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Saturated absorption and crossover resonances in a high-finesse cavity: Formalism and application
to the hyperfine structure of jet-cooled NO2 by saturated-absorption cavity-ring-down spectroscopy
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The qR0(0) rotational transition in the Ã 2B2 ←− X̃ 2A1 system of jet-cooled NO2 located around 12 536 cm−1

is analyzed using a nonlinear-susceptibility formalism designed to describe the saturated absorption due to two
identical counter-propagating radiations in an n-level system. An analytical solution of the equations of motion
is obtained in the frequency space by considering the pertinent experimental conditions, mainly a high-finesse
cavity and a slit-shaped supersonic expansion. Calculation of the nonlinear absorption coefficient requires the
summing of all Zeeman-component contributions and a final numerical integration over the frequency detuning
assuming a Maxwell-Boltzmann speed distribution. Determination of the experimental absorption coefficients
is obtained by converting the shape of the temporal decay of the electromagnetic field amplitude initially
captured inside the cavity. The molecular Hamiltonian includes both spin-rotation and hyperfine interactions.
Molecular constants relative to the upper level are derived by exploiting Doppler-broadening-free so-called
saturated-absorption cavity-ring-down spectroscopy. The dipole moment of the partially assigned hot band is
obtained [μband = 0.0047(12) D] together with the number density and the effective population relaxation rates.
The model is validated by varying the intracavity power from 0 to 230 W (i.e., up to a maximum peak irradiance of
240 × 103 W/cm2), representing saturation coefficients up to 120. The experimental position, shape, and width
of the Lamb and crossover dips are well reproduced. The spatial shape and modulation of the electromagnetic
field are discussed.
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I. INTRODUCTION

Since the 1960s, the saturated-absorption (SA) phe-
nomenon in the gas phase has focused attention because
it easily allows reaching a Doppler-broadening-free spectral
resolution when two counter-propagating laser beams impinge
on the species under study. It was first observed in gas lasers
and was seen as an undesirable effect [1–5]. Then it was
promoted as a very convenient technique to get around Doppler
broadening [6] and has become a noteworthy implement for
metrology and high-resolution spectroscopy purposes [7–9].
However, because it is basically a nonlinear process requiring
distinction of at least two components of the electromagnetic
(EM) field, the determination of the intensity and shape of the
transitions requires, one way or another, a nonlinear suscepti-
bility tensor component to be calculated. The recent advent and
diffusion of high-finesse optical cavities (such as those used
for cavity-ring-down spectroscopy; CRDS) have created new
interest in accurately exploiting this nonlinear effect. The high
intensity of the EM field, which can be captured inside such
cavities, allows examination of molecular transitions under
saturation exhibiting even a moderate absorption cross section.
To the author’s best knowledge, the first SA spectrum showing
a Lamb dip by using the CRDS technique was reported for
nitrogen dioxide [10]. Unsurprisingly, nonlinear absorption
breaks the usual exponential ring-down (RD) temporal decay.
Instead, nonexponential decays can be quantitatively analyzed
if decent control of the captured beam shape and intensity
is supplied [11]. Although nonexponential decays have been
reported several times in the past, their analysis may remain
difficult because of the possible combined effects of the
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saturation and of the broad spectral extension of the radiation
source (pulsed CRDS) compared with the molecular transition
[12–14]. With the use of continuous-wave (cw)-CRDS, in
2000, weak Lamb dips were reported for ethylene in the 10-μm
range [15] and then by Hodges’s group for gaseous water
[16,17], but none of these authors mentioned nonexponential
decay. More recently, Lamb dips exhibiting the hyperfine
structure of 17O12C16O have been reported [18], as well as
the associated nonexponential decays. A tentative analysis
of nonexponential decays has been published by Lee and
Hahn [19], using a rate-equation-based model.

Because Doppler-broadening-free SA involves two
counter-propagating waves, nonstatic particles can experience
two distinct EM fields, each one characterized by an opposed
Doppler frequency shift (the recoil effects [20] are ignored
here). Hence a given molecule can simultaneously absorb
over two different transitions (i.e., at two different frequen-
cies), raising additional crossover resonances [21–29]. If two
transitions share a same energy level (requiring consideration
of a three-level system) and if their frequency difference
does not exceed the molecular Doppler broadening (along
the velocity component interrogated), they will interfere. This
behavior needs to be distinguished from the case where two
transitions do not share a common level (e.g., the case of
two independent two-level systems), giving rise to a crossover
dip whose amplitude differs from that due to the interfering
transitions.

The radical NO2 has a long spectroscopic history for
several reasons: (i) it absorbs in the visible spectral range,
(ii) it is an atmospheric constituent, and (iii) it offers rich
and complex spectroscopy. The NO2 spectrum is relatively
well understood up to ∼ 10 000 cm−1 [30]; however, above
this energy, a conical intersection [31,32] strongly perturbs
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the vibrational structure and, possibly, the rotational structure.
Only jet-cooling conditions combined with double-resonance
spectroscopy allowed an extended vibrational identification
[30,33]. Rotational spectroscopy can also suffer from such
an interaction, providing dispersed values of the rotational
constants when analysis by frequency difference combina-
tions are performed [34,35]. Fortunately, the vibrationless
ground state is now well documented and the fine and
hyperfine tensor components have been available to a high
accuracy since the 1960s, thanks to microwave studies
[36–38].

Hyperfine structures of NO2 in state Ã 2B2 were first
observed by Demtröder and collaborators in 1974, at around
19 435 cm−1 (detection by fluorescence) [39], thanks to a
skimmed jet expansion and a high-resolution laser source
(resolution limited to 20 MHz). Recently, using a similar
jet expansion combined with bolometric detection (residual
linewidth of 12 MHz) [40–42], a more extensive study
of the Fermi contact term focused on the vibronic mix-
ture of the upper state for bands located between 11 200
and 13 680 cm−1. The quantum beat technique is also
an alternative way to determine hyperfine structures; the
accuracy of the gap determination between the level ener-
gies is independent of the spectral resolution of the laser
source [43].

The present paper combines data obtained with a supersonic
slit-shaped expansion residing inside a CRDS cavity and a
relevant modeling of the SA. SA is only observable if the
absorption cross sections are large enough; for jet-cooled NO2

currently only hot vibronic bands, issued from the vibrational
mode ν2 (bent), match such a condition. Presently, we report on
one rotational transition qR0(0), located around 12 536 cm−1

and belonging to a band previously identified as strong [35].
Fine and hyperfine interactions split this transition into nine
components, which are all observable, thanks to the Doppler-
free technique considered here. Attempts to assign the rest of
the band have failed until now.

We show that the combination of a crude slit expansion
with the cw-CRDS technique is almost optimal for study of
SA (so-called SA-CRDS), if full control of the injected beam
is obtained. This includes control of the spatial extension and
intensity of the intracavity beam and accurate monitoring of
the temporal decay. The SA-CRDS technique conveniently
combines the triple advantages of (i) the sensitivity of detection
attached to the absorption enhancement due to the high-
finesse cavity, (ii) being Doppler broadening–free, and (iii)
being a self-calibrated absorption technique. Contrary to the
traditional absorption techniques measuring beam intensity
attenuation, the CRDS technique assesses cavity optical losses
through its characteristic time [44]. In the limit of linear (i.e.
weak) absorption, the RD time provides a straightforward
measurement of the absorption coefficient, independently of
the intensity of the EM field.

We have developed a semiclassical formalism based on the
density matrix in the frequency space and analytically solved
a set of coupled equations for a given value of the frequency
detuning. Initially applied to a three-level system, it has been
extended to an n-level system. The cross-coherence matrix
elements have been ignored and argued. The specific case of
noninterfering transitions is also discussed. The population

relaxation rates are basically assumed to be controlled by
the transit time. However, this assumption can be loose
since the transit time limits only the observable population
relaxation rate. It allows one to ignore complications due to
a nonmonochromatic EM field. Actually, the model should
only be valid for low saturation coefficients because the
harmonic contributions of the impinging frequencies [45] have
been neglected. A complete spectral simulation is obtained
by a single numerical integration and by summing up all
the Zeeman components. It turns out that the experimental
line profiles, including nonlinear resonances (i.e., crossover
resonances), have been accurately simulated. In addition, with
the purpose of simultaneously determining the band strength
and the number density, fits of the absorption dependence
versus the intracavity power have been performed. We con-
clude that the model applies to saturation coefficients as high
as 120. Furthermore, some features of supersonic expansion
are discussed, such as the residual Doppler broadening
and the number density of NO2 radicals seeded in the jet
expansion. The values of the Fermi contact interaction, of
one term of the electronic-spin nuclear-spin dipole interaction,
of the spin-rotation constant ε̃bb, and of the “band origin”
T ′

0 + B ′ + C ′ are given for the unassigned upper vibronic
level.

Calculation of the nonlinear absorption coefficient (scalar)
is based on a “nonperturbative” approach in the limit of
moderate absorption. This means that the absorbed EM field
modifies the population of the lower and upper levels by
pumping but is not itself altered by the absorption process. This
calculation deviates from perturbative approaches commonly
used to calculate the third-order susceptibility tensor when a
pump and a probe beam can be distinguished [46–48]. Here,
the role of both interfering EM fields is permutable (both
pump and probe beams are identical), which gives a high
symmetry to the problem.

The Mulliken modified notation is used to assign the
spin-rotation (or fine) structure [49–52]. When the hyperfine
structure must be addressed, lower and upper values of the total
angular momentum F are indicated (J-scheme of coupling
[53]), as well as the relevant Wang symmetry. Otherwise, the
asymmetric top nomenclature is used.

II. DENSITY-MATRIX FORMALISM

The scalar nonlinear susceptibility is sought using the
formalism of the density matrix. The density-matrix elements
are unknown quantities, while the molecular Hamiltonian,
the relaxation matrix elements, and the populations in the
absence of an external EM field are the given quantities. The
density-matrix elements are coupled quantities and no analyt-
ical solutions are available without approximation, which is
discussed. Performing the calculations in the frequency space
raises some changes compared with calculations in the time
space, typically in the physical dimension of the quantities
utilized. However, to avoid cumbersome notation, the usual
notation is used. Moreover, when a variable (typically the
frequency detuning) is listed as an argument of a function,
it may be simply removed from the argument list after
integration, without further notice.
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A. Liouville equation and level system

The Liouville equation in the time space is given by [54]

∂ρ̂(t,r)

∂t
= − i

h̄
[H0 + V̂ (t,r),ρ̂(t,r)] − 1

2
{ρ̂(t,r),�rel}

+ �̂(t,r), (1)

where H0, �̂, and �rel are diagonal matrices ([,] is the usual
commutation operator, and {,} denotes the matrix-density
relaxation). �rel is the phenomenological relaxation matrix,
H0 is the molecular Hamiltonian in the absence of external
interaction, V̂ (t,r) is the electric dipole interaction, and �̂(t,r)
is the molecule source term (r denotes the spatial coordinates).

We consider the interaction between an EM field and a
molecular system inside a space free of a static field (i.e.,
magnetic or electric). The generic molecular eigenlevels are
assigned by |lXl κl ml〉 and |uXu κu mu〉 to the lower and upper
level, respectively. X denotes the total angular momentum,
for example, N , J , or F , according to the internal coupling
scheme, while m (the orientational quantum number) denotes
its projection with respect to the laboratory-fixed quantization
axis assigning the Zeeman magnetic sublevels; κ denotes the
2X + 1 eigenvectors of the total angular momentum operator
(u and l denoting any additional assignment if necessary).

In this approach, the level system is constituted of “one”
lower level and several upper levels (“V”-shape configuration
[22,55]). Hence u can run from 1 to the number of upper levels.

When dealing with linear absorption, usually the Zeeman
sublevel structures can be partially ignored because all the
dipole moment matrix elements of the Zeeman transitions (or
subtransitions) are proportional to the reduced matrix element
(Wigner-Eckart theorem), independent of the intensity of the
EM field, and hence can be easily added by using a sum rule. In
contrast, when considering nonlinear absorption, this sum rule
does not apply because of the nonlinear EM-field dependence
of the dipole moment matrix elements.

For the sake of simplicity, we also assume that all the
Zeeman sublevels belonging to the same energy level have
the same source terms, �u or �l , and that the subtransitions
all have the same coherence (or transversal) damping rate γul ,
given by

γul = �u + �l

2
+ γcol, (2)

where γcol is the collisional rate (no additional energy redistri-
bution process is expected). The relevance of the population
damping rates �u and �l is discussed in Sec. II C.

The time dependence of the differential Liouville equation
can be Fourier transformed in the angular frequency space
(i.e., ω) by using the usual transformation operations (see
Appendix B). When considering only the spatial dependence
along the z direction, Eq. (1) becomes

iωρ(ω,z) = − i

h̄
[2πH0δ(ω) + V (ω,z),ρ(ω,z)]⊗

−1

2
{ρ(ω,z),�rel} + �(ω,z), (3)

where [,]⊗ is now the commutator including the relevant
convolution products (denoted ⊗) and δ(ω) is the Dirac δ

function (see Appendix B).

B. Solutions of the Liouville equation in the frequency space for
a three-level system (V-shape configuration)

The “three-level” system considered here is described by
“one” lower level and “two” upper levels; the latter levels are
not directly coupled together (i.e., V12 = V21 = 0). The “three-
level” system is in fact a [(2Xl + 1) + (2X1 + 1) + (2X2 +
1)]–sublevel system composed of three blocks of degenerated
levels. Each block being diagonal, the matrix can be treated
like it is a pure three-level system by indexing the density and
dipole moment matrix elements as ml , m1, and m2 (or mu), as
mentioned earlier.

In the absence of an external EM field, molecule pop-
ulations are governed by planar supersonic expansion [56],
which can be characterized by its spatial localization (viz., the
absorbing volume), its molecular orientation/alignment [57],
and the molecule speed distribution along the three spatial
directions, vx, vy , and vz. Assuming that the limit speed of
the carrier gas has been reached during the expansion it comes
vx = vlimit [56]. The component vz gives rise to a Doppler
shift (or frequency detuning) δ = ω

c
vz, while vy = 0 (the latter

hypothesis is re-examined in Sec. II G). The jet expansion
is supposed to conserve the space isotropy (no molecular
orientation or alignment is anticipated:

∑
ml

mlρml
= 0). In

addition, we assume that inside the expansion ∂ρii

∂z
� 0 (i =

l,u).
Assuming Galilean invariance and ignoring recoil effects

[58], solutions of the Liouville equation can be sought for a
given frequency detuning (δ) by introducing the relevant quan-
tities [e.g., see Eq. (24)]. Hence we get, for the populations,

iωρmumu
(ω,z,δ) = i[ρmlmu

(ω,z,δ) ⊗ muml
(ω,z)

−ρmuml
(ω,z,δ) ⊗ mlmu

(ω,z)]

−�uρmumu
(ω,z,δ) + �u(ω,z,δ), (4)

iωρmlml
(ω,z,δ) = i

∑
u

[ρmuml
(ω,z,δ) ⊗ mlmu

(ω,z)

−ρmlmu
(ω,z,δ) ⊗ muml

(ω,z)]

−�lρmlml
(ω,z,δ) + �l(ω,z,δ), (5)

and, for the coherences,

iωρmuml
(ω,z,δ)

= −i{(ωul + δ)ρmu ml
(ω,z,δ) − [ρmlml

(ω,z,δ)

−ρmumu
(ω,z,δ)] ⊗ muml

(ω,z)

+ ρmumu′ �=u
(ω,z,δ) ⊗ mu′ �=uml

(ω,z)} − γulρmuml
(ω,z,δ),

(6)
iωρmumu′ �=u

(ω,z,δ)

= i{ωu′uρmumu′ �=u
(ω,z,δ)

+ ρmlmu′ �=u
(ω,z,δ) ⊗ mu′ �=uml

(ω,z)

− ρmuml
(ω,z,δ) ⊗ mlmu′ �=u

(ω,z)} − γuu′ρmumu′ �=u
(ω,z,δ),

(7)

where ij is the Rabi frequency of the subtransition
[Vij (ω,z) = −h̄ij (ω,z)], given by

muμl
(ω,z,r) = |μmuml

|
h̄

E(ω,z,r). (8)
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The term μmuml
is the dipole moment matrix element of

the subtransition |uXu κu mu〉 ↔ |lXl κl ml〉, and E(ω,z,r) is
the Fourier transform of the temporal shape of the impinging
EM field, whose spatial dependencies are discussed in Sec.
II G. A slowly varying envelope approximation of the EM
field is assumed. In the rotating-wave approximation (RWA),
ρmuml

(ω,z,δ) = ρ∗
mlmu

(ω,z,δ).
The coherence terms, (6), and the so-called cross-coherence

(also so-called two-photon coherence) terms, (7), provide
couplings not only with the population terms but also between
the coherence matrix elements. The cross-coherence terms
ρmumu′ �=u

(ω,z,δ), or, to simplify, the notation ρm1m2 , clearly
play a specific role in the couplings between the coherences.
It is appealing to set the cross-coherences to 0; the reader can
find justification in Appendix A. This approximation allows
us to deal with the approximated coherences:

iωρmuml
(ω,z,δ)

= −i{(ωul + δ)ρmuml
(ω,z,δ)

−[ρmlml
(ω,z,δ) − ρmu mu

(ω,z,δ)] ⊗ muml
(ω,z)}

−γulρmuml
(ω,z,δ). (9)

By summing Eqs. (4) and (5), we get

iω

[
ρmlml

(ω,z,δ) +
∑

u

ρmumu
(ω,z,δ)

]
= −�lρmlml

(ω,z,δ) −
∑

u

�uρmumu
(ω,z,δ) + �l(ω,z,δ)

+
∑

u

�u(ω,z,δ), (10)

and by subtracting Eq. (4) from Eq. (5), we obtain

iω

[
ρmlml

(ω,z,δ) −
∑

u

ρmumu
(ω,z,δ)

]
= −2i

∑
u

[ρmuml
(ω,z,δ) ⊗ mlmu

(ω,z)

−ρmlmu
(ω,z,δ) ⊗ muml

(ω,z)] − �lρmlml
(ω,z,δ)

+
∑

u

�uρmumu
(ω,z,δ) + �l(ω,z,δ) −

∑
u

�u(ω,z,δ).

(11)

Introducing the quantities

�ul = �u + �l

2
(12)

and

δul = �u − �l

2
, (13)

and assuming �1 = �2 = �u, Eq. (10) can be recast as

ρmlml
(ω,z,δ) +

∑
u

ρmumu
(ω,z,δ)

= − δul

iω + �ul

[
ρmlml

(ω,z,δ) −
∑

u

ρmumu
(ω,z,δ)

]
+�l(ω,z,δ) +∑

u �u(ω,z,δ)

iω + �ul

, (14)

which can be substituted into (11) and gives the differential
population inversion,

ρmlml
(ω,z,δ) −

∑
u

ρmumu
(ω,z,δ) = −�l(ω)

1 − δul

iω+�ul

iω + �ul − δ2
ul

iω+�ul

−
∑

u

�u(ω)
1 + δul

iω+�ul

iω + �ul − δ2
ul

iω+�ul

+ ρρ(ω,z,δ), (15)

where

ρρ(ω,z,δ) = −2i

∑
u[ρmuml

(ω,z,δ) ⊗ mlmu
(ω,z) − ρmlmu

(ω,z,δ) ⊗ muml
(ω,z)]

iω + �ul − δ2
ul

iω+�ul

. (16)

By distinguishing the molecule traveling in each opposite direction (δ > 0), Eq. (9) becomes

ρ(±)
mlmu

(ω,z,δ) = 1

2

[ρmlml
(ω,z,δ) − ρmumu

(ω,z,δ)] ⊗ mlmu
(ω,z)

ωul − ω ∓ δ + iγul

. (17)

The solution of the population matrix elements can be obtained from Eqs. (15) and (17) by solving a system of coupled equations
for any frequency characterizing the impinging EM field when the initial level populations and source terms are known. They
are carried out by expressing the two population inversions, ρmlml

(ω,z,δ) − ρm1m1 (ω,z,δ) and ρmlml
(ω,z,δ) − ρm2m2 (ω,z,δ), with

respect to the population sums, ρmlml
(ω,z,δ) + ρm1m1 (ω,z,δ) and ρmlml

(ω,z,δ) + ρm2m2 (ω,z,δ). Both population inversions can
be deduced by subtracting Eq. (4) from Eq. (5), yielding

iω
[
ρmlml

(ω,z,δ) − ρ m1m1
m2m2

(ω,z,δ)
]

= 2i
[
ρ m1ml

m2ml

(ω,z,δ) ⊗  mlm1
mlm2

(ω,z) − cc
]

+ i
[
ρ m2ml

m1ml

(ω,z,δ) ⊗  mlm2
mlm1

(ω,z) − cc
]

− �lρmlml
(ω,z,δ) + � 1

2

ρ m1m1
m2m2

(ω,z,δ). (18)
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By substituting Eqs. (12) and (13) into Eq. (18), it can be deduced that (cc is the abbreviation for complex conjugated quantity)

ρmlml
(ω,z,δ) − ρ m1m1

m2m2

(ω,z,δ) = i

2ρ m1ml
m2ml

(ω,z,δ) ⊗  mlm1
mlm2

(ω,z) + ρ m2ml
m1ml

(ω,z,δ) ⊗  mlm2
mlm1

(ω,z) − cc

iω + �ul

− δul

iω + �ul

[
ρml ml

(ω,z,δ) + ρ m1m1
m2m2

(ω,z,δ)

]
+

�l(ω,z,δ) − � 1
2

(ω,z,δ)

iω + �ul

. (19)

Similarly, by summing up Eq. (4) and Eq. (5), it becomes

ρmlml
(ω,z,δ) + ρ m1m1

m2m2

(ω,z,δ) = i

ρ m2ml
m1ml

(ω,z,δ) ⊗  mlm2
mlm1

(ω,z) − cc

iω + �ul

− δul

iω + �ul

[
ρmlml

(ω,z,δ) − ρ m1m1
m2m2

(ω,z,δ)

]

+
�l(ω,z,δ) + � 1

2
(ω,z,δ)

iω + �ul

. (20)

C. Modeling the electromagnetic field

We are examining the case of molecules probed by an EM
field “trapped” inside a high-finesse cavity with a characteristic
time that can exceed 150 μs and an accurately selected TEM00

spatial mode (rejection rate > 100:1). The time scale relative
to the variation of the envelope of the EM field is a lot longer
than that relative to any other relaxation processes involved in
the absorption process. Hence it becomes relevant to consider
a monochromatic EM field. This inclines us to look for a
solution of the equations by inserting the Rabi frequency,

muml
(ω,z) = 2π(0)

muml
[δ(ω − ω0) + δ(ω + ω0)] cos(kz)

= ∗
mlmu

(ω,z), (21)

where (0)
muml

= |μmuml
|E0/h̄ and ω0 is the carrier angular

frequency of the probing EM field in the laboratory frame
(k is the wave vector). The amplitude and the polarization
direction of both counter-propagating EM fields (forming a
standing wave) are assumed to be identical. In addition, an
optically thin absorbing medium is assumed (αLeq � 1,Leq

is the equivalent absorption length and α is the absorption
coefficient; see Sec. II E). Thus, the amplitude of the EM field
is only barely altered by the absorption process.

The Rabi frequency given by Eq. (21) requires further
comment because it ignores the effective shape of the field
experienced by molecules traveling across a cylinder-shaped
EM radiation. Assuming a uniform transverse velocity vx , the
cylindricity of the Gaussian EM field demands consideration
of a Gaussian shape for the Rabi frequency muml

(ω,z), whose
frequency extension is governed by the transit time. It turns
out that, for molecules traveling at vy = 0, the Dirac δ function
of Eq. (21) should be replaced by a Gaussian function with an
HWHM frequency extension,

�ω = 2
√

ln(2)

w0/vx

, (22)

where w0 is the TEM00 cavity mode beam waist radius (or
minimum spot size [59]). Furthermore, the de facto dispersion
of the component vy of the speed (vy = 0), due to the poor
planarity of the expansion (V shaped), provides a frequency
extension distribution with a lower limit given by Eq. (22).

To overcome the difficulty of solving the system of equa-
tions without analytical integral expression when plugging
in an effective Gaussian EM field, we opted to keep the Rabi
frequency as provided by Eq. (21) and to assume that the transit
time controls the population relaxation rates (it is discussed in
Secs. VII B and VIII). This supposes that a Gaussian shape can
be approached by an exponential decay when both functions
have the same FWHM. For vy = 0, this can be obtained by
setting

�u = �l = vx

w0

√
ln(2)

2
. (23)

In the framework of this assumption the radiative processes
(cf. the laser-induced fluorescence), which could contribute to
the relaxation of the upper state, are ignored. Despite the lack of
reported data for NO2 species in the energy range of interest,
reasonable extrapolations indicate that the radiative lifetime
should be longer than 100 μs in the absence of collisions [60].
Even if the role of collisions cannot be totally excluded in the
jet expansion [61,62], they should not significantly alter the
radiative lifetime.

D. Population saturation

The use of a continuous jet expansion allows the allotment
of a time-independent source of molecules characterized by a
velocity distribution driving the source terms,

�i(ω,z,δ) = 2π�
(0)
i g�(δ) δ(ω), (24)

where �
(0)
i (i = l or u) are constant quantities for the specified

level and where g�(δ) is a normalized function with a velocity
extension �/k following∫ ∞

−∞
g�(δ) dδ = 1. (25)

To deal with molecules capable of absorbing EM radiations
at two different frequencies (dual absorption), when they
travel with a velocity projection vz �= 0, the total population is
assumed to be the sum of two distinct populations:

ρmlmu
(ω,z,δ) = ρ(−)

mlmu
(ω,z,δ) + ρ(+)

mlmu
(ω,z,δ). (26)
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Theoretically the case δ = 0 should be treated sepa-
rately because molecules without Doppler shift may inter-
act specifically with the EM field since they barely cross
the interference pattern. However, we consider that the
number of molecules exhibiting such a speed is small;

hence they almost do not contribute to the observed RD
signal.

Convoluting Eq. (17) by the Rabi frequency, (21) (see
Appendix B), and then eliminating the nonresonant terms
(RWA), it becomes

ρ(±)
mlmu

(ω,z,δ) ⊗ muml
(ω,z) = (0)2

muml

cos2(kz)

2

[
ρmlml

(ω,z,δ) − ρmumu
(ω,z,δ)

ωul − ω − ω0 ± δ + iγul

+ ρmlml
(ω − 2ω0,z,δ) − ρmumu

(ω − 2ω0,z,δ)

ωul − ω + ω0 ± δ + iγul

]
.

(27)

The convolution of the coherence terms clearly shows two
spectral extensions controlled by the population inversions:
one frequency unshifted and one shifted around 2ω0 (and −2ω0

for the complex conjugated term). None of them should be
ignored in a full treatment. Here, we assume that the extensions
at twice the carrier frequency are small and the harmonic
frequency development is truncated at the lowest order.

Focusing on the stationary (steady-state) solutions, only the
frequency components of the density matrix at ω = 0 need to
be calculated. Nevertheless, the behavior for any time can be
obtained by considering all the low frequencies (ω �= 0) and
by inverse Fourier transforming.

Combining Eqs. (26) and (27), we get

ρmlmu
(0,z,δ) ⊗ muml

(0,z) − cc

= −i
(0)2

muml
cos2(kz)

γul

[
ρmlml

(0,z,δ) − ρmumu
(0,z,δ)

]
× [

L(+)
u + L(−)

u

]
, (28)

where

L(±)
u = γ 2

ul

(ωul − ω0 ± δ)2 + γ 2
ul

. (29)

Using the longitudinal relaxation time,

T1 = 1

2�u

+ 1

2�l

= �ul

�2
ul − δ2

ul

, (30)

and substituting Eq. (20) into Eq. (19), it is easy to show that[
1 + ŝm1ml

+ �uu

2�ul

ŝm2ml

]
ρll(0,z,δ)

−(1 + ŝm1ml
)ρ11(0,z,δ) − �uu

2�ul

ŝm2ml
ρ22(0,z,δ)

= 2πδ(ω)

[
�

(0)
ll

�ll

− �
(0)
11

�uu

]
g�(δ), (31)

where the so-called saturation coefficient ŝmuml
is defined by

ŝmuml
= 2 (0)2

muml
cos2(kz)

T1

γul

[
L(+)

u + L(−)
u

]
. (32)

An additional equation can be readily derived by permuting
both index 1 and index 2 in Eq. (31).

Finally, combining Eqs. (10) and (11), we get

[1 + ŝm1ml
+ ŝm2ml

]ρmlml
(0,z,δ) − (1 + ŝm1ml

)ρm1m1 (0,z,δ)

− (1 + ŝm2ml
)ρm2m2 (0,z,δ)

= 2π

[
�

(0)
l

�ll

− �
(0)
1

�uu

− �
(0)
2

�uu

]
δ(ω) g�(δ). (33)

Equations (31) and (33) shape a linear system of three

equations which can be solved easily. Setting �
(0)
1

�u
= �

(0)
2

�u
=

N0 e− Eu
kT and �

(0)
l

�ll
= N0 e− El

kT (T is the temperature charac-
terizing the Maxwell-Boltzmann distribution and N0 is the
number density of molecules),1 it becomes

ρmlml
(0,z,δ) − ρ m1m1

m2m2

(0,z,δ)

= 2πδ(ω)

N0g�(δ)
[
1+ŝ m2m2

m1m1
ml

(1−β)
][

e−
El
kT − e− Eu

kT

]
1 + ŝm1ml

+ ŝm2ll + ŝm1ml
ŝm2ml

(1 − β2)
,

(34)

where

β = �uu

2�ul

. (35)

E. Nonlinear absorption coefficient

The absorption coefficient can be obtained by calculating
the macroscopic scalar polarization. Keeping the monochro-
matic EM field assumption, the macroscopic polarization
(specific to a frequency detuning) for the steady-state solution
becomes (ε0 is the vacuum permittivity)

P (ω,z,δ) = ε0 χul (ω,z,δ) ⊗ E(ω,z) = Tr (ρ.μ)

=
∑
mu

∑
ml

ρmlmu
(0,z,δ) μmuml

, (36)

where (see Sec. II C)

E(ω,z) = 2πE0 [δ(ω − ω0) + δ (ω + ω0)] cos (kz) . (37)

1Jet expansions are environments which cannot be characterized by
a unique temperature; this point is discussed in Sec. VII C 1.
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The absence of direct coupling between the two upper
levels (μ12 = 0) cancels out the straight contributions to the
trace operator (Tr), which could result from nonvanishing
cross-coherence terms. Attentive scrutiny shows that the
scalar nonlinear susceptibility χul (ω,z,δ) exhibits a quadratic
dependence on the amplitude of the EM field.

The coherence density-matrix elements are obtained by
inserting Eq. (34) into Eq. (17). The steady-state frequency
detuning specific nonlinear absorption coefficient of the u ↔
g transition is obtained from the imaginary part (Im) of

the nonlinear susceptibility; then by summing up the three
components of the polarization vector,

αul (ω0,z,δ) = ω0

c
Im(χul(ω0,z,δ))

= 3
∑
mu

∑
ml

αmuml
(ω0,z,δ) . (38)

It finally follows for the three-level system previously
described that

αmuml
(ω0,z,δ) = π ω0

3ε0h̄ c

N0 g�(δ)

Q
gns

×
[
e−

El
k T −e−

E1
k T

]
[1+ŝm2ml

(1−β)]
[
L(+)

1 + L(−)
1

]μ2
m1ml

γ1l
+ [

e− El
kT − e− E2

kT

]
[1 + ŝm1ml

(1 − β)][L(+)
2 + L(−)

2 ]
μ2

m2ml

γ2l

1 + ŝm1ml
+ ŝm2ml

+ (1 − β2)ŝm1ml
ŝm2ml

=
∑2

u=1 α(0)′
mu ml

(ω0,z,δ)

1 + ŝm1 ml
+ ŝm2 ml

+ (1 − β2) ŝm1 ml
ŝm2 ml

, (39)

where Ei are the energies of the levels involved in the
transitions (h̄ωul = Eu − El), Q is the partition function,

Q =
∑
X

∑
m

e− Em
kT =

∑
X

dXe− EX
kT , (40)

dX = gns (2X + 1), gns is the nuclear spin statistic, and

α(0)′
muml

(ω0,z,δ) = α(0)
muml

(ω0,z,δ)
[
1 + ŝmu′ �=muml

(1 − β)
]
,

(41)

where

α(0)
muml

(ω0,z,δ) = πω0

3ε0h̄c
gns

e− El
kT − e− Eu

kT

Q

[
L(+)

u + L(−)
u

]
× μ2

muml

γ1u

N0 g�(δ) (42)

is the linear absorption associated with the subtransition.
Of course, the linear absorption coefficient of a three-level

system can be readily derived by setting ŝmuml
= 0 in Eq. (39).

It is the anticipated sum of the two absorption coefficients
α(0)

m1ml
(ω0,z,δ) and α(0)

m2ml
(ω0,z,δ).

It is noteworthy that the denominator of Eq. (39) raises three
(narrow) “resonant” terms since it exhibits maxima at ω0 =
ωul ± δ and ω0 = ω1+ω2

2 . After integration, the “resonances”
at ω0 � ωul provide the “usual” saturation dip (or Lamb hole
[2]) characterizing the SA transitions, while the resonance at
ω0 � ω1+ω2

2 provides the so-called “crossover” dip at the mean
frequency of the two “usual” transitions.

F. Multi-Zeeman sublevel absorption

The formalism established in Sec. II E can be extended to a
multiple-line interfering absorption pattern (i.e., for a number
of interfering lines greater than two). For n transitions in a “V”
shape configuration the denominator of Eq. (39) becomes

1 +
n−1∑
i=0

(1 − β)i (1 + iβ)

Cn−1
i+1∑

j=0

i+j∏
k=j

ŝmk%nml
, (43)

where % denotes the function modulo and C
j

i = j !
i! (j−i)! ,

whereas its numerator becomes

π ω0

3 ε0h̄ c

N0 g�(δ) gns

Q
×
∑

u

⎡⎣1+
n−1∑
i=1

(1 − β)i
Cn

i−1∑
j=0

i+j−1∏
k=j,k �=u

ŝmk%nml

⎤⎦[L(+)
u + L(−)

u

] μ2
muml

γlu

[
e− El

k T − e− Eu
k T

]
. (44)

For a “�” shape configuration, the indices u and l need to be
permuted.

As mentioned in Sec. II A, in the absence of Zeeman
sublevel degeneracy lift, the u ←− g transition absorption
results from the absorption of each subtransition as given

by Eq. (38). The polarization vector of the applied EM
field controls the optical selection rules between the Zeeman
components. A linearly polarized EM field is assumed for the
rest of the study (the molecular orientation is then conserved).
It follows for the squared molecular dipole moment of the

042503-7
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subtransition (or sub–line strength), after applying the Wigner-
Eckart theorem [63], that

μ2
muml

= |〈uXu κu mu|−→μ · ε̂∗|lXl κl ml〉|2

=
(

Xu 1 Xl

mu 0 −ml

)2

|〈uXu κu‖−→μ ‖lXl κl〉|2

=
(

Xu 1 Xl

mu 0 −ml

)2

Su
l μ2

band = μ2
ulm

, (45)

where Su
l μ2

band is the usual line strength (μ2
band being the

band strength), ε̂ denotes the direction of the EM field in the
space-fixed frame, and “.” denotes the scalar or dot product).
Interferences between transitions belonging to different bands
are ignored here. The value of the factor Su

l is given by the
eigenvectors of the molecular Hamiltonian (see Sec. IV, e.g.).

The insertion of Eq. (45) into Eq. (39) shows how the sub–
line strengths contribute to the total line strength; the Wigner
3j coefficient alters not only the “linear” absorption factor
[embedded in the numerator of Eq. (39)] but also the Rabi
frequency,

2
muml

=
(

Xu 1 Xl

mu 0 −ml

)2


(0)2

ul . (46)

Hence the saturation parameter ŝmu ml
can be defined as

ŝmuml
=
(

Xu 1 Xl

mu 0 −ml

)2

× ŝul =
(

Xu 1 Xl

mu 0 −ml

)2

Su
l s

(0)
ul ,

(47)

where

s
(0)
ul = 2

μ2
band E2

0

h̄2 cos2 (kz)
T1

γul

[
L(+)

u + L(−)
u

]
. (48)

It is worth pointing out that the double sum in Eq. (38) can
be replaced by a single sum since only the linear polarization
of the EM field is considered here. We deduce that only
subtransitions sharing a same value of m (i.e., m1 = m2 = ml)
can interfere.

G. Total absorption

The transverse dependence of the EM field probing the
molecules has been mentioned in Sec. II C (mode TEM00). A
spatial modulation along the z axis strengthens this transverse
dependence of the EM field. The hyperbolic variation of the
EM-field amplitude along the z axis can be ignored because

the jet expansion is located at the center of the cavity and
the absorption path is small. With respect to these spatial
behaviors two limit cases can be established: (i) the molecule
population follows the spatial modulation adiabatically and
the z and

√
x2 + y2 dependencies need to be included in the

saturation parameter, which requires calculation of the relevant
integrals; and (ii) the population does not follow spatial
EM-field changes like those due to the interference pattern
of the counter-propagating beams and no spatial integration is
required. In the second case the molecules travel through an
average standing wave and we can set 〈cos2(kz)〉 = 1/2. This
is discussed later (see Sec. VII B).

The velocity dependence can easily be taken into account by
assuming a Maxwell-Boltzmann distribution of the molecular
speed:

g�(δ) =
√

ln 2

π

1

�D

e
− ln 2( δ

�D
)2

. (49)

The total absorption coefficient is obtained by integrating
the absorption coefficients [given by Eq. (38)]:

αul (ω0,z) =
∫ ∞

0
αul (ω0,z,δ) dδ. (50)

Unfortunately, no analytical integral form of Eq. (39) can
be derived when substituting in the distribution as given
by Eq. (49), therefore numerical integrations are performed.
However, analytical forms can be derived with regard to some
specific cases. For example, an integral expression of the
absorption can be inferred for a two-level system. Naturally,
the latter case is inappropriate for simulation of crossover
resonances.

1. Saturated absorption due to a single transition

Equation (39) can be analytically integrated when only one
transition is considered (setting u = 1) by using the plasma
dispersion function [64] (or werf). It gives

αmuml
(ω0,z)

= πω0

3ε0h̄c

e− El
k T − e− Eu

kT

Q
gns μ2

band Su
l

×
(

Xu 1 Xl

mu 0 −ml

)2

N0 GNL (ωul − ω0,z) , (51)

where

GNL(ω,z) = 1

�D

2
√

π ln 2[(
+(z)
γul

)2 − (
−(z)
γul

)2]
⎡⎣1 + (


γul

)2 − [
−(,z)

γul

]2

−(,z)
γul

werf

(
i−(,z)

�D/
√

ln 2

)

−
1 + (


γul

)2 − [
+(,z)

γul

]2

+(,z)
γul

werf

(
i+(,z)

�D/
√

ln 2

)⎤⎦ (52)
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is a nonlinear line profile and where +(z) and −(z) are two
conjugated quantities if both are complex quantities, defined
by[

±(,z)

γul

]2

= 1 + smuml
−
(



γul

)2

±
√

s2
muml

− 4
(
1 + smuml

) ( 

γul

)2

, (53)

where

smuml
= 2

μ2
muml

E2
0

h̄2 cos2 (kz)
T1

γul

. (54)

Both quantities inside the brackets in the numerator of
Eq. (52) are also conjugated if +(z) and −(z) are both
complex conjugated quantities. A similar expression can be
found in Ref. [65]. If the coherence relaxation rate γul is low
compared with the Doppler broadening, the function werf can
be approximated by a Gaussian profile as given in Ref. [66] (the
so-called crude approximation). If smuml

= 0, the nonlinear
line profile GNL(ω,z) becomes the usual Voigt profile.

Also, let us note that an expression similar to Eq. (39) (for a
single transition) was obtained by Haroche and Hartmann [45]
for the case of a pump-probe scheme: they omitted the double
sums L(+)

u + L(−)
u (u = 1 or 2) and replaced them with unique

Lorentzian profiles. However, they obtained an additional
contribution to the development because they extended their
calculations to a higher order.

2. An alternative approximation for noninterfering transitions

Analysis of Eq. (39) shows that the amplitude of the
resonances are mainly controlled by the terms L(+)

u + L(−)
u

sitting in its denominator. In the case of dual interference,
the sum formed by the two terms L(+)

1 + L(−)
1 and L(+)

2 +
L(−)

2 becomes maximum, and equal to 2, at ω0 = ω1l ± δ,
ω0 = ω2l ± δ, or ω0 = (ω1 + ω2)/2, which gives rise to the
three dips previously obtained after the integration over
δ. If the two transitions do not share a same level (two
independent two-level systems), no interference can appear
and the absorption coefficient αmuml

(ω0,z,δ) is provided
by

πω0

3ε0h̄ c

N0 g�(δ)

Q
×

gns1

[
e− El

kT − e− E1
kT

][
L(+)

1 + L(−)
1

]μ2
1ml

γ1l
+ gns2

[
e− El

kT − e− E2
kT

][
L(+)

2 + L(−)
2

]μ2
m2ml

γ2l

1 + sm1ml

[
L(+)

1 + L(−)
1

]+ sm2ml

[
L(+)

2 + L(−)
2

] . (55)

This expression offers the great advantage of being analytically
integrable over the spatial coordinates z and

√
x2 + y2 for a

Gaussian EM field. After careful inspection it can be seen that
this integral exhibits (i) a global behavior very similar to that
obtained when the transitions interfere, (ii) the correct behavior
around the dips at ω0 = ω1 and ω0 = ω2, and (iii) incorrect
behavior near the crossover dip the amplitude of the crossover
resonance is twice as high as that expected for interfering
transitions. In fact, Eq. (55) can be deduced readily from the
density-matrix formalism by considering two decoupled two-
level systems.

III. THE MOLECULAR HAMILTONIAN

NO2 is a radical species (S = 1/2, S is the electronic-spin
angular momentum) exhibiting a high symmetry (C2v [67]) and
a rigid frame in first approximation. Given the null nuclear spin
of the permutable oxygen atoms (16O) and the nuclear spin of
the most abundant isotopic nitrogen atom (14N), 1, the nuclear
spin statistic weight can be deduced for each vibronic level by
using the usual symmetry-group properties [51]. For a ground
vibronic level of symmetry, A1, it becomes gns = 0 if Ka + Kc

is odd and gns = 3 if Ka + Kc is even; and for an upper state
of symmetry, it is B2, gns = 3 if Ka + Kc is odd and gns = 0
if Ka + Kc is even.

The total nuclear spin is I = 1, which requires us to deal
with the hyperfine Hamiltonian in addition to the spin-rotation
Hamiltonian. We assume that a J-scheme of coupling [53]

applies: F = J + I (F is the total molecular angular momen-
tum), J = N + S (N is the rotational angular momentum).
The effective molecular Hamiltonian is

H = Hrot + HSR + Hhf, (56)

where Hrot can be cast in Cartesian coordinates attached to the
principal axis system (using the I r representation [68]),

Hrot = AN2
a + BN2

b + CN2
c, (57)

where A, B, and C are the usual rotational constants associated
with the respective a, b, and c principal axes of inertia. HSR is
yielded by

HSR = 1
2 (NεS + SεN) , (58)

where ε is the quadratic spin-rotation tensor [69], and Hhf is

Hhf = HFC + Hdip, (59)

where

HFC = aFC I · S, (60)

is the Fermi contact interaction and

Hdip = −gSgIμBμN

[
I · S
r3

− 3 (I · r) (S · r)

r5

]
= I · T (r) · S (61)

describes the electronic-spin nuclear-spin dipole interaction.
gS is the free-spin g factor, gI is the nuclear Landé factor,
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TABLE I. Molecular Hamiltonians with operators in cylindrical coordinates and associated selection rules (�F = 0).

�K = 0 �K = ±2 �N �J

Hrot ( B+C

2 )N2 + (A − B+C

2 )N2
a

B−C

4 (N2
+ + N2

−) 0 0

HSR ( ε̃bb+ε̃cc

2 )N · S + (̃εaa − ε̃bb−ε̃cc

2 )N2
a

N·S
N2

ε̃bb−ε̃cc

4 (N2
+ + N2

−) N·S
N2 0, ± 1 0

HFC aFC S · I 0 0 0, ± 1

Hdip
Taa

2 (S · I − 3Sa Ia) ( Taa

2 + Tbb

4 )(I+ S+ + I− S−) 0, ± 1 0, ± 1

μB and μN are the Bohr and nuclear magnetons, respectively
[53], and T (r) is the second-order electronic-spin nuclear-spin
dipole tensor [70].

Ignoring the Zeeman components temporally, the ma-
trix elements of H can be calculated in the basis set
adapted to a J-scheme of coupling [71], |ψevSJIF NK〉 =
|ψev〉 |NK〉 |S〉 |I 〉, where |N K〉 are the eigenvectors of
the symmetric top rotational Hamiltonian (−N � K � N ).
The expression of the matrix elements of each Hamiltonian
is available in the literature [52,53,71–73]. Nevertheless,
the expression of the Hamiltonian terms in cylindrical co-
ordinates, as well as the associated selection rules, are
listed in Table I, using the usual reduced spin-rotation
Hamiltonian [69].

IV. MODIFIED WANG SYMMETRY AND LINE STRENGTH

The high (orthorhombic) symmetry of NO2 radical enables
the �K = ±1 matrix elements to be washed out. In addition,
the matrix elements satisfy the K-sign exchange property
(�N = N ′ − N , �K = K ′ − K = 0, ± 2),

〈S J I F N K|H|S J ′ I F N ′ K ′〉
= (−1)�N 〈S J I F N − K|H|S J ′ I F N ′ − K ′〉, (62)

where H is defined by Eq. (56) and its embedded terms (see
Sec. III).

Similarly to the unitary Wang transformation regarding
the rotational Hamiltonian which gives the four symmetries
O±/E± [74], spin-rotation Wang symmetry (SRWS) can
be established [52,75]. Unfortunately, the �J = ±1 matrix
elements of the hyperfine Hamiltonian mix the SRWS. Never-

theless, hyperfine-spin-rotation Wang symmetry (HFWS) can
be provided by using a specific modified Wang transformation.
Despite the similar notation, the HFWS denoted Sy here
(Sy = ±, following Raynes [75]; the labels 1 and 2 might
be preferred to ±) should not be confused with the usual
Wang symmetry associated with the pure (eventually distorted)
rotational Hamiltonian.

After diagonalization of the molecular Hamiltonian matrix
of full size, [(2F + 1) (2I + 1) (2S + 1)]2 (it can be blocked
into four submatrices by applying the modified Wang transfor-
mation previously mentioned) for each vibronic level (i.e., l

and u). Dealing now with a specific molecular Hamiltonian, the
generic eigenvectors can be replaced by the relevant hyperfine
eigenvectors as follows (in a nonsymmetrized basis set):

|SI ± F τ 〉 =
F+I∑

J=|F−I |

J+S∑
N=|J−S|

N∑
K=−N

aS I ± F τ
N K |S J IFNK〉 ,

(63)

where the coefficients aS I ± F τ
N K are the hyperfine-spin-rotation

mixing coefficients and τ is an arbitrary or energy-ordering
index. This index can be conveniently (but only partially)
replaced by the near-quantum numbers J and/or N , which can
be recovered by localizing the maxima of the wave functions
if the couplings remain weak. The coefficients aS I ± F τ

N K meet
the property

aS I ± F τ
N −K = ± (−1)F+S+I+N+K aS I ± F τ

N K . (64)

The block of symmetry labeled “−” can be identified easily
because it contains the diagonal matrix element

〈S, J = F, I, F,N = J − S,K = 0|
∑
X

[
T

(0)
0 (X ) + T

(2)
0 (X )

]|S, J ′ = F, I, F,N ′ = J − S,K ′ = 0〉, (65)

where T
(0)

0 (X ) + T
(2)

0 (X ) denotes the component 0 of the zeroth- or second-order irreducible tensor of the four Hamiltonians
Hrot, HSR, HFC, and Hdip.

The intensity of the electric dipole transition is obtained by using the usual tensor algebra [76], which allows us to determine
the line strength,

Su
l μ2

band = SSu Iu Syu Fu τu

Sl Il Syl Fl τl
μ2

band = 3
Fu∑

mu=−Fu

Fl∑
ml=−Fl

∣∣〈ψevu
Su Iu SyuFuτu mu

∣∣−→μ · ε̂∗∣∣ψevl Sl Il Syl Fl τl ml

〉∣∣2 δIuIl
δSuSl

= (2Fu + 1) (2Fl + 1)

∣∣∣∣∣∣
Fu+I∑

J ′=|Fu−I |

Fl+I∑
J=|Fl−I |

√
(2J ′ + 1)(2J + 1)

{
J ′ Fu I

Fl J 1

}
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×
J ′+S∑

N ′=|J ′−S|

J+S∑
N=|J−S|

√
(2N ′ + 1)(2N + 1)

{
N ′ J ′ S

J N 1

}

×
N ′∑

K ′=−N ′
(−1)K

′ ∑
q

(
1 N N ′
q K ′ − q −K ′

)
T (1)

q (μ) a
S I Syl Fl τl

lN K′−q
aS I Syu Fu τu

uN ′ −K′

∣∣∣∣∣
2

, (66)

where a
S I Syl Fl τl

lN K′−q
and a

S I Syu Fu τu
uN ′ −K′ are the respective mixing

coefficients of the lower and upper levels issued from the
molecular Hamiltonian calculation. The coefficients T (1)

q (μ)
are the spherical tensorial components of the electric dipole
moment operator μ. Due to the symmetry of the vibronic
wave functions, only the component along the a axis (parallel
band), μa = T

(1)
0 (μ), needs to be calculated when only totally

symmetric vibrational levels belonging to the ground state are
involved in the Ã 2B2 ← X̃ 2A1 electronic transition of NO2.

Resulting from the usual parity alternation with F , the
HFWS raises optical selection rules similar to those associated
with the usual Wang symmetry (pure rotor) [74,77], with the
SRWS [52], or with the AIRWS [78] (see Table II). When
considering the transitions showing SA, we assume that only
those consisting of one single clump of the spin-rotation
doublets are close enough (i.e., within the Doppler broadening)
to interfere.

V. COMPUTER IMPLEMENTATION

The formalism as described in Secs. II, III, and IV has
been implemented in the application “Stepram” [52,78].
It offers a graphic user interface and runs on a standard
personal computer. It allows full simulation and fitting of
the experimental spectra. When the line frequencies and
assignments are available, transition frequency fits can be
performed without the calculation of the spectrum amplitude.
Fitting of the spectrum envelope (global spectrum envelope
fitting, GSEF) is always more time consuming than fitting of
the line frequency. It may also be barely efficient in the case
of poor line amplitude matching (for example in the case of
local perturbations). When the line frequency determination
is required, “multiline”, another custom-made application has
been used. It allows fitting of set of individual transitions with
normalized line profiles chosen among the following ones:
Gaussian, Lorentzian, Voigt or crude saturation (i.e., assuming
γul � �D [66], see Section II G 2). The fit of the absorption
coefficient versus the intracavity power (see Section VII B) has
been possible by running another custom-made application
based on Perl/Tk. All the fit procedures call routines from

TABLE II. Optical selection rules relevant to the different types
of dipole transitions between eigenlevels exhibiting a hyperfine-spin-
rotation Wang symmetry.

�F [branch(es)] a and b type c type

0 (Q) + ↔ − + � −
±1 (P,R) + � − + ↔ −

the “Minuit” package [79] whereas the integration algorithms
are from the Gnu Scientific Library (GSL) [80]. The matrix
diagonalization and the linear algebra algorithms are carried
out by using the Perl Data Language (PDL) [81] supplemented
by the PDL-LinearAlgebra package, an implementation of
Lapack in Perl.

The full Hamiltonian matrices are blocked by applying
modified Wang transformations which provides the relevant
HFWS associated.

VI. EXPERIMENT AND DATA ACQUISITION

A. The SA-CRDS experimental setup

Only a summary of the experimental setup is reported here
(see Fig. 1), as it has been described in a previous publication
[11]. The injection of the cw Ti:sapphire laser beam (Coherent
899-21; spectral width < 1 MHz) into an evacuated symmetric
high-finesse cavity (dual root blowers: 250 and 500 m3/h) is
accurately controlled by matching the beam with the TEM00

cavity transverse mode. Transverse mode matching is made
possible by spatially filtering the laser beam with a diamond-
coated pinhole. The central part of the diffracted beam is
selected by a round aperture. Mode matching is provided by
the fine adjustment of a lens mounted on a translation table
and a periscope. The radius of curvature of the high-finesse
cavity mirrors (from REO) and the length of the cavity together
determine the shape of the TEM00 mode, i.e., the size of the
beam waist [59]. Modulation of the laser source frequency,
or of the position of one of the cavity mirrors driven by a
piezoelectric transducer, allows us to visualize the different
cavity modes by collecting the almost-entire cross section of
the beam “leaking” out of the cavity on a silicon photodetector
(Hamamatsu S3399). Elimination of the undesirable modes is
obtained experimentally by adjusting the beam injection via
the optomechanics devices mentioned previously. A rejection
rate higher than 100:1 is easily attainable. This matching is
almost-simultaneously obtained with the optimization of the
finesse of the cavity (maximization of the cavity RD time).
When an accurate cavity matching is obtained, a custom-made
control system allows frequency-tuning a longitudinal cavity
mode to the laser-beam frequency by a micromodulation of
the position of one of the cavity mirrors. The frequency
stabilization of the laser source remains under the control of
the laser control box. Frequency scans (maximum range of ∼1
cm−1 per scan) are performed by applying the required voltage
issued from a digital-to-analog converter (DAC) to the analog
external input of the laser control box.

The RD decays are acquired by using the custom-made
control box, which collects the signal of the photodetector
and controls the switching (on/off) of the acousto-optic
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FIG. 1. (Color online) Schematic of the experimental arrangement for SA-CRDS. Cavity length, 0.35 m; radius of curvature of the mirrors,
0.5 m. FP, Fabry-Perot etalon; PD, photodiodes; PH, pinhole; AOM, acousto-optic modulator; BS, beam splitter (∼ 1%); M, periscope mirror;
A; aperture; L, lens; PZT, piezoelectric actuator.

modulator (AOM) (from AA Opto-Electronics). The AOM
driver has been optimized to obtain a high rejection of the
radio-frequency (RF) signal (>80 dB) when it is switched
off and a fast commutation time (<200 ns) by using an RF
switch and an amplifier from Mini-Circuits. The photodetector
is run in the photoconductive mode; it is complemented by a
fast transimpedance amplifier built on the same printed board
as the photodetector. The responsivity (η = 0.5 A/W) of the
photodetector and the value of the transimpedance resistor
(RF ) as well as the gain of the analog-to-digital-converter
(ADC) allow the determination of the EM-field intensity
leaking out of the CRDS cavity. After evaluation of the
transmission coefficient of the CRDS mirror (T ∼ 4.5 ppm),
the power circulating inside the cavity can be monitored at
any instant of the RD decay. Such an arrangement provides
the complete control of the EM field intensity captured inside
the cavity: a monitored and adjustable voltage threshold is
used to trigger the beam shutting (through the AOM) and also
to trigger the acquisition of the RD decay (through the ADC).
Then the following cycle can be started by unshutting the laser
beam. Let us note that the buildup time of the CRDS cavity,
i.e., the time required to reach the desirable amount of power
captured inside the cavity, is controlled by the characteristic
time of the cavity, the mode matching, and the power delivered
by the laser source. In theory, power values of several hundred
kilowatts could be captured inside the cavity. However, the
cavity spectral bandwidth at “resonance” is several orders
of magnitude less than the laser source spectral width and
the majority of the incoming EM-field intensity is just lost
[the cavity free spectral range (FSR) is a lot larger than the
source spectral width]. A cavity finesse of 450 000 is routinely
obtained.

Because the present study focuses on quantitative nonlinear
absorption processes, the linearity of the acquisition chain
has been carefully checked and some weak corrections to
linearity of the ADC have been numerically implemented.
The RD decay data acquisition is due to a 12-bit, 5-MHz
acquisition card (National Instruments). The Ti:sapphire laser
is controlled by a 16-bit DAC. The entire supervision of the
acquisition process is due to a custom-developed Labview
virtual instrument (National Instruments).

B. Modes of operation

Two complementary modes of data acquisition have been
used: (i) temporal decay acquisition at a fixed wavelength
(laser frequency positioned) and (ii) spectrum acquisition.
Both are discussed below.

1. Temporal decay mode

In the decay acquisition mode, thousands of decays (ini-
tialized with the same power threshold) can be averaged to
improve the signal-to-noise ratio. Thus, relatively long decays
(viz., approximatively 10 times the characteristic cavity time)
can be acquired. In the case of linear absorption (i.e., when the
absorption is independent of the EM-field amplitude), the RD
decay is expected to match a decaying exponential shape [11],
but in the case of nonlinear absorption this handy behavior is
lost. Rather, the absorption coefficient dependence versus the
intracavity EM-field power is obtained from the derivative of
the temporal decay. A numerical differentiation of the acquired
voltage U (t) is calculated. Assuming that the RD decays
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can be approximated by exponential shapes controlled by a
time-dependent characteristic time, we derive

α(t) = −
(

dU (t)
dt

U (t)
+ 1

τe

)
lcav

clsam
, (67)

where τe is the response time of the empty cavity and lsam is
the absorption length of the sample (lcav is the cavity length).

From the intracavity running power,

P (t) = U (t)

T η RF

, (68)

a plot of α(P ) can then be readily obtained by eliminating the
variable t .

2. Spectrum acquisition mode

Because it was not actually possible either to store the
individual temporal decays, with the intention of analyzing
them later to cipher the absorption coefficients versus the EM-
field intensity, or to run an operating mode similar to that
described in Sec. VI B 1 in real time, an alternative mode has
been used. Each decay or, possibly, averaged decay is analyzed
in real time to accommodate typically five decay times. They
are obtained by performing five linear regressions on the same
number of time intervals by running a weighted logarithm of
the measured voltages (the logarithm function is pretabulated
and indexed to minimize the calculation time) after subtraction
of the instrumental voltage offset. Each regression applies to
a set of data ranging from U0/q

i to U0/q
i+1, where U0 is

the initial threshold set for the decay acquisition, and q is a
numerical quantity typically equal to 2.5 (i ranging from 0 to
4); see, for example, Fig. 6 of Ref. [11]. Thus, knowing U0

and q, and with the use of Eq. (68), a mean power value can be
attributed to each data sample and associated with the RD time
(τi) determined in real time. Finally, the absorption coefficient
is deduced from

αi =
(

1

τi

− 1

τe

)
lcav

clsam
. (69)

It turns out that typically five spectra are simultaneously
obtained from a single scan. This allows immediate identifi-
cation of transitions exhibiting nonlinear absorption because
they do not overlap each other. Extensions of the intracavity
power range are easily obtained by modifying the value of the
initial threshold U0.

Simultaneously to the absorption spectra, a fluorescence
signal (LIF) can be acquired by using a photomultiplier tube
collecting the photons emitted by the traveling molecules [11].
Analysis of such LIF spectra has been given up because
of the undecipherable amplitude of the transitions observed.
However, nonlinear behaviors have been clearly identified.

VII. DATA ANALYSIS

In this paper the data analysis relies on the qR0(0) line
pattern located around 12 536.4 cm−1. The full analysis and
assignment of the hot band to which this pattern belongs
remain undecipherable [35]. Such a line pattern is easily
recognizable in a cold spectrum because of its shape (i.e.,
contour) and its pairing with the qP0(2) pattern (separation

∼2.53 cm−1 [82]). Despite the poor information available on
the band assignment, validation of the formalism developed
in the previous sections and determination of some relevant
quantities, such as the band dipole moment, are possible.

The complete analysis is based on three main steps,
described below. Actually, an iterative process was performed
because inserting all the collected data into a single fitting algo-
rithm was not an option. The majority of the parameters were
determined by minimizing a least-squares sum χ2 coefficient
and by optionally weighting the data [83]. Parameters related
to the EM-field power density were deduced by inferring the
intracavity beam waist size.

The strong correlation of the EM-field power density
with the population and coherence rates embedded in the
saturation coefficient make it difficult to provide an accurate
value for the band dipole moment or the number density
without complementary studies. These additional studies are
constrained by the lack of evidence of collisional processes
inside the probed region of the slit expansion.

All the recorded spectra were frequency linearized, which
was made possible by the simultaneous acquisition of the
interference pattern from a solid Fabry-Perot etalon and
of the NO2 spectra. The frequency calibration is due to a
custom-made wave meter [84] double-checked against a si-
multaneously acquired iodine spectrum, which is also available
through PGOPHER [85] (our reference for the calibrations).
Absorption coefficients were determined using formula (69)
after evaluation of the characteristic time of the empty cavity
(cf. τe = 152.7 μs at 12 536.4 cm−1).

A. Fit of the q R0(0) pattern

The qR0(0) pattern is constituted of nine transitions result-
ing from the spin-rotation and hyperfine couplings. It has been
frequency scanned in such a way that several spectra can be
simultaneously obtained for different mean intracavity running
power values (see Sec. VII C). Figure 2 shows a good example
of the acquired data. This plot was obtained at an estimated
mean power (P ) of 9.3 W (first interval in the RD decay of
series a; see Sec. VI B 2). The Lamb and crossover dips are
clearly identifiable. Nevertheless, the shape of the q0Q21(0.5)
clump suffers from the existence of additional transitions (in
the lowest frequency side) where dips are observable; they are
indicated in magenta in Fig. 2. The median one is probably
a crossover dip. The frequency of all the discernible dips has
been obtained by fitting the pattern intensity (see Sec. V). Then,
after data reduction, the frequencies of the nine transitions
constituting the qR0(0) pattern were fitted to obtain several
molecular constants or combinations of constants.

A summary of the pattern analysis is reported in Table III.
It lists the result of two fit processes. The first one assumes that
the molecular constants of the lower state (v2 = 1) are known
[86], while the second set of parameters was obtained by
freeing the constant aFC (of the lower state). Due to the limited
number of data available, only four linearly independent
quantities are deductive: (i) the Fermi contact term, (ii) the
spin dipolar term λ′, (iii) the sum of two of the spin-rotation
tensor components, and (iv) the value of the energy term
T ′

0 + B ′ + C ′ of the unidentified upper vibronic level. The
value of the coefficient χ2 drops by a factor of 3 when aFC is

042503-13
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FIG. 2. (Color online) Fit of the qR0(0) pattern matching the mean
intracavity power value of 9.3 W. Experimental data are shown in
dark blue, and fitted (unweighted) data in red (the two plots are
almost indistinguishable). Assigned lines are indicated in blue: the
values of F in the upper and lower states are given, as well as the
HFWS (the relevant SRWS is also given, with the modified Mulliken
notation corresponding to the spin-rotation coupling only). The lower
levels have rotational symmetry A1; the upper levels, symmetry B1.
Unassigned lines are indicated in magenta. All lines were fitted by a
crude saturation profile except the crossover dips, which were fitted by
a Lorentzian profile (indicated by vertical green lines). The intensity
of each vertical line of the same color is to the same scale. A detailed
energy level diagram is available in Ref. [41].

freed and it has motivated a report on the new determination.
However, its standard deviation leads us to believe that this
new value of aFC is only partially relevant.

The obtained value of the spin-rotation component
(̃ε′

bb + ε̃′
cc)/2 is very close to that published by Delon and Jost

[35]. The reported standard deviations of the fitted parameters
have been determined by estimating a uniform uncertainty
allotted to the line frequencies.

TABLE III. Molecular constants calculated from the q0Q21(0.5)
and q0R11(0.5) patterns. Fitted values obtained by setting
T0 = 749.652961 cm−1, λ = 0.3716 × 10−3 cm−1, τ = 0.482 ×
10−3 cm−1 [88], and τ ′ = 0 (λ = −Taa/2, τ = Taa + Tbb/2). The
χ 2

nor coefficient was obtained by assuming a uniform transition value
uncertainty equal to 0.25 × 10−3 cm−1.

4 free parameters 5 free parameters

T ′
0 + B ′ + C ′ 13 286.05591(10) cm−1 13 286.05591(10) cm−1

ε̃′
bb

+ε̃′
cc

2 = ε̃ ′
bb 0.08861(13) cm−1 0.08863(13) cm−1

a′
FC 0.00326(26) cm−1 0.00331(27) cm−1

λ′ 0.95(46) × 10−3 cm−1 0.91(46) × 10−3 cm−1

aFC 0.00489444 cm−1 0.00498(12) cm−1√
χ 2 0.219 × 10−3 cm−1 0.116 × 10−3 cm−1

χ 2
nor 0.77 0.24

B. Absorption-power dependence

Analysis of the absorption coefficient versus the intensity
of the EM field can be performed by positioning the laser
source frequency at the center of the strongest absorbing
line in the previously analyzed pattern, that is, at the center
of the strongest dip of the q0R11(0.5) clump located at ν̂ �
12 536.44649 cm−1 (transition, F : 5/2 ←− 3/2). The α(P )
plot can be obtained as explained in Sec. VI B 1. A concatena-
tion of two RD decays covering the power range from ∼0.01
to ∼65 W is shown in Fig. 3. As mentioned previously, the line
splitting resulting from the hyperfine interactions is within the
Doppler broadening, giving a complex shape to the R11(0.5)
and Q21(0.5) patterns (see Sec. VII A). To accurately fit the
observed absorption-power dependence, all the interfering
lines, including their Zeeman components, are considered [see
Eq. (39)] with their associated line strengths [see Eqs. (45) and
(66)]. The line Rabi frequencies are deduced from the running
EM-field power and from the beam waist size, knowing the
cavity length and the mirror radius of curvature [59,87]. The
line frequencies are obtained using the molecular Hamiltonian
provided by Eq. (56) and utilizing the molecular constants
given in Table III and Ref. [88], while the line strengths are
obtained from Eq. (66).

The experimental data and two fitted plots are shown in
Fig. 3. Let us first note that the experimental noise is more
pronounced for the lowest power values. These fluctuations
result from the numerical derivative, which becomes poorly
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FIG. 3. (Color online) Ring-down decay converted into a power-
absorption dependence plot obtained by positioning the laser source
at 12 536.44649 cm−1. A beam waist of 0.246 μm, a Doppler
broadening (HWHM) of 0.00225 cm−1, and population relaxation
rates of 2.6 MHz are assumed. To calculate the derivative, the
ring-down decay was averaged over a time interval of 10 μs. The
two glitches observable at 2.6 and 13 W are attributed to conversion
nonlinearities embedded in the ADC.
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TABLE IV. Dipole moments deduced from the SA-CRDS. Values deduced from the crude model (see text) assume that absorption is only due
to the transition q0R11(0.5) 5/2 ←− 3/2. Doppler broadening: wD = 0.00225 cm−1 (HWHM). Relaxation rates: �u = �l = γul = 2.6(4) MHz.
Nl is the value of the number density in the lower level [see Eq. (73)]. The lack of reported error bars results from some irrelevant standard
deviations provided by the fit processes, e.g., when weighting the data with their experimental fluctuations. Only the crude mode provides a
relevant value of the standard deviation and is reported here (see Table V for the final estimated error bars).

Full model Crude model

Uniform weight Calculated weight Uniform weight Calculated weight

μband 0.00482 D 0.00464 D 0.00183(3) D 0.00175 D
Nl 9.23 × 1010 cm−3 9.79 × 1010 cm−3 7.68 × 1011 cm−3 8.23 × 1011 cm−3

χ 2 6.00 × 10−14 1.53 × 10−14 6.07 × 10−14 1.55 × 10−14

determinable at the end of the time decay when the RD signal
is close to 0. Taking into account the error bars derived from
such amplitude fluctuations, the experimental data can be
weighted with a factor inversely proportional to the square
of the fluctuations, obtained by a statistical analysis of the
nearest neighbor data. It turns out that such a weighting is
proportional to the intracavity power.

While both weighted and “unweighted” plots of the fitted
data show a good agreement with the experimental data, further
inspection indicates a better match when the experimental data
are nonuniformly weighted. Furthermore, we can observe that
at high power, the calculated saturation is slightly too high,
emphasizing the lack of simulated absorption. This slight
mismatch remains unexplained and only hypotheses can be
formulated since all attempts to improve the data modeling or
the fitting failed. Among them, the effect of a small detuning of
the laser frequency has been examined; unfortunately, it only
amplifies the mentioned lack of absorption. The model used
assumes that the molecules travel through a mean EM field;
this means that they do not experience the spatial modulation
of the stationary EM field. This modulation was included in
the model without convincing results. Similar, unconvincing
behavior was observed by including the transverse profile
(Gaussian shape) of the EM field. Finally, we are only
able to hypothesize a slight laser frequency jittering and/or
the dispersion of the transit time (and, consequently, of
the population relaxation rates) caused by the transverse jet
expansion, i.e., by the lack of planarity of the (V shaped)
jet expansion. The validity domain of the model is further
questioned in Sec. VIII.

At that step in the analysis, it is relevant to compare
the described formalism with a crude model. Ignoring the
Zeeman sublevel complexity and assuming a single absorbing
transition, the SA at the center of the line dip becomes [89–91]

α (ωul) = α0√
1 + 2 P

Psat

, (70)

where

Psat = cε0

2

h̄2

Su
l μ2

band

γul

T1

πw2
0

2
(71)

and

α0 = πω0

3ε0h̄c
Su

l μ2
bandNl

1

�D

√
ln 2

π
werf

(
iγul

�D/
√

ln 2

)
.

(72)

For the specific transition analyzed here, Su
l = 2, and

Nl = gns
e− El

kT − e− Eu
kT

Q
N0. (73)

The quantity werf ( iγul

�D/
√

ln 2
) is close to 1 since γul � �D .

The final results are presented in the comparative Table IV.
It shows that the values of the least square χ2 coefficients are
very similar to those obtained with the complete model when
identical weightings are considered (plots which are not shown
exhibit only tenuous differences from those shown). Of course,
the simplicity of such a formalism, based on a single-line
absorption, does not allow correct determination of the band
dipole moment (a factor of ∼2.5 is reported) or, accordingly,
of the derived number density (the products μ2

band × Nl are
close, viz., in the range of ±10%).

C. Pattern analysis

Having determined the band strength and the relevant
molecular constants, it becomes easy to simulate and eventu-
ally fit the parts of the spectrum of interest. After considering
the uncertainties relative to the experimental parameters, a
value of 0.0047(12) D (corresponding to an integrated absorp-
tion cross section of ∼9.2 × 10−24 cm2/molecule) has finally
been retained for the band dipole moment (see Table IV).
Clumps q0R11(0.5) and q0Q21(0.5) are both considered when
deriving the number density. However, the q0Q21(0.5) clump
requires special attention because its shape is altered by
unassigned transitions.

1. Linear absorption

The spectrum obtained under linear absorption conditions
has to be analyzed using the same Voigt profile for each
transition (data plotted in orange in Figs. 4 and 5). The
q0Q21(0.5) clump has been fitted (GSEF) after subtracting
the unassigned lines from the pattern (transition frequencies
have been obtained from the analysis reported in Sec. VII A).
After iterating, the value of the Lorentzian component is set
to 2.6(5) MHz to match the Lamb and crossover dip width
progression versus the mean intracavity power. Thus, the
GSEF of both clumps allows a good determination of the
residual Doppler broadening (red curve in Fig. 4).

It is worth noting that the Maxwell-Boltzmann velocity
distribution along the z direction of the jet expansion (i.e.,
along the slit axis) does not show any noticeable deviation from
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PATRICK DUPRÉ PHYSICAL REVIEW A 85, 042503 (2012)

12536.44 12536.445 12536.45 12536.455

Excitation Energy (cm-1)

0

1×10
-6

2×10
-6

3×10
-6

4×10
-6

5×10
-6

A
bs

or
pt

io
n 

(c
m

-1
)

Lineara

0.6 Wa

1.5 Wa

3 Wb

3.7 Wa

6.0 Wc

7.5 Wb

9.2 Wa

15 Wc

19 Wb

37 Wc

46 Wb

230 Wc

92 Wc

Voigt

0.5 W
1.5 W
3 W
6 W
10 W
20 W
50 W
100 W
250 W

FIG. 4. (Color online) SA-CRDS of the transition (clump)
q0R11(0.5) for different values of the mean intracavity power. Spectra
belonging to the same series (a, b, or c) were obtained simultaneously
(average of four RD decays). Parameters relative to the line intensity
used for simulations are listed in Table V, while molecular constants
are reported in Table III. Experimental mean powers are indicated
to the left of the patterns, while powers relative to the different
simulations are indicated to the right.

the usual velocity model, whereas there is no well-established
principle explaining this behavior (a supersonic circular
expansion provides a totally different behavior [92,93]). A
Doppler linewidth (HWHM) of 0.00225 cm−1 matches a ther-
modynamical temperature of 11.5 K for NO2. This temperature
is very close to the estimated rotational temperature of NO2

[12(3) K] resulting from the spectral analysis of some vibronic
bands of NO2 not reported here.

The number density of NO2 molecules has been determined
and we wish to discuss its relevance. It is well known that the
cooling efficiency inside a supersonic expansion is greatly
dependent on the component of the kinetic energy considered
[94]; viz., the vibrational cooling is poorly efficient. The
line intensity calculation requires us to determine the species
partition function and therefore the population of all the “pop-
ulated” energy levels. It follows that the partition function is
easy to calculate for low temperatures but it is time-consuming
for the “high” temperatures due to the large values of F .
With respect to such calculations, the rotational temperatures
reached inside a supersonic jet expansion are very convenient
conditions. To make the calculations relative to a hot band
easily tractable, we assume that the vibrational and rotational
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FIG. 5. (Color online) SA-CRDS of the transition q0Q21(0.5) for
different values of the mean intracavity power. Color coding and
captions are identical to those in Fig. 4. Unassigned lines are not
simulated (left part of the figure).

temperatures (Tvib and Trot, respectively) are decoupled and
that only a small fraction (let us say <1%) of the molecules
are not in the vibrationless mode but in the v2 = 1 vibrational
level (Boltzmann distribution). Following this approach, only
a vibrational temperature close to room temperature makes
the number density of NO2 molecules observed in the probed
region (N0 � 3.7 × 1014 cm−3) compatible with estimations
obtained from the usual model for a slit expansion [56,95]:
N0 � 3.4 × 1014 cm−3 (see Table V).

TABLE V. Jet expansion characterization by SA-CRDS.

0.0047(12) D
μband 9.2(2.3) × 10−24 cm2a

�D (HWHM) 0.00225(7) cm−1

�l = �u = γul 0.087(15) × 10−3 cm−1

N0
b 3.70(50) × 1014 cm−3

Trot 12(3) K
Tvib 300 K

aIntegrated cross section: Nl

∫
line

α(ω)
ω0

dω.
bFor comparative purposes, the number density estimated for a slit
expansion of cross section 45 μm × 7 mm, backed at 0.5 bar (carrier
gas: Ar), seeded at 1%, 3 mm downstream, is ∼3.4 × 1014 cm−3.

042503-16



SATURATED ABSORPTION AND CROSSOVER RESONANCES . . . PHYSICAL REVIEW A 85, 042503 (2012)

2. Nonlinear absorption

The analysis of the power dependence of the transition
qR0(0) is summarized in Figs. 4 and 5. We report spectra
obtained when the intracavity mean power varied from ∼0 to
230 W. This was made possible by selecting three different
power thresholds (see Sec. VI B 2) and gave rise to the three
series, a, b, and c, indicated in the figures. It turns out that,
in the medium power range, several spectra are reported with
close mean power values. Visual inspection shows that some
small spectral mismatches or differences can be identified.
Indeed series a is the most reliable one because the highest
number of data were acquired for it. For the sake of clarity,
only nine spectra (excluding linear absorption) are simulated
in both figures: the displayed power values are close to the
experimental mean values.

Despite some small imperfect simulations, Fig. 4 shows a
good match of the following features: (i) the global behavior of
the absorption spectral envelope versus the intracavity power;
(ii) the shape of the Lamb dips, viz., their amplitude and width;2

and (iii) the amplitude, position, and width of the crossover
dips. Careful inspection shows that series b and c exhibit some
small bias, probably due to the poor quality of RD decays
(probably caused by noneradicated beating cavity modes). In
addition, series c exhibits slight frequency shifts for a few dips,
for example, around 12 536.444 cm−1. This likely results from
irregular frequency scans. Such irregularities are frequently
observed on the scale of 10–50 MHz when using a laser source
such as that operated here.

Figure 5 does not shows the same kind of agreement as
Fig. 4 because of the incomplete simulation of the pattern
due to the lack of line assignment as explained previously.
Nevertheless, the q0Q21(0.5) clump consists of only four
hyperfine transitions and two crossover dips (a crossover
resonance can exist only if two transitions share at least one
identical Zeeman sublevel), which makes the pattern relatively
easy to assess.

VIII. DISCUSSION

SA spectra obtained in a high-finesse cavity have been
compared with simulations based on the documented model.
Despite the overall very good agreement, several mismatches
can be observed by carefully inspecting the data. We wish to
emphasize, first, that the reported values of the peak irradiance
(up to ∼240 × 103 W/cm2) cover a range of saturation
running from 0 to ∼120, matching Rabi frequencies up to
∼15 MHz, and, second, that the simplified model (postulated
to be relevant for low-saturation conditions) as described
does not proceed with density-matrix elements involving
frequencies higher than those constituting the impinging EM
field, which must be considered at high saturation. Because
evidence of such contributions is not clearly observed, we
might claim that saturation coefficients up to 120 remain in
the limit of the low-saturation regime. However, if the small
deviation documented about the absorption-power dependence

2The absorption at the center of the strongest Lamb dip was previ-
ously embedded in the analysis of the absorption-power dependence
(see Section VII B).

at the center of a line (see Sec. VII B) is not an experimental
artifact, it could be a sign that the limit of the model, as it has
been reported, has been reached.

Small irregularities in the spectrum shape versus the
power progression have been noted. They are observable in
spectra belonging to the same scan (also the so-called series)
as well as in spectra belonging to different scans. These
irregularities cannot easily be accounted for because of the lack
of identifiable correlations. They are ascribed to a deficiency in
the control of the spectrum acquisition. Despite the automatic
rejection of spurious RD decays, it is not safe to assume that the
power threshold sampling issued from the RD decay analysis
does not suffer from inaccuracies (cf. in the case of beating).
We also wish to emphasize that the spectra were not recorded
at well-established power values. But as a matter of fact, they
result from absorption coefficients ciphered at power intervals
covering a range of approximately ±45% of the indicated
mean power.

The hypothesis of molecules crossing a mean EM field
has been checked by considering the result of the spatial
modulation of the EM field along the propagation and
transverse directions. The clear lack of improvement afforded
when implementing these additional features inclines us to
believe either that the population of the traveling molecules
cannot follow the spatial modulation of the EM-field beam—
the molecular population relaxation rates remaining too slow
to challenge such rapid changes—or that the short-time-
scale micrometric motions of the cavity mirrors shake the
interference pattern and raise an average value of the EM
field impinging on the absorbing species. In the first case, the
molecules traveling perpendicularly to the z axis (vz � 0) may
escape from such modulation; however, their number density
is too low to alter the overall behavior.

We have reported about the strong correlation between
the population relaxation rates and the dipole moment sitting
in the saturation coefficients. In addition, we have assumed
that the probed jet expansion was exempt from collisions
and that the population relaxation rates were controlled by
the molecular transit time through the captured EM field.
Hence the determined dipole moment may suffer from such
assumptions even though these hypotheses make perfect
sense. One way to obtain greater confidence in the current
determinations would be to vary some of the experimental
conditions. Several options are possible: (i) varying the beam
waist size, for example, either by using another set of mirrors,
featuring a different value of the radius of curvature, or
by changing the cavity length (in the first approximation,
these changes should conserve the saturation coefficients but
alter the width of the dips), and (ii) changing the expanded
carrier gas and thus altering the transit time and probably
the residual Doppler broadening, while the rotational (and
possibly vibrational) temperatures would also be modified.

As hypothesized in Sec. II C, the current model correlates
the population relaxation rates and the transit time of molecules
traveling through the EM field. A population relaxation rate
of ∼2.6 MHz has been determined, which is twice the value
derived from the transit time [see Eq. (23)] for molecules
crossing the photon flow along a cross-section diameter. In
other words, the effective EM-field beam waist size is w0 ∼
0.125 μm. Two explanations can be offered: (i) collisional

042503-17
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processes control the relaxation rates, at least partially; and
(ii) the effective population relaxation rate results from the
dispersion of the transit times as mentioned in Sec. VII B.
Although it is not possible to determine from the data analysis,
the second hypothesis seems more plausible because of the
lateral extension (V shaped) of the jet expansion. Nevertheless,
collisions with the residual gas surrounding the free expansion
cannot be excluded, although the molecules submitted to such
relaxation should only marginally contribute to the RD signal.

The sensitivity to the transit time may question the
determination of the dipole moment. A more accurate model
should deal with weaker population relaxation rates and with
the Gaussian spatial dependence of the EM field. An elegant
way to solve this issue would be to determine the frequency
response of the density-matrix elements to a nonmonochro-
matic field such as a Gaussian EM field. Unfortunately, in the
absence of trivial analytical solutions, only a fully numerical
treatment based on a sum of weighted (following a Gaussian
distribution) Dirac δ functions seems feasible.

Throughout the study we have not accounted for possible
spectral broadening due to the laser source spectral width
(<1 MHz). Despite the intracavity EM field which is much
sharper than the source spectral width, spectral fluctuations
of the laser source should alter the experimental saturation
profiles. However, the narrowest observed dips are of the order
of 11 MHz (FWHM), obtained at a power value of 0.6 W (see
Fig. 4), thus, only minor broadening effects are expected from
convolution with the significantly narrower spectral width of
the laser source.

The ultimate validation of the model should be carried
out with a full simulation and, eventually, a fit of the
transitions constituting the entire vibrational band. However,
this remained impossible with the present data because of the
lack of rotational assignment resulting from the strong conical
intersection [34,35]

Finally, we wish to comment on the spectral resolution
reached in a previous study conducted by the Stolte group
(bolometric detection) [40–42] and to compare their results
with those presented here. This comparison is meaningful
because both studies report on the values of hyperfine constants
of NO2, both use the same laser source, and both use a
supersonic jet expansion. Using bolometric detection (linear
absorption), the spectral resolution is provided by the skimmed
jet expansion (∼12 MHz), while here the spectral resolution
of the source is the ultimate limit (no skimmed jet expansion):
the typical spectral width of the dips obtained at an intracavity
power value of 9.3 W is ∼18 MHz (FWHM). The least
saturated spectra exhibit a resolution almost twice as low.
Unfortunately, the accuracy of the scan linearization and
calibration processes did not allow us to exploit the ultimate
spectral resolution. This is probably one of the reasons why
we are reporting uncertainties which are about twice as high as
those reported in the previously mentioned work. The signal-
to-noise ratio and/or the noise-equivalent absorption (NEA)
[11] of both techniques should also have been compared.
The NEA depends on the number density, band strength,
and cooling efficiency. Regrettably, the rotational temperature
can only be accurately determined if the analyzed spectrum
contains enough assigned lines. All these quantities differ
from setup to setup, which prevented further quantitative

comparisons of the two techniques. In addition, let us note that
the values of the quantities a′

FC deduced by Stolte’s group were
used to evaluate the percentage of mixing of the Ã and X̃ states.

IX. CONCLUSION

We have reported on a formalism to analyze the spectral
shape of transitions due to a symmetric SA scheme. It leads
to solve a system of coupled equations in the frequency space.
The approximation of weak saturation has been considered
by eliminating the interference terms of the density matrix at
frequencies other than the fundamental frequencies. Assuming
a standing-wave monochromatic EM field and neglecting
the cross-coherences allow the system of equations to be
analytically solved in the stationary (steady-state) regime. The
analysis did not allow us to distinguish the dip broadenings due
to the transit time of the molecule flowing through the captured
photon beam from those due to possible collisional popula-
tion relaxation processes, the effective population relaxation
rates incorporating both effects. The full absorption profile
encompasses the Bennett-Lamb and multicrossover dips which
characterize the molecular absorption when (i) the species are
impinged by a “strong” standing wave, (ii) the transitions
share at least one level, and (iii) the frequency difference
of the interfering transitions is comparable to the residual
inhomogeneous broadening. The final output of the formalism
displays a fractional form where we can distinguish the
contribution of the absorption strength in the numerator from
the dip amplitude modulations controlled by the denominator.
Only a frequency detuning (or Doppler shift) integration
was required. By establishing the ineffectiveness of spatial
integrations demanded by the interference pattern due to the
two identical counter-propagating waves, we concluded that
the traveling molecules cross a mean EM field. The analysis
of NO2 experimental data required us to deal only with dual
interfering transitions in a standard ”V”-shape configuration
(three-level system). This results from the low values of F

involved in the observed energy levels and from the value
of the hyperfine splittings in comparison with the residual
Doppler broadening.

The model has also been faced with a qualitatively crude
SA profile, i.e., an absorption coefficient proportional to a
function in (1 + 2s)−1/2. The plot and least squares coefficients
could only be tenuously distinguished. However, this crude
approximation failed to determine the value of the band dipole
moment and the derived quantities.

The formalism is particularly well adapted to an experi-
mental setup (such as SA-CRDS) composed of a high-finesse
cavity when the captured EM radiation is entirely controlled,
i.e., in space and in amplitude. The absorption coefficient and
intracavity power are deduced from the nonexponential RD
decay. The center of the cavity encompasses a supersonic
slit expansion which has been characterized with respect to
the number density and the residual Doppler broadening.
A Maxwellian distribution accurately fits the shape of the
molecule velocity distribution.

Spectra of the radical NO2 have been used to validate the
formalism. This required the full implementation of the spin-
rotation and hyperfine couplings within a rigid asymmetric
rotor Hamiltonian including the relevant Wang symmetry.
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The full formalism has been implemented in the application
“Stepram”, which allows full simulation and fit of high-
resolution spectra. By analyzing the pattern of the transition
qR0(0) of an unassigned hot band, the Fermi contact term, one
term of the dipolar electronic-spin nuclear-spin interaction, the
spin-rotation tensor component ε̃bb and the band origin have
been deduced.

The absorption coefficient versus the intracavity running
power has been accurately analyzed, (i) by positioning the
laser frequency at the center of a transition (power varying
from 0.01 to 65 W), and (ii) by recording tens of spectra with
incident powers between ∼0 and 230 W. The amplitudes of the
absorption profiles, of the Lamb and crossover dips, as well as
their widths, are well simulated.

Numerous perturbations complicate the spectroscopy of
NO2 in the probed energy range and did not allow the assign-
ment of the upper vibronic level. However, the vibronic band
dipole moment has been determined and the number density
of jet-cooled NO2 is discussed. The SA-CRDS contrasts with
the usual CRDS assuming a linear response of the absorption
and providing the determination of either the absorption cross
section or the number density.

The analytical solutions used for model implementation
discarded possible contributions of the cross-coherence matrix
elements to the absorption. While this assumption remains
undocumented by full numerical simulations [96], the current

satisfactory agreement between the simulated profiles and the
experimental data around the crossover dips prevented us from
challenging the model as approximated.

The high sensitivity of the SA-CRDS technique is only
partially exploited when focusing spectroscopic studies on
nonlinear absorption. Nevertheless, improvements of the
noise-equivalent absorption are possible using a longer slit
expansion. SA studies of transitions weaker than those reported
here could be performed by increasing the intensity of the cap-
tured EM field. This would be possible by improving the con-
trol of the laser-beam injection inside the high-finesse cavity.
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APPENDIX A: CROSS-COHERENCE

Equation (9) has been deduced from Eq. (6) by setting the
cross-coherence terms between the two upper levels to 0. If
such an approximation is omitted, slightly different equations
can be obtained. Following the same approach as used to
establish Eq. (17), we can get [from Eq. (7)]

ρ(±)
mumu′ (ω,z,δ) = 1

2

ρmuml
(ω,z,δ) ⊗ mlmu′ (ω,z) − muml

(ω,z) ⊗ ρmlmu′ (ω,z,δ)

ωuu′ − ω + iγuu′
(A1)

and

ρ(±)
mlmu

(ω,z,δ) = 1

2

mlmu
(ω,z) ⊗ [

ρmlml
(ω,z,δ) − ρmumu

(ω,z,δ)
]

ωul − ω ∓ δ + iγul

− 1

2

mlmu′ (ω,z) ⊗ ρmu′ mu
(ω,z,δ)

ωul − ω ∓ δ + iγul

, (A2)

where u �= u′ (u = 1 or 2).
To evaluate both terms we assume that the cross-coherences

ρmumu′ are only small contributions to the usual coherences
ρmuml

. First, we can see that the matrix elements ρmumu′
reach significant values only for ω � ωuu′ = |ω12|, i.e., for
frequencies close to the energy difference between the upper
two levels. Thus, the coherences ρmumu′ can only oscillate at
frequencies close to ω12 with a relaxation rate �u; this means
that quantum beats altering the population relaxation are an-
ticipated [97]. If we assume that the coherences ρmuml

(ω,z,δ)
are peaked functions around ωul (as in the absence of cross-
coherence terms), the analysis of the convolution products
shows that both products constituting the numerator of
Eq. (A1) only take prominent values around δ = |ω12| /2,
i.e., when both upper levels are coherently populated. This
condition is only reached in the vicinity of the crossover reso-
nances where the coherences ρmlmu

become notably altered by
the cross-coherences. Hence, a frequency modulation of the
populations at ω12 with a maximum amplitude at the center of
the crossover resonances is predicted. Because of the nature of
the CRDS detection, such modulation is not observable when
collecting RD decays.

APPENDIX B: FOURIER TRANSFORMATIONS

The Fourier transform is defined as follows (t refers to the
time space and ω to the angular frequency space):

f (ω) =
∫

f̂ (t)e−iωtdt, (B1)

f̂ (t) = 1

2 π

∫
f (ω)eiωt dω. (B2)

The convolution product [98] in the frequency space
becomes

f (ω) ⊗ g(ω) = 1

2π

∫
f (ω′)g(ω − ω′)dω′. (B3)

The Dirac δ function in the frequency space is

δ(ω) = 1

2π

∫
e−ı̂ωt dt. (B4)
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We deduce the convolution products involving a shift in the
Dirac δ function,

δ(ω − ω0) ⊗ g(ω − ω0) = 1

2π
g (ω − 2ω0) (B5)

and

δ (ω + ω0) ⊗ g(ω − ω0) = 1

2π
g (ω) . (B6)
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A 49, 4794 (1994).
[21] H. R. Schlossberg and A. Javan, Phys. Rev. 150, 267 (1966).
[22] M. S. Feld and A. Javan, Phys. Rev. 177, 540 (1969).
[23] C. J. Anderson, J. E. Lawler, L. W. Anderson, T. K. Holley, and

A. R. Filippelli, Phys. Rev. A 17, 2099 (1978).
[24] Ch. Chardonnet and Ch. J. Bordé, Europhys. Lett. 9, 527 (1989).
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