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We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to
the first order in the strength B of the perturbing field, the only electric multipole moment induced by the field
in the ground state of the atom is the quadrupole one. Using the Sturmian expansion of the generalized Dirac-
Coulomb Green function [Szmytkowski, J. Phys. B 30, 825 (1997); 30, 2747(E) (1997)], we derive a closed-form
expression for an induced electric quadrupole moment. The result contains the generalized hypergeometric
function 3F2 of the unit argument. Earlier calculations by other authors, based on a nonrelativistic model of the
atom, predicted in the low-field region the quadratic dependence of the induced electric quadrupole moment
on B.
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I. INTRODUCTION

In the mid-1950s, Coulson and Stephen [1] pointed out
that a uniform magnetic field should induce an electric
quadrupole moment (EQM) in the hydrogenlike atom. They
used the perturbation theory and found that in the case of
the nonrelativistic atom, for field strengths B corresponding
to the complete Paschen-Back effect, the leading term in the
expansion of the induced EQM in powers of the field strength
is quadratic in B. For the atomic ground state, their result,
after being translated into the form conforming both to the
definition of the EQM (cf. Sec. III) and to the notation used in
the present work, is

Q20 � Q(2)
20 = − 5

16

α4ea2
0

Z6

B2

B2
0

, (1.1)

where Ze is the nuclear charge, a0 is the Bohr radius, α is the
Sommerfeld fine-structure constant, and

B0 = μ0

4π

μB

a3
0

= α2h̄

2ea2
0

� 6.26 T (1.2)

is the atomic unit of the magnetic induction (μ0 is the vacuum
permeability and μB is the Bohr magneton). Later, Turbiner [2]
arrived at the same expression for Q(2)

20 for the Schrödinger
one-electron atom with Z = 1 and found also explicitly the
next nonvanishing term (being Q(4)

20 ∝ B4) in the expansion of
Q20 in powers of B. Moreover, using the variational technique,
he determined the function Q20(B) for magnetic fields ranging
from vanishing to superstrong. A decade ago, Potekhin and
Turbiner [3] calculated Q20(B), over a still broader range of B,
by two different methods, one being the variational approach
with a more sophisticated trial function than the one used in
Ref. [2] and the other based on the expansion of the perturbed
electronic wave function in the Landau orbitals. In the low-
field limit, the results of Ref. [3] reproduced the quadratic
dependence of the induced EQM on B predicted in Refs. [1,2].
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In all the aforementioned works, the atom has been
described nonrelativistically. In the present paper, we show
that if relativity is taken into account and the atomic model
adopted is the one based on the Dirac equation for the electron,
it appears that the weak, static, uniform magnetic field induces
in the ground state of the atom the EQM which, to the
lowest order, is linear in the perturbing field strength B; no
other electric multipole moments are induced in the system
to first order in B. Exploiting the Sturmian expansion of
the generalized (or reduced) Dirac-Coulomb Green function,
found by one of us in Ref. [4] and subsequently successfully
used in analytical calculations of various electromagnetic
properties of the Dirac one-electron atom [5–9], in Sec. IV
we derive a closed-form expression for the induced EQM in
terms of the generalized hypergeometric function 3F2 with the
unit argument.

II. PRELIMINARIES

It has been already stated in the Introduction that the
system we shall be concerned with in the present work is
the Dirac one-electron atom. Its nucleus will be assumed to be
pointlike, infinitely heavy, and spinless and to carry the electric
charge Ze. In the absence of external perturbations, the atomic
ground-state energy level

E(0) = mc2γ1, (2.1)

where

γκ =
√

κ2 − (αZ)2, (2.2)

is twofold degenerate, with the two associated Hamiltonian
eigenfunctions, orthonormal in the sense of∫

R3
d3r �(0)†

μ (r)�(0)
μ′ (r) = δμμ′ , (2.3)

being

�(0)
μ (r) = 1

r

(
P (0)(r)�−1μ(nr )

iQ(0)(r)�1μ(nr )

) (
μ = ± 1

2

)
. (2.4)
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The radial functions appearing in Eq. (2.4), normalized
according to∫ ∞

0
dr{[P (0)(r)]2 + [Q(0)(r)]2} = 1, (2.5)

are explicitly given by

P (0)(r) = −
√

Z

a0

1 + γ1

	(2γ1 + 1)

(
2Zr

a0

)γ1

e−Zr/a0 , (2.6a)

Q(0)(r) =
√

Z

a0

1 − γ1

	(2γ1 + 1)

(
2Zr

a0

)γ1

e−Zr/a0 , (2.6b)

whereas �κμ(nr ), with nr = r/r , are the orthonormal spheri-
cal spinors defined as in Ref. [10].

In the presence of a weak, static, uniform magnetic field
B = Bnz, the level E(0) splits in two. Their energies, to the
first order in B, are given by

Eμ � E(0) + E(1)
μ

(
μ = ± 1

2

)
, (2.7)

with

E(1)
μ = sgn(μ)

2γ1 + 1

3
μBB. (2.8)

The corresponding wave functions, to the same approximation
order, are

�μ(r) � �(0)
μ (r) + �(1)

μ (r)
(
μ = ± 1

2

)
. (2.9)

Here, the zeroth-order component �(0)
μ (r) is given by Eq. (2.4)

(the space quantization axis is now chosen to be directed
along B). The correction �(1)

μ (r) solves the inhomogeneous
differential equation[

− ich̄α · ∇ + βmc2 − Ze2

(4πε0)r
− E(0)

]
�(1)

μ (r)

= −
[

1

2
ecα · (B × r) − E(1)

μ

]
�(0)

μ (r) (2.10)

(α and β are the standard Dirac matrices), subject to the usual
regularity conditions and the orthogonality constraint∫

R3
d3r �(0)†

μ (r)�(1)
μ′ (r) = 0

(
μ,μ′ = ± 1

2

)
. (2.11)

The integral representation of �(1)
μ (r) is

�(1)
μ (r) = −1

2
ecB ·

∫
R3

d3r ′ Ḡ(0)(r,r ′)(r ′ × α)�(0)
μ (r ′),

(2.12)

where Ḡ(0)(r,r ′) is the generalized Dirac-Coulomb Green
function associated with the ground-state energy level (2.1).

III. ANALYSIS OF ELECTRIC MULTIPOLE MOMENTS
OF THE ATOM IN THE MAGNETIC FIELD

After these preparatory steps, we set the problem: which
electric multipole moments, apart from the monopole one,
characterize the electronic cloud of the atom in the perturbed
state �μ(r)? If ρμ(r) is the electronic charge density for

that state, the spherical components of the Lth-order electric
multipole moment tensor are defined as

QLMμ =
√

4π

2L + 1

∫
R3

d3r rLY ∗
LM (nr )ρμ(r), (3.1)

where the asterisk denotes the complex conjugation and
YLM (nr ) is the normalized spherical harmonic defined accord-
ing to the Condon-Shortley phase convention [11]. For the
atom in state �μ(r), the density ρμ(r) is given by

ρμ(r) = −e�†
μ(r)�μ(r)∫

R3 d3r ′ �†
μ(r ′)�μ(r ′)

. (3.2)

Using Eqs. (2.9) and (2.11), to first order in the perturbing
field, one has

ρμ(r) � ρ(0)
μ (r) + ρ(1)

μ (r), (3.3)

with

ρ(0)
μ (r) = −e�(0)†

μ (r)�(0)
μ (r) (3.4)

and

ρ(1)
μ (r) = −e

[
�(1)†

μ (r)�(0)
μ (r) + �(0)†

μ (r)�(1)
μ (r)

]
. (3.5)

Accordingly, it follows that

QLMμ � Q(0)
LMμ + Q(1)

LMμ, (3.6)

where

Q(0)
LMμ = −e

√
4π

2L + 1

∫
R3

d3r �(0)†
μ (r)rLY ∗

LM (nr )�(0)
μ (r)

(3.7)

is the multipole moment for the unperturbed atom, and

Q(1)
LMμ = Q̃(1)

LMμ + (−1)MQ̃(1)∗
L,−Mμ, (3.8)

with

Q̃(1)
LMμ = −e

√
4π

2L + 1

∫
R3

d3r �(0)†
μ (r)rLY ∗

LM (nr )�(1)
μ (r),

(3.9)

is the first-order correction induced by the perturbing magnetic
field. To arrive at Eq. (3.8), we have exploited the well-known
identity

YLM (nr ) = (−1)MY ∗
L,−M (nr ). (3.10)

If the representation (2.12) of �(1)
μ (r) is plugged into Eq. (3.9),

it gives Q̃(1)
LMμ in the form of the double integral over R3:

Q̃(1)
LMμ = 1

2

√
4π

2L + 1
e2cB

×
∫
R3

d3r
∫
R3

d3r ′ �(0)†
μ (r)rLY ∗

LM (nr )Ḡ(0)(r,r ′)nz

· (r ′ × α)�(0)
μ (r ′). (3.11)

Using Eq. (2.4) and the explicit representations of the
spherical spinors �∓1μ(nr ), it is easy to show that the
electronic charge density in the unperturbed atom ρ(0)

μ (r) is
spherically symmetric and the integral in Eq. (3.7) differs from
zero only if L = 0 and M = 0. Hence, for the ground state of
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the unperturbed atom it holds that

Q(0)
LMμ = −eδL0δM0, (3.12)

i.e., all permanent electric multipole moments of the electronic
cloud other than the monopole one do vanish.

Next, we proceed to the analysis of the first-order induced
multipole moments Q(1)

LMμ. To this end, we have to invoke the
multipole representation of the generalized Green function,
which is

Ḡ(0)(r,r ′) = 4πε0

e2

∞∑
κ = −∞
(κ �= 0)

|κ|−1/2∑
m=−|κ|+1/2

1

rr ′

(
ḡ

(0)
κ,(++)(r,r

′)�κm(nr )�†
κm(n′

r ) −iḡ
(0)
κ,(+−)(r,r

′)�κm(nr )�†
−κm(n′

r )

iḡ
(0)
κ,(−+)(r,r

′)�−κm(nr )�†
κm(n′

r ) ḡ
(0)
κ,(−−)(r,r

′)�−κm(nr )�†
−κm(n′

r )

)
. (3.13)

If Eqs. (2.4) and (3.13) are inserted into Eq. (3.11), the angular integration in the resulting formula may be conveniently carried
out with the aid of the identity [see [10], Eq. (3.1.6)]

nz · (nr × σ ) �κμ(nr ) = i
4μκ

4κ2 − 1
�−κμ(nr ) + i

√(
κ + 1

2

)2 − μ2

|2κ + 1| �κ+1,μ(nr ) − i

√(
κ − 1

2

)2 − μ2

|2κ − 1| �κ−1,μ(nr ) (3.14)

and the relation √
4π

2L + 1

∮
4π

d2nr �†
κμ(nr )Y ∗

LM (nr )�κ ′μ′(nr ) = (−1)μ
′+1/22

√
|κκ ′|

( |κ| − 1
2 L |κ ′| − 1

2
− 1

2 0 1
2

)
×

( |κ| − 1
2 L |κ ′| − 1

2
μ M −μ′

)
(l,L,l′), (3.15)

with

(l,L,l′) =
{

1 for l + L + l′ even

0 for l + L + l′ odd.
(3.16)

In Eq. (3.15), ( ja jb jc

ma mb mc
) denotes Wigner’s 3j coefficient,

whereas

l = ∣∣κ + 1
2

∣∣ − 1
2 (3.17)

and similarly for l′. Exploiting the selection rules embodied in
Eq. (3.16) and properties of the 3j coefficients, one deduces
that the only case when Q̃(1)

LMμ does not vanish is the one with

L = 2 and M = 0. Since Q̃(1)
20μ is real, from Eq. (3.8) one has

Q(1)
LMμ = Q(1)

20μδL2δM0, (3.18)

with Q(1)
20μ being given in the form of the following double

radial integral:

Q(1)
20μ = sgn(μ)

2

15
(4πε0)cB

∫ ∞

0
dr

∫ ∞

0
dr ′ (P (0)(r) Q(0)(r))

× r2Ḡ(0)
2 (r,r ′)r ′

(
Q(0)(r ′)
P (0)(r ′)

)
, (3.19)

where

Ḡ(0)
κ (r,r ′) =

(
ḡ

(0)
κ,(++)(r,r

′) ḡ
(0)
κ,(+−)(r,r

′)

ḡ
(0)
κ,(−+)(r,r

′) ḡ
(0)
κ,(−−)(r,r

′)

)
(3.20)

is the radial generalized Green function.

IV. EVALUATION OF THE INDUCED ELECTRIC
QUADRUPOLE MOMENT

In the preceding section, we have proved that, to the first
order in B, the only electric multipole moment induced in
the electronic cloud of the atom by the weak, static, uniform
magnetic field is the quadrupole (L = 2) one and that its only
nonvanishing spherical component is the one with M = 0.
Now, the Cartesian components of the traceless tensor of the
induced quadrupole moment,

Q(1)
ijμ =

∫
R3

d3r
1

2
(3rirj − r2δij )ρ(1)

μ (r) (i,j ∈ {x,y,z}),
(4.1)

are related to its spherical components through

⎛⎜⎝Q(1)
xxμ Q(1)

xyμ Q(1)
xzμ

Q(1)
yxμ Q(1)

yyμ Q(1)
yzμ

Q(1)
zxμ Q(1)

zyμ Q(1)
zzμ

⎞⎟⎠ =

⎛⎜⎜⎜⎝
− 1

2Q
(1)
20μ +

√
3
8

[
Q(1)

22μ + Q(1)
2−2μ

]
i

√
3
8

[
Q(1)

22μ − Q(1)
2−2μ

] −
√

3
8

[
Q(1)

21μ − Q(1)
2−1μ

]
i

√
3
8

[
Q(1)

22μ − Q(1)
2−2μ

] − 1
2Q

(1)
20μ −

√
3
8

[
Q(1)

22μ + Q(1)
2−2μ

] −i

√
3
8

[
Q(1)

21μ + Q(1)
2−1μ

]
−

√
3
8

[
Q(1)

21μ − Q(1)
2−1μ

] −i

√
3
8

[
Q(1)

21μ + Q(1)
2−1μ

]
Q(1)

20μ

⎞⎟⎟⎟⎠ .

(4.2)
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Hence, it follows that in the Cartesian basis all the off-
diagonal elements of the quadrupole moment induced in the
system under study do vanish:

Q(1)
ijμ = 0 (i �= j ; i,j ∈ {x,y,z}), (4.3)

while the diagonal elements are given by

Q(1)
xxμ = Q(1)

yyμ = − 1
2Q(1)

zzμ = − 1
2Q

(1)
20μ. (4.4)

Such a structure of the Cartesian representation of the
quadrupole moment tensor is characteristic for systems pos-
sessing the rotational symmetry around the z axis (recall that
in our case the z axis is directed along the magnetic field).

It remains to evaluate the double integral in Eq. (3.19). For
this purpose, we shall make use of the Sturmian expansion
of the pertinent generalized radial Dirac-Coulomb Green
function for the atomic ground state, which is [4]

Ḡ(0)
κ (r,r ′) =

∞∑
nr=−∞

1

μ
(0)
nrκ − 1

(
S(0)

nrκ
(r)

T (0)
nrκ

(r)

)
× (

μ(0)
nrκ

S(0)
nrκ

(r ′) T (0)
nrκ

(r ′)
)

(κ �= −1) (4.5)

[the formula in Eq. (4.5) remains valid in the case of κ = 1
because there is no 1p1/2 hydrogenic energy level degenerate
with the actual 1s1/2 one; for details, see Ref. [4]]. Here

S(0)
nrκ

(r)

=
√

(1 + γ1)(|nr | + 2γκ )|nr |!
2ZNnrκ

(
Nnrκ − κ

)
	(|nr | + 2γκ )

(
2Zr

a0

)γκ

e−Zr/a0

×
[
L

(2γκ )
|nr |−1

(
2Zr

a0

)
+ κ − Nnrκ

|nr | + 2γκ

L
(2γκ )
|nr |

(
2Zr

a0

)]
(4.6a)

and

T (0)
nrκ

(r)

=
√

(1 − γ1)(|nr | + 2γκ )|nr |!
2ZNnrκ

(
Nnrκ − κ

)
	(|nr | + 2γκ )

(
2Zr

a0

)γκ

e−Zr/a0

×
[
L

(2γκ )
|nr |−1

(
2Zr

a0

)
− κ − Nnrκ

|nr | + 2γκ

L
(2γκ )
|nr |

(
2Zr

a0

)]
(4.6b)

[with L(α)
n (ρ) denoting the generalized Laguerre polynomial

[12]; we define L
(α)
−1(ρ) ≡ 0] are the radial Dirac-Coulomb

Sturmian functions associated with the hydrogenic ground-
state energy level, and

μ(0)
nrκ

= |nr | + γκ + Nnrκ

γ1 + 1
, (4.7)

with

Nnrκ = ±
√

(|nr | + γκ )2 + (αZ)2 = ±
√

|nr |2 + 2|nr |γκ + κ2

(4.8)

being the “apparent principal quantum number” (notice that it
may assume positive as well as negative values); the following
sign convention applies to the definition (4.8): the plus sign
should be chosen for nr > 0 and the minus sign for nr < 0;
for nr = 0 one chooses the plus sign if κ < 0 and the minus
sign if κ > 0. Insertion of the separable expansion (4.5) into
the right-hand side of the formula in Eq. (3.19) leads to the
following expression for Q(1)

20μ:

Q(1)
20μ = sgn(μ)

2

15
(4πε0)cB

∞∑
nr=−∞

1

μ
(0)
nr 2 − 1

×
∫ ∞

0
dr r2

[
P (0)(r)S(0)

nr 2(r) + Q(0)(r)T (0)
nr 2(r)

]
×

∫ ∞

0
dr ′ r ′[μ(0)

nr 2Q
(0)(r ′)S(0)

nr 2(r ′) + P (0)(r ′)T (0)
nr 2(r ′)

]
.

(4.9)

The radial integrals in Eq. (4.9) may be taken after one makes
use of Eq. (4.7) and of the explicit representations of the radial
functions P (0)(r), Q(0)(r) and the radial Sturmians S

(0)
nr 2(r),

T
(0)
nr 2(r), given by Eqs. (2.6) and (4.6), respectively. Exploiting

the known integral formula [see [13], Eq. (7.414.11)]∫ ∞

0
dx xγ e−xL(α)

n (x)

= 	(γ + 1)	(n + α − γ )

n!	(α − γ )
[Re(γ ) > −1] (4.10)

and the trivial but extremely useful identity

γ 2
2 = γ 2

1 + 3, (4.11)

one arrives at

Q(1)
20μ = − sgn(μ)

α2ea2
0

Z4

B

B0

	2(γ1 + γ2 + 3)

480(4γ1 + 1)	(2γ1 + 1)	2(γ2 − γ1 − 2)

×
∞∑

nr=−∞

	(|nr | + γ2 − γ1 − 3)	(|nr | + γ2 − γ1 − 2)

|nr |!	(|nr | + 2γ2 + 1)

Nnr 2 − 2

Nnr 2

× (|nr | + γ2 − 3γ1 − 3 − γ1Nnr 2)(3|nr | + γ1 + 3γ2 + 1 + 3Nnr 2)

|nr | + γ2 − γ1 − 1 + Nnr 2
. (4.12)

The above result may be simplified considerably if in the series
∑∞

nr=−∞(· · ·) one collects together terms with the same absolute
value of the summation index nr (the Sturmian radial quantum number). Proceeding in that way, after much labor, using Eq. (4.8)
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and again the identity (4.11), one finds that

Q(1)
20μ = sgn(μ)

α2ea2
0

Z4

B

B0

	2(γ1 + γ2 + 3)

240(4γ1 + 1)	(2γ1 + 1)	2(γ2 − γ1 − 2)

∞∑
nr=0

	(nr + γ2 − γ1 − 3)	(nr + γ2 − γ1 − 2)

nr !(nr + γ2 − γ1)	(nr + 2γ2 + 1)

×[(2γ1 − 1)(nr + γ2 − γ1 − 3)(nr + γ2 − γ1) + 2(γ1 + 1)(2γ1 + 1)(nr + γ2 − γ1) − 6(γ1 + 1)]. (4.13)

It is possible to achieve a further simplification. To this end, we express the right-hand side of Eq. (4.13) in terms of the
hypergeometric functions 2F1 and 3F2 of the unit argument. Since it holds that

∞∑
n=0

	(n + a1)	(n + a2)

n!	(n + b)
= 	(a1)	(a2)

	(b)
2F1

(
a1,a2

b
; 1

)
(4.14)

and
∞∑

n=0

	(n + a1)	(n + a2)

n!(n + a3)	(n + b)
= 	(a1)	(a2)

a3	(b)
3F2

(
a1,a2,a3

a3 + 1,b
; 1

)
, (4.15)

Eq. (4.13) becomes

Q(1)
20μ = − sgn(μ)

α2ea2
0

Z4

B

B0

	(γ1 + γ2 + 3)	(γ1 + γ2 + 4)

1440(γ1 + 1)(4γ1 + 1)	(2γ1 + 1)	(2γ2 + 1)

×
[

(2γ1 − 1)(γ2 − γ1 − 3) 2F1

(
γ2 − γ1 − 2,γ2 − γ1 − 2

2γ2 + 1
; 1

)
+ 2(γ1 + 1)(2γ1 + 1) 2F1

(
γ2 − γ1 − 3,γ2 − γ1 − 2

2γ2 + 1
; 1

)
−6(γ1 + 1)

γ2 − γ1
3F2

(
γ2 − γ1 − 3,γ2 − γ1 − 2,γ2 − γ1

γ2 − γ1 + 1,2γ2 + 1
; 1

)]
. (4.16)

The two 2F1 functions may be then eliminated with the aid of the Gauss identity [Ref. [13], Eq. (9.122.1)]

2F1

(
a1,a2

b
; 1

)
= 	(b)	(b − a1 − a2)

	(b − a1)	(b − a2)
[Re(b − a1 − a2) > 0]. (4.17)

After some simple algebra, we obtain

Q(1)
20μ = sgn(μ)

α2ea2
0

Z4

B

B0

	(2γ1 + 5)

720(4γ1 + 1)	(2γ1 + 1)

[
− 2

(
2γ 2

1 + 3γ1 + 4
) + (γ1 + γ2)	(γ1 + γ2 + 3)	(γ1 + γ2 + 4)

	(2γ1 + 5)	(2γ2 + 1)

× 3F2

(
γ2 − γ1 − 3,γ2 − γ1 − 2,γ2 − γ1

γ2 − γ1 + 1,2γ2 + 1
; 1

)]
.

(4.18)

Various other equivalent representations of Q(1)
20μ may be derived from Eq. (4.18) with the help of recurrence relations obeyed by

the 3F2(1) function. For instance, if one uses repeatedly the relation

3F2

(
a1,a2,a3

a3 + 1,b
; 1

)
= − a3

a1 − a3

	(b)	(b − a1 − a2)

	(b − a1)	(b − a2)
+ a1

a1 − a3
3F2

(
a1 + 1,a2,a3

a3 + 1,b
; 1

)
[Re(b − a1 − a2) > 0] (4.19)

and its analog with a1 and a2 interchanged, Eq. (4.18) is transformed into the slightly more compact expression

Q(1)
20μ = sgn(μ)

α2ea2
0

Z4

B

B0

	(2γ1 + 5)

1440 	(2γ1)

[
− 1 + (γ1 + 1)(γ1 + γ2)	(γ1 + γ2 + 2)	(γ1 + γ2 + 3)

γ1	(2γ1 + 5)	(2γ2 + 1)

×3F2

(
γ2 − γ1 − 2,γ2 − γ1 − 1,γ2 − γ1

γ2 − γ1 + 1,2γ2 + 1
; 1

)]
. (4.20)

Before concluding, it seems worthwhile to investigate the approximation to Eq. (4.20) for αZ � 1. Then one has

γκ � |κ| − (αZ)2

2|κ| (κ ∈ Z \ {0}), (4.21)
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and consequently,

	(γκ + γκ ′ + k) � (|κ| + |κ ′| + k − 1)!

[
1 − 1

2

(
1

|κ| + 1

|κ ′|
)

ψ
(|κ| + |κ ′| + k

)
(αZ)2

]
(κ,κ ′ ∈ Z \ {0}, k ∈ N), (4.22)

where

ψ(ζ ) = 1

	(ζ )

d	(ζ )

dζ
(4.23)

is the digamma function. Using Eq. (4.22) and the recurrence
relation

ψ(ζ + 1) = ψ(ζ ) + 1

ζ
(4.24)

yields

(γ1 + 1)(γ1 + γ2)	(γ1 + γ2 + 2)	(γ1 + γ2 + 3)

γ1	(2γ1 + 5)	(2γ2 + 1)

� 1 + 13

60
(αZ)2. (4.25)

Since, at the same time, to the second order in αZ, it holds that

3F2

(
γ2 − γ1 − 2,γ2 − γ1 − 1,γ2 − γ1

γ2 − γ1 + 1,2γ2 + 1 ; 1

)
� 1 − (αZ)2

40
,

(4.26)

the sought approximation to Q(1)
20μ is

Q(1)
20μ � sgn(μ)

23

240

α4ea2
0

Z2

B

B0
(αZ � 1). (4.27)

It is seen from Eqs. (4.27) and (1.1) that for the hydrogen
atom (Z = 1) and for the perturbing magnetic field comparable
to the intra-atomic magnetic field, i.e., for B � B0, the first-
order quadrupole moment Q(1)

20μ predicted by the relativistic
formalism is of the same order of magnitude as the second-
order moment Q(2)

20 obtained from the nonrelativistic theory.

V. CONCLUSIONS

Earlier calculations of the magnetic field-induced electric
quadrupole moment in the ground state of the hydrogenlike
atom, based on the nonrelativistic atomic model, predicted the
quadratic dependence of that moment on the field strength
in the low-field regime. In the present paper, we have shown
that if relativity is taken into account and considerations are
based on the Dirac rather than the Schrödinger or the Pauli
equation for the electron, the leading term in the expansion of
the induced electric quadrupole moment in powers of the field
strength appears to be linear, not quadratic. The calculations
of the actual value of that moment that we have carried out
in Sec. IV provide another example of the usefulness of the
Sturmian expansion of the generalized Dirac-Coulomb Green
function [4] for analytical determination of electromagnetic
properties of the relativistic one-electron atom.
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