the core ion’s magnetic moment. These are given
by

ESR
=

〈
α2

FS

2r3
[ �L · �SR + gJ

�JC · (1 − 3r̂ r̂) · �SR]

〉
, (84)

where �SR is the Rydberg spin. This interaction splits the nLK

level into two states with J = K ± 1
2 .

All of these terms make only small contributions to the
energy of a nonpenetrating Rydberg electron since such an
electron is very nonrelativistic.

III. DISCUSSION

The main application of the effective potential model is
to provide a framework for extracting measurements of core
ion properties from experimental measurements of high-L
Rydberg fine-structure patterns. A good example of this is
a recent study of argon Rydberg levels [16]. In that study,
the relative positions of twenty Rydberg levels within the
n = 10 manifold with 5 � L � 9 were measured with
precision of better than 1 MHz. This pattern of level positions,
which spanned a range of more than 25 000 MHz, could be
expected to represent the expectation value of the effective
potential generated by interactions with the Ar+ core ion. More
precisely, this would be the case except for the small level
shifts represented by the relativistic corrections in Eq. (81)
and the second-order effects of Veff from Eq. (78). Calculation
of E[2]

eff , of course, requires some level of knowledge of the
core parameters. Rough values may be obtained by initially
assuming that E[2]

eff is zero. It is then calculated using
these approximate numbers, and the process repeated until
consistent values of the core parameters are found. Table V
of Ref. [16] shows the effect of these small corrections and
the results once they are removed from the observed pattern.
The calculated contributions of E[2]

eff are small, and decrease
smoothly with L, indicating that the influence of mixing
between different Rydberg series is relatively minor.

Once the corrections were removed, the data pattern could
be decomposed into the contributions of scalar, vector, and
tensor orders, defining the structure factors shown in Table VI
of Ref. [16]: A0(L), A1(L), and A2(L). Note that since
Ar+ has a 2P3/2 ground state, a third-order contribution
to the structure is possible. A satisfactory fit of the data
pattern, however, was obtained without including this term.
The variation of the structure factors with L was then used,
in combination with the form of the effective potential, to
extract experimental estimates of the leading core properties.
For example, the tensor structure factor A2(L) is expected
to be dominated by a contribution proportional to 〈r−3〉nL,
with smaller contributions proportional to 〈r−4〉nL and perhaps
〈r−6〉nL. Thus scaling the measured A2(L) factors by 〈r−3〉nL

and plotting the ratio versus 〈r−4〉nL/〈r−3〉nL leads to the plot
shown in Fig. 7 of Ref. [16], from which core properties Q

and αD,2 were both determined. A similar scaled plot of A1(L),
Fig. 8 in Ref. [16], determined the gJ value of Ar+ and the core
property βD,1. The A0(L) plot is slightly more complicated
since only the relative positions of the twenty levels were
measured experimentally. Consequently, only differences of
A0 factors are significant. Still, a plot of A0(L + 1)-A0(L)
scaled to the difference of expectation values of r−4 was
used to determine αD,0 from the experimental measurements,
and is shown in Fig. 9 of Ref. [16]. In all cases, the
appearance of the scaled plots was completely consistent with
the expectations based on the form of the effective potential.
The precision of the core properties derived in this way is
remarkable. The quadrupole moment, Q, was determined to
0.004% while the scalar polarizability, αD,0, was determined
to 0.03%. Measurements of comparable properties of neutral
atoms are difficult or impossible to obtain at this precision.
Measurements of these ion properties pose a challenging test
of even the most advanced theoretical methods. Confidence
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in the form of the effective potential is an important factor in
analyzing such experimental measurements.

One limitation of the derivation presented in Sec. II is
its reliance on the convergence of the adiabatic expansion.
Recall that this is based on the dominance of the core
excitation energy, �E(λ′J ′

c), in the denominator of the second-
order perturbation energy as compared to the difference of
Rydberg energies, E(n′)-E(n), that also occurs there. It is
possible to predict the failure of this expansion in a particular
case by using the properties of Rydberg electrons to estimate
the typical value of the second quantity. Using the case where
κ1 = κ2 = 1 as an example, the “average” Rydberg energy
difference can be estimated using Eqs. (19) and (20):

[E(n′) − E(n)]AV =
∑
n′

[E(n′) − E(n)]〈nL|r−2|n′L′〉2

∑
n′

〈nL|r−2|n′L′〉2

= 1

2
[4 − L(L + 1) + L′(L′ + 1)]

〈r−6〉nL

〈r−4〉nL

.

(85)

If the ratio of this average Rydberg energy difference and
the lowest core excitation is small, then the adiabatic expansion
is likely to converge well. Take for example the n = 10 and
L = 6 Rydberg level of a neutral Rydberg system. In this case
the average Rydberg energy difference is + 2897 cm−1 if L′ =
7 and − 1287 cm−1 if L′ = 5. If the core ion is He+, where the
lowest dipole excitation is 329 179 cm−1, this suggests rapid
convergence of successive terms of the adiabatic expansion. If
the core ion is Sr+, where the lowest dipole excitation is 14
556 cm−1, convergence is likely to be less rapid. Of course,
since the ratio of expectation values of r−6 and r−4 decreases
rapidly with L, higher L Rydberg levels of the same n should
show more rapid convergence.

Fortunately, if a case of nonconvergence of the adiabatic
expansion is encountered, the cause is often a single low-lying
excited core level with a known position, and this suggests a
fairly simple solution. The contribution to the second-order
perturbation energy from intermediate states containing this
single excited core level can be calculated separately and added
to the expectation value of the effective potential, which still
describes the contributions of all other intermediate states.
The calculated contribution from states containing the specific
low-lying core level must be calculated individually for each
Rydberg level of interest, and its dependence on n, L, and K

may be very different from the form predicted by the effective
potential. It is also usually known only up to a constant that
represents the square of the matrix element coupling the core
ground state to the low-lying state of interest. This constant
can be treated as an additional parameter in matching observed
fine-structure patterns to the form predicted by the effective
potential. This procedure was followed by Gallagher, Kachru,
and Tran [4] and Snow and Lundeen [22] in their analysis
of the barium Rydberg spectrum. In this case the offending
low-lying level is the 5d level, which dominates the quadrupole
polarization energies.

Another issue that has arisen in analysis of Rydberg spectra
involves the problem of fitting the fine-structure pattern’s
dependence on L to a sequence of inverse powers of r , as

briefly described above. While the expectation value of each
successive inverse power of r decreases smoothly with L, the
variation between r−4 and r−6 or between r−6 and r−8 is much
more dramatic than between r−6 and r−7. It may be possible
to fit the data pattern to a sum of contributions proportional
to r−4, r−6, and r−8, but impossible to distinguish possible
contributions proportional to r−7 or to the very similar L(L
+ 1)r−8. This problem is exacerbated by the possibility of
an additional contribution proportional to r−7 coming from
the lowest multipole adiabatic third-order perturbation energy
which gives rise to a term proportional to a quantity “δ,” dis-
cussed in Ref. [23]. This is most significant when it is desired
to extract a reliable measurement of the coefficient of r−6 in the
pattern of experimental energies, as in Si2+ [23] or Th3+ [24].

The effective potential derived here is similar to the
potential derived by Clark, Greene, and Miecznik in the case of
nondegenerate channels [their Eq. (20)] [12]. Their potential
contains terms up to the inverse sixth power of the Rydberg
radial coordinate, and all of their adiabatic terms agree with
ours. Their nonadiabatic terms, however, differ slightly from
our analogous results. The potential of their Eq. (20) represents
the simplest form of their description of high-L Rydberg
spectroscopy. Still, by numerically finding the eigenvalues in
that potential, one would already include some terms which
in our formulation would be included in our E[2]

eff , i.e., the
effects of mixing between Rydberg levels of the same L but
different n all coupled to the ground state of the ion core.
Clark, Greene, and Miecznik continue by describing more
complex formalisms in which the coupling to other channels
corresponding to different values of L and perhaps Jc, but the
same value of K , are also included prior to numerical solution
of the eigenvalue problem. Without a doubt, a calculation based
on these more complex formalisms should be more successful
in describing the structure of Rydberg levels where coupling
between different Rydberg series is significant. Whether this is
necessary to describe a particular Rydberg system will depend
on the details of the Rydberg core interactions.

One interesting feature of the effective potential is the
presence of odd-order tensor interactions, both vector and
third-order. The vector terms in high-L Rydberg structure
have an extensive history. The first clear observation of such
effects occurred in a study of high-L Rydberg states of barium
by Gallagher, Kachru, and Tran [4]. In this case the core
ion was a 2S1/2 state, and large splittings were observed
between the two possible values of K = L ± 1

2 . The observed
splittings were much larger than could be accounted for by the
expected magnetic interactions. Some years later, stimulated
by related, but much smaller, anomalies in the structure of
high-L Rydberg levels of Si2+, these vector splittings were
explained as an indirect effect of the spin-orbit splittings
in excited 2P levels of Ba+ [25]. These indirect spin-orbit
splittings, or K-splittings as they were also called, were
later exploited to extract precise measurements of dipole
and quadrupole transition strengths in Ba+ [26–28]. In the
meantime, an apparently different type of vector splitting was
predicted by Zygelman [15] using a Berry phase argument.
This splitting was thought to be limited to cases where the
core ion had nonzero orbital angular momentum. It was
later rederived and calculated more definitively by Clark,
Greene, and Miecznik [12], who coined the name “vector
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hyperpolarizability” to describe it. This is precisely the term
represented in Eq. (39) in Sec. II B that is proportional to
the coefficient βD,1. Experimental measurements first in neon
[17] and later in argon [16] displayed contributions of this
type, vector terms proportional to r−6, and confirmed the
coefficient calculated by Clark, Greene, and Miecznik [12].
The argon measurements also suggested that higher-order
terms proportional to r−8 might be present, as is now predicted
by Eq. (39) in Sec. II B. These two types of vector interactions,
indirect spin-orbit and vector hyperpolarizability, showed
many superficial similarities. They were both proportional to
r−6 in lowest order, and both were traced to nonadiabatic
response of the core to the Rydberg electron. However, the
vector hyperpolarizability was thought to require a nonzero
core angular momentum, and would therefore be absent in
the barium Rydberg states. In fact, they are both described by
Eq. (39) of Sec. II B. When the coefficients βD,1 and βQ,1 are
evaluated for the case of a 2S1/2 core ion, they reproduce
the results given in Eqs. (15) and (22) of Ref. [25]. We
note that, for this case, both coefficients would be zero in
the absence of spin-orbit splittings in the excited states of the
core, as emphasized by the appearance of Eqs. (15) and (22)
of Ref. [25]. Yet, the two effects, thought to be quite different,
are truly aspects of the same physical effect.

Another issue is the completely nonrelativistic derivation
of the effective potential. One may question whether it is
reasonable to expect that the calculation based on a completely

nonrelativistic Hamiltonian will describe Rydberg levels in
a system where the core ion’s nuclear charge is large, thus
making the core electrons relativistic even if the Rydberg
electron is nonrelativistic. In the absence of a fully relativistic
calculation describing the complete Rydberg system, there
is no way to answer this question definitively. However,
it seems plausible that the physical properties of the core,
polarizabilities and permanent moments, would exist even for a
highly relativistic core ion, and would interact in a similar way
with the nonrelativistic Rydberg electron. These properties, of
course, could never be accurately calculated within the non-
relativistic model used in this paper, but would instead require
much more sophisticated relativistic formulations of atomic
structure theory. There is some circumstantial evidence to
suggest that the form of the potential is correct even if the core
ion is highly relativistic and that it is still correct to use the form
of the potential to interpret the spectroscopy of nonpenetrating
Rydberg electrons to extract core properties, even of highly
relativistic positive ions. The strongest evidence along these
lines is the agreement between the dipole polarizabilities of
Pb2+ and Pb4+ extracted from spectroscopy of high-L Rydberg
levels of Pb II and Pb IV [29] and the calculated values obtained
using relativistic many-body perturbation theory [30]. The
experimental values were 13.62(8) and 3.61(4) a.u. [29] and
the calculated values were 13.30 and 3.63 [30]. There is, as yet,
no comparable comparison for Rydberg states bound to highly
relativistic core ions with nonzero orbital angular momentum.
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