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Coherent optimal control of photosynthetic molecules
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We demonstrate theoretically that open-loop quantum optimal control techniques can provide efficient tools
for the verification of various quantum coherent transport mechanisms in natural and artificial light-harvesting
complexes under realistic experimental conditions. To assess the feasibility of possible biocontrol experiments,
we introduce the main settings and derive optimally shaped and robust laser pulses that allow for the faithful
preparation of specified initial states (such as localized excitation or coherent superposition, i.e., propagating
and nonpropagating states) of the photosystem and probe efficiently the subsequent dynamics. With these tools,
different transport pathways can be discriminated, which should facilitate the elucidation of genuine quantum
dynamical features of photosystems and therefore enhance our understanding of the role that coherent processes
may play in actual biological complexes.
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I. INTRODUCTION

Recent experimental work has provided evidence support-
ing the existence of long-lived coherence during excitation
energy transfer (EET) in photosynthetic complexes [1–5]. Sub-
sequent theoretical work has then highlighted the importance
of an intricate interplay of noise and quantum coherence for the
remarkably high EET efficiency in light-harvesting complexes
during photosynthesis and identified the crucial building
blocks that underly this interplay [6–12]. While computer
simulations and analytical work allow for the identification
and direct verification of the importance of these effects in
theory, the experimental verification of their relevance in
actual biomolecular systems is still outstanding. One path
toward achieving this goal is the application of optimal control
methods that allow for the preparation of specific initial
states of the system and control of the subsequent quantum
dynamics in contact with its biomolecular environment. As a
consequence, the dynamical behavior, and hence the resulting
signals, can be made to exhibit the largest discrepancies
between alternative hypotheses concerning properties of the
dynamics of biomolecular systems. Implementing such op-
timal control methods would therefore allow us to develop
strategies for gaining the maximal ability to obtain information
about coherent processes in biological systems. Quantum
coherent control drives the dynamics of a quantum system
toward a specific goal by exploiting quantum coherence
and interference effects [13]. Coherent control techniques
have been proposed for photochemical and photobiological
processes; see Refs. [14–16] for an overview of this topic.
Evidence of control of exciton states in light-harvesting sys-
tems was presented in Ref. [17], based on genetic algorithms
which, however, provide highly structured pulses, quite small
signal-to-noise ratios, and only population control. An attempt
to use open-loop optimization to control the exciton dynamics
of a light-harvesting system was theoretically provided in
Ref. [18], but the control algorithm employed there imposed
some limitations to their analysis: complicated derivative func-
tional equations, relatively long and highly complex pulses,
large optimal relative errors (around 60% at 77 K for site-6
localization), and, again, only local state population. Here we

will show that besides the ability to prepare superposition
states on demand, we will obtain short, simple, and robust
optimal pulses with relative errors always smaller than 20%,
even in the presence of quite strong dephasing noise, by
using a recently introduced versatile and efficient optimization
algorithm (CRAB) [19]. The main goal of this work is to
prepare the basic ground for a new generation of control
experiments, demonstrating the feasibility of using coherent
control to explore quantum properties of biological molecules.
Moreover, this represents an application of CRAB to open
many-body quantum systems. In particular, we apply quantum
(open-loop) optimal control theory to the dynamics of the
electronic excitations in the Fenna-Matthews-Olson (FMO)
complex, which is a biological pigment-protein complex
involved in the early steps of bacterial photosynthesis [2,3].
By using the CRAB approach in the context of the FMO
complex, we (i) achieve general state preparation, thus al-
lowing us to prepare specific initial states, especially fast and
slow propagating states exhibiting constructive or destructive
interference, by means of weak pump pulses; (ii) explore
experimental constraints and imperfections (adapted to a
realistic experimental setup); and (iii) optimize the difference
in signals for different preparations to test theoretical hypothe-
ses concerning complex dynamics. These tools provide an
opportunity to verify competing microscopic EET models,
since they yield distinct transport properties and, hence,
respond differently to optimally shaped laser pulses, which
are obtained in the context of a specific theoretical framework.

The paper is organized as follows. In Secs. II and III, we
describe the background of optimal control theory and the
theoretical model for the FMO complex, which we use as a
specific application of our approach. Then, we discuss the
target of our optimizations (Sec. IV), and the obtained results
for single molecules and ensembles are shown in Secs. V and
VI, respectively. The robustness of the optimal pulses, as well
as when inhomogeneous broadening effects are included, is
discussed in detail. The transfer efficiency features, related
to our optimally prepared initial states, hence slow and fast
transport pathways, are described in Sec. VII. Moreover,
the presence of orientation disorder is exploited during the
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optimization procedure in Sec. VIII, and for the probe pulse in
Sec. X. Finally, it turns out that the achieved fidelities are even
better when a partial orientation of the sample is performed
(Sec. IX). The conclusion and final remarks are presented in
Sec. XI.

II. OPTIMAL CONTROL: BACKGROUND AND METHOD

Protocols for coherent control of exciton states in light-
harvesting systems were theoretically proposed in [18] and
experimentally demonstrated in [17]. In Ref. [17], feedback-
optimized femtosecond pulses are applied to the LH2 an-
tenna complex from Rhodopseudomonas acidopila and to a
bioinspired artificial dyad molecule in order to control the
efficiency of the light-harvesting dynamics. Specifically, they
optimize the branching ratio of energy transfer between intra-
and intermolecular channels in the complex’s donor-acceptor
system and obtain an enhancement of about 30% in the LH2
system and about 10% in the artificial dyad molecule by
shaping the pulses, employing feedback in an iterative learning
loop scheme.

In all experimental demonstrations of control of pho-
tochemical and photobiological processes [14–17,20–22],
closed-loop optimization by evolutionary algorithm was ap-
plied [23]. This procedure consists of three basic components:
(1) a pulse shaper, generating the pulse shape to be tested;
(2) the experiment, generating the feedback signal by pump-
probe spectroscopy; and (3) a computer, running the learning
algorithm and driving the optimization. Hence, the closed-loop
optimization proceeds along the following steps: (i) a random
guess of a set of pulses is shaped through the pulse shaper and
then tested on the sample; (ii) the feedback signal is evaluated
and used to start an evolutionary genetic algorithm (based
on selection of “parents,” “mutations,” “recombination,” and
“generation” of new sets of pulse shapes); and (iii) a new
set of pulses is obtained through the pulse shaper and
applied to the sample. These steps will be repeated until
the optimization has converged by following the so-called
learning curve. Despite the interesting applications of this
technique, closed-loop optimization tends to be effective only
for population control, while coherent control experiments
cannot be performed because of the inherent shortcoming of
transient absorption (TA) spectroscopy. One way to overcome
this issue could be to use two-dimensional (2D) electronic
spectroscopy in order to get information about the phase,
which is necessary as a feedback signal in coherent control
experiments. However, multidimensional spectroscopy is not
the only possible approach.

Here we solve this issue by using an open-loop control
approach: one first numerically optimizes laser pulses via
numerical simulations and the applies them to the sample
obtaining the desired result, for example, the experimental
preparation of the sample in some desired state with very
high fidelity. The main advantages of the open-loop approach
with respect to the closed-loop approach are twofold. In the
latter, the pulses are often very complex, highly structured,
and very demanding to interpret; it is usually rather difficult to
understand the real physical effect of such series of consecutive
pulses on the system. This limits the understanding of the
physical processes underlying a given biological behavior.

Moreover, repeated closed-loop experiments rarely result in
the same genetic algorithm-driven learning curve, increasing
the difficulties of the analysis of the final optimal series and
of the error estimation. On the other hand, in the open-loop
scheme, the optimally shaped pulse is well determined and can
be applied on the sample repeatedly to increase the signal-to-
noise level and to compare the output feedback when changing
the applied phase. It is then easier to find the explanation for the
response of the system and identify the physical mechanism
that underpins it. This problem becomes even simpler when the
CRAB optimization is used since, as explained below, it results
in optimal, albeit very simple, robust and structured pulses.
Let us stress, however, that the open-loop technique is usually
applied when the system parameters (e.g., Hamiltonian) are
sufficiently well known and this, indeed, makes the closed-loop
approach more feasible for those biological systems in which
this information is not yet accessible. In this context, recently
developed methods for quantum process tomography applied
to multichromophoric systems [24], providing the decoherence
of the system, the density matrix, as well as the Hamiltonian
parameters, will be able to assist our open-loop approach.
This is even more so as the robustness of the pulse shapes that
we obtain from our open-loop technique allow us to use this
scheme even if the system details are not well measured. Quite
reasonably, the best scheme would be a combination of these
two approaches. Indeed, one could use, for instance, closed-
loop control as a means to obtain information about system
parameters, e.g., if one optimizes the pulse in the experiment,
then one can chose this pulse and find out theoretically for
which system parameters it reproduces the experimental data.
Then, varying the target that is to be optimized, we obtain
different pulses and can repeat this investigation; each time,
one obtains useful information about the system parameters.
Working out such a program might be useful as it might
allow for an alternative to tomography. Once we apply this
procedure, by using the obtained information about the system,
an open-loop control can be then successfully applied. A work
applying open-loop optimal control to the FMO complex was
reported in [18]. The authors investigate the control of FMO
exciton dynamics by using polarized-shaped pulses optimized
by means of a derivative functional equation for the target
function. In particular, they use shaped pulses to optimize
energy localization in a single chromophore of the FMO
complex (site 7).

Here we extend and improve this result by using the
recently developed CRAB optimization technique (described
below) targeting different initial states, to investigate different
transport and decoherence processes in FMO. Moreover, we
are able to consider faster processes that are more robust
against decoherence as we optimize pulses of a few-hundred-
femtosecond length. This allows us also to perform coherent
control, i.e., preparation of a coherent superposition state, as
well as excitation energy localization. Concerning the case of
single-site preparation, it is not feasible to perform a clear
comparison with the results of Ref. [18], since they studied
the FMO antenna complex present in the Chlorobium tedidum
bacterium, while here we investigate the FMO complex found
in a slightly different bacterium, Prosthecochloris aestuarii.
However, from a general perspective, it seems that our
approach allows us to get much higher fidelity, and, more
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importantly, to use sensibly shorter laser-pulse lengths (250 fs,
while their optimal pulses are 600 fs long). These differences
appear to be even more relevant and crucial when one wants to
prepare a coherent superposition state in the presence of strong
dephasing. Besides, the efficiency of the CRAB algorithm
makes it possible to investigate more deeply inhomogeneous
broadening phenomena, due to the random orientations of the
FMOs in the sample, by considering very large ensembles (104

FMOs); while in Ref. [18], due to computational limitations,
only some preliminary results were reported. In fact, we
demonstrate that even a partial orientation of the sample by
means of an external field combined with optimal pulses will
improve experimental results significantly. Finally, we show
also how to optimize the probe of the system to improve
the experimental results even more. It should be noted that
since we are considering short pulse durations, neglecting the
double-exciton states is a good approximation, also according
to the theoretical results in Ref. [18]; see discussion below
about the robustness of our weak pump pulses.

To achieve all of this, we use the Chopped RAndom Basis
(CRAB) optimization, introduced in Ref. [19], to optimize
a specific figure of merit F , e.g., the population in some
localized or delocalized state at some final time or the final
fidelity with respect to a target state, by varying the con-
trol field entering into the Hamiltonian term in Eq. (4).
By introducing the control field parametrization given in
Eq. (5), the functional becomes a multivariable cost function
F(�θ,�φ,ωl,t0,σ,{Ak},{Bk},{νk}) on which any standard
minimization method can be applied. We start with O(103)
different initial random configurations and apply a direct
search algorithm, which does not compute gradient nor
Hessian, to find the function minimum [25]. To minimize
an M-variable function, the Nelder-Mead algorithm starts
defining an M + 1 dimensional polytope and then, in its
simplest implementation, moves it, replacing the worst point
with a point reflected through the barycenter of the other M

points, resulting in a (local) minimization of the function.
We use the subplex variant of the Nelder-Mead algorithm,
which applies the same algorithm to different subspaces
to improve the convergence [26]. The CRAB optimization
strategy introduced above allows one to find the optimal pulses
to extremize the desired figure of merit: it is efficient and
versatile as it does not need any analytical solutions of the
system dynamics, it does not compute gradients, and it can be
easily adapted to different figures of merit. More importantly,
it could include experimental constraints such as the finite
bandwidth and power of the control pulses.

III. THE MODEL

The coherent part of the dynamics of the FMO complex
can be modeled by a 7-qubit (Frenkel) Hamiltonian describing
the coherent exchange of excitations between chromophores
or sites, i.e.,

HFMO =
7∑

j=1

h̄ωjσ
+
j σ−

j +
∑
j �=l

h̄vj,l(σ
−
j σ+

l + σ+
j σ−

l ),

where σ+
j (σ−

j ) are the raising (lowering) operators for site j ,
h̄ωj is the local site excitation energy, and vj,l (of the order
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FIG. 1. (Color online) FMO energy-level structure where |i〉
denotes a single excitation in site i. The states |±〉 are the symmetric
and antisymmetric superpositions of the states |1〉 and |2〉. The green
(light gray) and red (dark gray) bubbles identify the fast and slow
transport path, as detailed in Ref. [10] where the interplay between
different transport pathways in FMO dynamics was discussed at
length. The main effect of the inclusion of dephasing noise is the
opening of an incoherent relaxation channel from level |−〉 to level
|+〉 (red wiggled line) and therefore the effective suppression of the
coherent oscillation between level |−〉 and sites 6-7-4 that dominates
the coherent dynamics and is responsible for the very slow transport
once the sink population has reached 50% (initial population held in
site |+〉). The proposed quantum control strategies efficiently probe
this dynamical model.

of ps−1) denotes the hopping rate of an excitation between the
sites j and l; see Ref. [8] for more detail. In the site basis, the
Hamiltonian matrix elements [27] are

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

215 −104.1 5.1 −4.3 4.7 −15.1 −7.8

−104.1 220.0 32.6 7.1 5.4 8.3 0.8

5.1 32.6 0.0 −46.8 1.0 −8.1 5.1

−4.3 7.1 −46.8 125.0 −70.7 −14.7 −61.5

4.7 5.4 1.0 −70.7 450.0 89.7 −2.5

−15.1 8.3 −8.1 −14.7 89.7 330.0 32.7

−7.8 0.8 5.1 −61.5 −2.5 32.7 280.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the zero of energy has been shifted by 12 230 cm−1 for
all sites, corresponding to a wavelength of ∼=800 nm (all num-
bers are given in units of cm−1 = 1.988865 × 10−23 Nm =
1.2414 × 10−4 eV); see Fig. 1.

In a first approximation, the evolution of the complex can
be modeled in terms of a master equation of the Lindblad
form including dissipation and pure dephasing terms due to
the surrounding environment. This approach is equivalent to
the so-called Haken-Strobl model, where pure dephasing is
taken into account in terms of a classical fluctuating field [28].
Although it is a simplistic description of the realistic dynamics,
it allows us to prepare the ground for such control experiments
showing their feasibility and will suffice for the identification
of coarse-grained properties of the transport dynamics.

The dissipation and dephasing caused by the surrounding
environment are modeled by the following local Lindblad
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terms:

Ldiss(ρ) =
7∑

j=1

	j [−{σ+
j σ−

j ,ρ} + 2σ−
j ρσ+

j ], (1)

Ldeph(ρ) =
7∑

j=1

γj [−{σ+
j σ−

j ,ρ} + 2σ+
j σ−

j ρσ+
j σ−

j ], (2)

with 	j and γj being the dissipative and dephasing rates at
the site j , respectively. In the following, we will consider the
case in which the dephasing and dissipation rates are equal
for all sites and labeled, respectively, as γj ≡ γ and 	j =
5 × 10−4 ps−1 for site j = 1, . . . ,7. The latter corresponds to
the measured lifetime of excitons, which is of the order of 1 ns.
Finally, the transfer efficiency into the reaction center (RC) is
measured in terms of the population in the “sink,” numbered
8, which is populated by an irreversible decay process (with
rate 	sink) from the site 3, as described by the Lindblad term

Lsink(ρ) = 	sink[2σ+
8 σ−

3 ρσ+
3 σ−

8 − {σ+
3 σ−

8 σ+
8 σ−

3 ,ρ}], (3)

where 	sink ∼ 6.3 ps−1 (note that h̄ ∼ 5.3 cm−1 ps). In this
paper, we are interested in the EET transfer efficiency, as
measured by the population (after a certain time interval) of
a trapping site, modeling a biochemical reaction center (RC).
The RC is populated by an irreversible decay process from
site 3, and the RC population will allow us to define fast and
slowly evolving states. In other terms, the transfer efficiency is
given by psink(t) = 2	sink

∫ t

0 ρ33(t ′)dt ′, with ρ33(t ′) being the
population of site 3 at time t ′; see inset of Fig. 2.

In order to describe the coupling between the FMO complex
and a short laser pulse, typically used in the laboratory to
irradiate it [2,27,29,30], we add also a semiclassical time-
dependent Hamiltonian term, HFMO−laser(t), which in rotating
wave approximation takes the form

HFMO−laser(t) = −
7∑

i=1

�μi · �e E(t) e−iωl t σ+
i + H.c., (4)

where �μi is the molecular transition dipole moment of the
individual site i [31], �e and ωl are, respectively, the polarization
and the frequency of the field, and E(t) is the time-dependent
electric field. In the following, we assume E(t) having the form

E(t) = E0f (t),

with E0 = 15 D−1 cm−1 ∼ 9 × 107 V/m (where in SI
units the Debye is given by D ∼ 3.34 × 10−30 C m), and a
time-dependent modulation

f (t) = e
− (t−t0)2

2σ2

λ(t)

1 + ∑m
k=1 Ak sin(νkt) + Bk cos(νkt)

1 + ∑m
k=1 |Ak| + |Bk| , (5)

with a ramp factor of λ(t) = 1 + 5[e200(t−T )/T + e−200t/T ]
[such that f (0) ∼ f (T ) ∼ 0], and where Ak , Bk , and
νk ≡ 2πkr/T are parameters to be optimized by using the
method described below, where r is a random number and T

is the time at which we want to prepare, for instance, some
desired state. Moreover, we vary also the angles θ and φ of
the polarization axis �e, with respect to the dipole moment
of site 1, i.e., θ = θ1 + �θ and φ = φ1 + �φ, where θ1 and
φ1 describe the orientation of the site-1 dipole moment, and
�θ and �φ are some free parameters. The dipole moments
of the seven FMO chromophores along the three reference

axes are (in Debye D, where 1D ∼ 3.34 × 10−30 C m) [31]
shown in the table below for the bacteriochlorophyll (BChl).

BChl X Y Z

1 − 3.081 2.119 − 1.669
2 − 3.481 − 2.083 − 0.190
3 − 0.819 − 3.972 − 0.331
4 − 3.390 2.111 − 1.080
5 − 3.196 − 2.361 0.7920
6 − 0.621 3.636 1.882
7 − 1.619 2.850 − 2.584

Note that the specific choice of the absolute strength of
the dipole moments (usually set to be the same for each BChl)
does not affect our results because it does correspond to simply
rescale the laser pulse amplitudes, as discussed below. In the
following, we choose m = 7, T = 250 fs, and the carrier fre-
quency ωl as an additional free parameter in the optimization.
We have also worked with higher values of m, up to m = 25,
which resulted in small fidelity enhancements (of a few per-
cent), but at the expense of longer optimization times. As direct
single-site addressing is not possible in the FMO complex due
to the strongly overlapping lines, we will apply quantum opti-
mal control tools (as described more carefully in the next sec-
tion) to shape the laser pulse, i.e., E(t), and prepare the system
in a desired physical state and control its transport dynamics.
The approach presented here allows one to include additional
constraints to account for relevant experimental limitations: we
limit, for example, the laser power in order to avoid damage to
the sample or cause strong saturation; and we impose that the
spectral width of the pulse does not exceed 0.1 fs−1, which is
commensurate with standard experimental settings.

IV. OPTIMIZATION TARGET

A typical experiment will excite the complex with a
Gaussian laser pulse resulting in population of all sites due
to lack of control and single-site addressability. Here, we
implement quantum control using the CRAB algorithm [19]
for optimal preparation—without single-site addressing—of
arbitrary states, localized or delocalized, by varying the con-
trol laser-field amplitude, carrier frequency, and polarization
axis. In Ref. [10], it has been shown that the coherent transfer
of the electronic excitation energy in the FMO complex can
be neatly understood in terms of a hybrid basis that includes
delocalized states |±〉 = (|1〉 ± |2〉)/√2 and local states |i〉
(i = 3, . . . ,7); see Fig. 1. Transport takes place essentially
through two different pathways: one mediated by the state |+〉,
which is shifted toward site 3 and leads to very fast transfer
to the RC, and a second one, involving the remaining part of
the initial excitation that is held in state |−〉 and the sites 5,
6, and 7, which is comparatively slow because of the energy
gap with the site 3 and because the excitation suffers many
coherent oscillations between those sites before reaching site
3. Indeed, the presence of dephasing noise assists the transport
because, on one hand, it opens up a new additional pathway,
i.e., incoherent tunneling between the state |−〉 and |+〉, and,
on the other hand, it partially suppresses the transition from |−〉
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to sites 5, 6, and 7, and also leads to fast incoherent oscillations
between those three sites before reaching the RC. Motivated
by these results, we apply the CRAB optimization to find the
optimal pulses to selectively prepare after 250 fs, on one hand,
a state |D〉 with maximum probability of finding the electronic
excitation in the sites |5〉,|6〉,|7〉 (dark or nonpropagating
state), and, on the other hand, the state |B〉 ≡ |+〉 (bright or
propagating state) with maximal fidelity. Our figures of merit
are the following error probabilities:

εD = 1 − ρ5,5 − ρ6,6 − ρ7,7, (6)

εB = 1 − 〈+|ρ|+〉 = 1 − ρ11 + ρ22

2
− Re[ρ12], (7)

where ρ is the FMO density matrix in the site basis. They
represent the error probabilities for preparing the system in
some specific initial state (e.g., state D or B). In the following,
we will consider different values of dephasing, i.e., different
noise regimes, and for each of them we will perform a
coherent control optimization, obtaining a different error εα .
We consider the full model for the FMO complex, but in
the absence of the RC, as this is the usual setting in current
experiments on this light-harvesting system. However, we have
tested that the presence of the RC does not affect significantly
the state preparation process because the laser pulse is applied
for a very short time. This is also confirmed by the analysis on
the transport pathways discussed below.

Finally, let us point out that we are neglecting third-order
contributions to the density matrix in terms of the system-field
interaction, like ground-state bleaching (GBS) and excited-
state absorption (ESA) processes. This approximation is
justified by the fact that we are considering the density
matrix in the single-exciton subspace (which is second order)
and, then, those higher-order terms are not relevant for the
pump-pulse optimization.

V. OPTIMAL PULSES FOR SINGLE MOLECULES

In the case of single molecules or oriented samples, we
find that the error εα without dephasing is of the order of a few
percent and increases in both cases when increasing the amount
of dephasing in the dynamics; see Fig. 2. The so-derived weak
pulses are also robust against changes in system parameters
and environmental noise levels. This general feature (see, e.g.,
[32,33]) arises from the fact that by definition the optimal
dynamics lies in a minimum of the functional to be extremized,
so that first-order perturbations vanish. Indeed, we find that the
optimality of the pulse shape that prepares some desired state is
essentially independent of the strength of the dephasing noise
in the dynamics, with an error discrepancy of less than 10−2.
This is very relevant from the experimental point of view,
since the noise strength in the actual FMO complex is not
yet precisely known and depends on the specific experimental
conditions. In addition, linearized optimal pulses (see insets of
Fig. 4) give similar results, whose difference is less than 0.05
for both states.

Importantly, our optimal errors remain exactly the same
(i.e., standard deviation smaller than 10−3) if we reduce the
obtained amplitudes (already similar to the ones in Ref. [18])
by a factor up to 1000, while keeping the pulse shapes, carrier
frequencies, and polarization at their optimal values. In other
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FIG. 2. (Color online) Error probability εα vs dephasing rate γ

(in units of ps−1) for different initial states (i.e., α = B, D). Inset:
Transfer efficiency vs dephasing rate γ (uniform for all of the sites)
at t = 10 ps, when one excitation is initially in site 1.

words, our results are very robust and are valid in the weak-
field domain, allowing us to neglect undesired effects induced
by strong lasers, such as ladder-climbing effects (inducing
unwanted photochemical processes), excitation of double-
exciton states, ground-state bleaching, stimulated emission,
etc. In particular, we have performed the following analysis.
First, note that from the experimental side, the physically
relevant quantities are not the absolute site populations, but
only the relative ones, as compared to the ground state (gs). In
other words, we can rescale the density matrix with 1 − ρgs,
with ρgs being the ground-state population, and then evaluate
the errors. It turns out that these rescaled errors are even
smaller (hence, higher fidelities) than the ones shown in Fig. 2.
Furthermore, we have rescaled our optimally shaped pulses (in
the insets of Fig. 4) by a factor of 1/R, i.e., reducing the laser
amplitude by increasing R, while keeping the same pulse shape
and the other optimal parameters, as polarization and carrier
frequency. The very interesting result is that the rescaled errors
are exactly the same for any R = 1, . . . ,1000; see Fig. 3. In
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FIG. 3. (Color online) Optimal errors εB,D vs the pulse amplitude
rescaling (R) in the preparation of the initial states B and D, for
γ ∼ 1 ps−1.

042331-5



CARUSO, MONTANGERO, CALARCO, HUELGA, AND PLENIO PHYSICAL REVIEW A 85, 042331 (2012)

other words, even using much weaker pulses, our achievements
remain the same, showing the surprisingly strong robustness of
our initial state preparations against the actual laser amplitude.
Therefore, we propose to use very weak pulses and this will
further simplify the experimental realization of our biocontrol
scheme.
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FIG. 4. (Color online) Probability distribution of the quantity εB

(top) and εD (bottom) for the preparation of the state bright B (top)
and the state dark D (bottom), in the presence of dephasing with
rate γ ∼ 1 ps−1, by using the optimal and a standard Gaussian laser
pulse. Since in the laboratory one has a sample of FMO complexes in
random orientations, we plot these probability distribution functions
(PDFs) for two extreme cases in which we add 1% and 100% of
random disorder to the two angles defining the orientation of the
FMO complex. We considered a sample of 104 FMO complexes
to get enough statistics. Inset: Amplitude of the optimal pulse,
optimized to prepare the state B (top) and D (bottom) in 250 fs.
Notice that the laser-pulse amplitude is always shown in units of
D−1 cm−1 ∼ 6 × 106 V/m. Finally, the optimal values are (top) �θ =
2.5, �φ = 7.6, ωl = 121.76 cm−1, εB = 0.20, without averaging,
and (bottom) �θ = 3.09, �φ = 3.76, ωl = 504.46 cm−1, εD = 0.09,
without averaging. Interestingly enough, by considering a simpler
linear shape (dashed line), we find a quite similar error, i.e., εB = 0.24
and εD = 0.10, by showing the “robustness” of the optimal pulse to
prepare the initial state.

Notice also that by removing some of the experimentally
motivated constraints on the pulse shape, it is possible to find
near unit fidelity for any state and any value of the dephasing
rate: future experiment with improved technical capabilities
will easily result in higher quality of the initial state.

VI. OPTIMAL PULSES FOR DISORDERED ENSEMBLES

Here we characterize the probability distribution functions
concerning the optimal preparation of the initial state in the
case of randomly oriented FMO complexes. We apply the
optimal pulses found for a single FMO complex (shown in
the insets of Fig. 4) to an ensemble of 104 FMO complexes
with random (uniform distribution) orientations, θ ∈ [0,π ] and
φ ∈ [0,2π ]. The results are illustrated in Fig. 4, where the
error distributions for the optimal case and the initial Gaussian
pulse are compared. In the case of the state B analyzed in
Fig. 4 (top), the ensemble averages of εB are 0.207 and 0.751,
respectively, for 1% and 100% of orientation disorder, in the
case of the optimal pulse, while they are 0.793 and 0.904 in
the Gaussian one, respectively. On the other hand, for the state
D analyzed in Fig. 4 (bottom), the distribution averages are,
respectively, 0.091 and 0.531 in the case of the optimal pulse,
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FIG. 5. (Color online) Probability distribution of the quantity εB

(top) and εD (bottom), for the preparation of the states B and D,
respectively, in the case of 100% orientation disorder, in the presence
and absence of inhomogeneous broadening (set to 50 cm−1).
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and 0.663 and 0.634 in the Gaussian one. The optimal pulses
give a significant improvement also in the case of randomly
oriented FMO complexes, appearing pretty robust with respect
to large inhomogeneities of the system. This robustness is
also witnessed by the fact that in the case of a single FMO,
by considering a simpler linear pulse shape (interpolating the
optimal one; see dashed line in the inset of Fig. 4), a very
similar error is obtained, whose difference is less than 0.05 in
both cases (D and B states).

Finally, we test the robustness of the obtained optimal
pulses with respect to the presence of inhomogeneous broad-
ening, i.e., static disorder in the site energies. In particular, we
have considered an inhomogeneous broadening of 50 cm−1,
corresponding to a random shift in the scale of [0, 50] cm−1

to the site energies, but different for each site. We find
that in the presence of 100% orientation disorder, the error
distributions for site B and D, as in Fig. 4, are not affected
from inhomogeneous broadening; see comparison in Fig. 5.
In particular, the mean and the variance of the corresponding
distributions are equal within a difference of 10−2.

VII. TRANSFER EFFICIENCY: SINGLE
MOLECULE AND ENSEMBLE

We now compare the EET transfer efficiency corresponding
to the two different initial states D and B optimally prepared by
our laser pulses. The ratio of the fast and slow pathway transfer
efficiency, at time t = 2 ps, is about 2.5 for γ ∼ 1 ps−1, while
it reaches about 80 for γ = 0, as shown in Fig. 6 and expected
from the fact that dephasing reduces destructive interference
effects [8]. These results are particularly robust against various
possible experimental inaccuracies. Indeed, in Fig. 6, we show
that although state preparation by the optimal laser pulse is
not perfect, the corresponding behavior is still sufficient to
distinguish the slow and fast transport pathways, compared to
the case in which the specific states are initially exactly set in
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FIG. 6. (Color online) Transfer efficiency as a function of time
(ps) for different initial states. We consider an idealized preparation
of the states |−〉 and |B〉, i.e., εα = 0 (dashed lines), and a more
realistic scenario where the states |D〉 and |B〉 are prepared applying
the optimally shaped laser pulses, in the absence (dotted lines) and
presence (full lines) of dephasing noise, γ ∼ 1 ps−1.
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FIG. 7. (Color online) Probability distribution of RC transfer
efficiency after 2 ps, in the presence of local dephasing with rate
γ ∼ 1 ps−1, for the optimal preparations of the state D and the state
B, with 100% of random disorder in the orientation of 104 FMO
complexes. The two distributions are distinguishable with less than
5% error.

the numerical simulation. This fact is essential to reproduce
these results in the laboratory since the experimental fidelities
will be smaller than the theoretical ones.

Moreover, as above, we also consider a realistic exper-
imental scenario in which a very large ensemble of FMO
molecules is studied simultaneously in the laboratory with
different random orientations. It turns out that even with 100%
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FIG. 8. (Color online) Modulus of the ensemble average of the
elements of the FMO density matrix in the site basis (over 104

samples), after applying the optimally shaped laser pulse to prepare
the states B (top) and D (bottom), for γ ∼ 1 ps−1. We introduce
also orientation disorder, set to 1% (left) and 100% (right), and we
get the following errors: εB = 0.21 (top left), εB = 0.75 (top right),
εD = 0.09 (bottom left), εD = 0.53 (bottom right).
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FIG. 9. (Color online) Modulus of the ensemble average of the
elements of the FMO density matrix in the site basis (over 104

samples), after applying a standard Gaussian pulse, for γ ∼ 1 ps−1.
We consider also the presence of orientation disorder, which is set to
1% (left) and 100% (right), respectively.

random disorder in the orientations of the FMO molecules,
the difference between the transfer efficiencies after 2 ps
of the dark and bright states is still measurable. Indeed, as
shown in Fig. 7, the two distributions of transfer efficiency are
distinguishable with less than 5% error, estimated as the sum of
the products of corresponding probabilities in the overlapping
range. The ensemble averages are around 0.12 in the case of
the state D, and 0.39 for the state B.

The modulus of the ensemble average of the elements of the
FMO density matrix in the site basis, after the state preparation
by means of the optimal pulse and the Gaussian one, are
shown in all of the analyzed cases (in the presence of
orientation disorder) in Figs. 8 and 9. Let us stress that a
partial orientation of the sample allows one to significantly
improve the state preparation results shown above. Indeed, a
net improvement is observed in Fig. 10, when compared to the
100% disorder case shown in Figs. 8.

Therefore, this analysis demonstrates that the difference in
physical behavior should be observable in a real experiment.
This type of analysis can be also extremely useful for the
discrimination of different microscopic models used in the
inference of site energies and electronic couplings from
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FIG. 10. (Color online) Modulus of the ensemble average of
the elements of the FMO density matrix in the site basis (over
104 samples), after applying the optimally shaped laser pulse to
prepare the states B (left) and D (right), respectively, for γ ∼ 1 ps−1,
and orientation disorder set to 10% in both cases, considering that
some orientation will be obtained in the experiment. The errors are
εB = 0.44 and εD = 0.10, respectively.

molecular dynamics analysis [27] or from directly measurable
exciton energies [34].

VIII. DISORDER-BASED OPTIMIZATION

In the analysis above, the optimization has been performed
by considering a single FMO complex and then applying the
optimal pulses to a realistic sample containing many FMOs.
However, optimizing the laser pulse taking into account the
presence of orientation disorder might improve our results. In
order to cover almost isotropically the different orientations
of the photosynthetic system in the sample, we optimize the
pulse, minimizing the quantity εα averaged over a sample of
20 FMO complexes oriented along the directions pointing to
the 20 vertices of a dodecahedron. In Fig. 11, we show the
probability distribution for εD when this new optimal pulse
is applied to a sample of 104 FMOs in random orientations.
For comparison, we plot also the corresponding probability
distribution when we instead apply the optimal pulse computed
with a single orientation. It turns out that this new pulse is more
robust and provides an error distribution whose width is about
one half of the one obtained with the pulse optimized with a
single FMO system. This could suggest a way to improve the
state preparation of the FMO complex in a real experiment
where one has a sample containing many FMO molecules
in a solution. However, concerning the preparation of the
more delicate state B, this technique does not provide any
noticeable improvement. Moreover, regarding the transport
properties, the results are similar to those presented in Fig. 7,
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FIG. 11. (Color online) Probability distribution of the quantity
εD for the preparation of the state D, for γ ∼ 1 ps−1, by using
the optimal pulses obtained by considering a single FMO complex,
by averaging on a small sample of 20 (almost isotropic) FMO
orientations pointing to the 20 vertices of a dodecahedron, and on
a sample of 21 orientations inside a cone with an opening angle of
0.1π . Hence, one considers the probability distribution of εD when
these optimal pulses are applied to a sample of 104 FMO complexes in
completely random orientations in the first two cases and, for the last
case, randomly oriented inside that cone. The dashed lines represent
the corresponding averaged values, i.e., 0.53 (single orientation),
0.46 (dodecahedron), and 0.29 (cone). The corresponding distribution
widths are also plotted.
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and the overlap of those two distributions is still less than
5% but does not decrease any further. Notice that this overlap
is already rather small and so the two pathways should be
experimentally clearly distinguishable. Finally, we consider
an intermediate case in which the FMO complexes can be
partially oriented along a cone-shaped range of orientations.
In particular, we repeat the analysis above but for 21 directions
inside a cone with a 10% opening angle, i.e., 0.1π , and we
optimize the pulse, minimizing the quantity εα averaged over
21 FMO complex evolutions. Then we apply this optimal pulse
to a sample of 104 FMOs in random orientations inside this
cone and we calculate the probability distribution for εD; see
Fig. 11. We find that the width of the error distribution is
further squeezed and shifted to smaller errors, i.e., higher
fidelities.

IX. TOWARD ORIENTED SAMPLES

Several techniques have been proposed in literature in order
to align biological molecules, for instance by using strong laser
pulses [35], liquid crystals [36], stretched gels [37], and optical
tweezers [38]. Here we show just a simple argument providing
the rudiments of how one could try to orientate the FMO
systems in an experimentally available sample. Following
Ref. [39], we model each monomer of the FMO complex as
a disk, whose mass and radius can be reasonably estimated
to be equal to M ∼ 80 kDa ∼ 15 × 10−23 kg and R =
2 nm (including the protein scaffolding). The corresponding
moment of inertia (with respect to one of its diameters as the
rotational axis) is hence I = 1

4MR2 ∼ 1.125 × 10−31 kg m2.
The rotational energy is E = 1

2Iω2, with ω being the angular
velocity in radians per second, i.e., the derivative of the angle
rotated with respect to time ω = dθ

dt
. At room temperature,

neglecting the friction due to the presence of a solution and,
possibly, other more sophisticated effects, just to get an initial
rough estimation, the time trot it takes for the system to
rotate by an angle π/2 (which is roughly the average angle
by which a complex has to be rotated) is trivially given by

trot = π
2

√
I

2Eth
∼ 6 μs, with Eth ∼ 25 meV as the thermal

energy. Actually, given that the disk will carry out a sort of
random walk, the rotation time could be much longer than
what is estimated here by means of this simple analysis.
Moreover, we investigate the energy landscape as a function
of the orientation of the FMO complex, when it is subject to a
constant electric field E0 polarized along the axis �e with carrier
frequency ωl , i.e., the following quantity:

� =
7∑

i=1

| �μi · �e E0|2
ωi − ωl

. (8)

By varying the orientation of the FMO complex in terms
of the two angles θ and φ, the energy difference between
the maximum and the minimum value is comparable to the
thermal energy and one gets the maximum for �θ ∼ 1.75
and �φ ∼ 2; see Fig. 12. The other parameters are chosen as
ωl = −1000 cm−1 and E0 = 40 D−1 cm−1.

Finally, following the simple reasoning above, we explicitly
calculate how many FMO systems can be oriented around
some direction at a certain external temperature, since the
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FIG. 12. (Color online) Top: Behavior of � [defined in Eq. (8)],
in units of cm−1 (∼0.1 meV) as a function of the angles �θ

and �φ defining the orientation of the FMO complex, in the case
of ωl = −1000 cm−1 and E0 = 70 D−1 cm−1 ∼ 42 × 107 V/m.
The difference between the maximum and the minimum value is
comparable to the thermal energy, and the maximum is obtained for
�θ ∼ 1.75 and �φ ∼ 2, which seems to be the preferred orientation
when the sample is subjected to this constant laser field. Bottom:
Maximum value of the Rabi frequencies �μi · �eE0 vs �θ and �φ.
Notice that the detuning values are much larger than the Rabi
frequencies.

thermal fluctuations will unavoidably try to disorientate the
sample. To do this, we calculate the probability for the FMO
to be oriented at a certain angle by assuming that they follow
a Boltzmann-Gibbs distribution, in the presence of a constant
electric field; see bottom panel in Fig. 13. Then, by using the
obtained probability distribution, we also evaluate the fraction
of FMO systems oriented within a cone with a certain opening
angle as a function of the temperature and for different values
of opening angle. By decreasing the temperature, the amount of
oriented FMO systems in the sample increases, and this would
give us higher fidelities in the state preparation analysis and
for the other related results above. Therefore, it seems feasible
to orientate the FMO complexes in the sample to some extent
using far detuned laser light. The typical individual optimal
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FIG. 13. (Color online) Top: Boltzmann-Gibbs (BG) probability
distribution in orienting the FMOs in the sample, as a function of
the angles �θ and �φ, in the case of ωl = −1000 cm−1 and E0 =
70 D−1 cm−1. The dashed area represents the region in which we
will sum up all of the probabilities in the case, for instance, of a
20% cone opening angle, i.e., 0.2π . Notice, however, that a slightly
tilted strip would get a higher probability for the same width and
so further improves our results. Bottom: Sample population ratio of
FMOs oriented within a cone with some opening angle (20%, i.e.,
0.2π , and 50%, i.e., 0.5π ), as a function of temperature (K), with
ωl = −1000 cm−1, and E0 = 70 D−1 cm−1, according to the BG
distribution.

control experiments take of the order of a few picoseconds,
which, importantly, is several orders of magnitude shorter than
the time for the FMO complexes to lose orientation after the
detuned laser beam has been switched off. Hence, we can
avoid interference between the orientation laser and the actual
optimal control experiment.

X. OPTIMAL PROBE

In the context of controlling a molecular system by optimal
femtosecond laser pulses, a similar approach can be reasonably
used to optimize the probe pulse absorption in a pump-probe
scheme. A successful demonstration of the optimization of the
absorbance of the probe pulse by optimal control techniques,
but based on a derivative functional equation, was shown for
a prototypical molecular three-level system in Ref. [40]. Here

we repeat the analysis above for a probe laser pulse applied
to the FMO complex by using the CRAB algorithm. In order
to compare our theoretical predictions, e.g., in Fig. 7, with
the experimental data, since there is no RC in the FMO
complex sample used in the laboratory, one has to measure
the population in site 3 as a function of time and then
calculate the corresponding transfer efficiency. To do that, a
probe pulse is applied to the sample and the corresponding
absorption intensity is detected. Usually, the probe pulse is
Gaussian and on resonance with the site whose population one
wants to measure. Here we apply the optimal control tools to
analyze whether a shaped pulse can detect the site population,
particularly in site 3, with a higher “resolution,” as compared
to a simpler Gaussian one. Actually, it will turn out that when
one considers only a single FMO complex, very high fidelities
(99%) are already obtained by a Gaussian pulse oriented along
some optimal polarization axis, and the pulse shaping will not
give significant improvements. On the other hand, if one has
a sample of fully randomly oriented systems, both Gaussian
and optimally shaped pulses lead to very low fidelities since
the orientation disorder is too strong. However, if a partial
orientation would be feasible from the experimental point of
view, the control on the pulse shape significantly increases
the probability of successfully probing site 3. Specifically, we
consider a single FMO complex in the case where, initially,
all of the population is in site 3 and we want to find the
pulse which is able to detect this population by absorption,
i.e., by removing population from the site. Correspondingly,
we use εP = ρ33 as the error function, where ρ33 is the site-3
population. The probe pulse is applied for a time interval of
t = 125 fs. We find that if there is just one FMO complex in
the sample, then the optimization orientates the probe pulse
polarization axis along the optimal direction (related to the
site-3 dipole moment); however, further optimization of the
pulse shape does not bring additional significant gain. Hence
a Gaussian pulse will reliably detect the site-3 population
(absorption efficiency, i.e., 1 − εP , of 99%). On the contrary,
if this Gaussian pulse, optimally polarized, is applied to a
sample of randomly oriented FMOs, then the method does not
provide us with a more efficient absorption signal (compared
to the traditional way), and is associated to an error of about
50%. If we apply the optimal control algorithm to find the best
probe, averaged over 20 isotropic orientations according to
the dodecahedron above, this does not improve significantly
the results either (data not shown). Finally, we consider the
case of a partially oriented sample (10% disorder), particularly
within a cone of 0.1π opening angle, and we optimize the
pulse along 21 orientations inside this cone, as done above for
the pump. Hence, we apply this optimally shaped pulse to a
sample of 104 FMOs randomly oriented inside this cone, and
we compare the absorption efficiency to the case of a Gaussian
pulse, polarized along the optimal orientation obtained for a
single FMO. We find that the optimally shaped pulse gives a
probability of high absorption efficiency (small εP ), which
is more than twice as large as the one with a Gaussian
pulse; see Fig. 14. Therefore, in the presence of structural
disorder but achieving a partial orientation of the FMOs in
the sample, both polarization and shape optimizations may
enhance the probe pulse absorption in a pump-probe scheme,
which is crucial for an efficient discrimination of dynamical
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FIG. 14. (Color online) Probability distribution of the quantity
εP , when the FMO is initially prepared with all the population in site
3 and then subjected a laser probe pulse for a time interval of 125 fs
to detect the site-3 population, in the presence of dephasing with rate
γ ∼ 1 ps−1. In particular, we consider the case of a Gaussian pulse
on resonance with the site 3, i.e., ωl = 0 cm−1, and polarized along
some optimal orientation (with regards to a single FMO), and the
case of an optimal pulse obtained by averaging the error function εP

over 21 directions inside a cone with an opening angle of 0.1π ,
whose optimal carrier frequency is ωl = 12.63 cm−1. To get the
probability distribution, we apply both pulses to a sample of 104

samples randomly oriented inside that cone. Inset: Amplitude (in
units of D−1 cm−1 ∼ 6 × 106 V/m) of both (Gaussian and optimal)
probe pulses.

properties, such as the identification of transport paths dis-
cussed here.

XI. CONCLUSION AND OUTLOOK

In summary, the experimental verification of specific
quantum features in the dynamics of biomolecular systems
in noisy environments [6–12] requires the development of
novel experimental tools and theoretical methodology. In this
work, we have contributed to this effort with the demonstration
that recently developed methods from the theory of optimal

control can be combined with ultrafast laser pulses to provide
enhanced diagnostic tools, suggesting promising new routes
for experiments. In particular, we have introduced and applied
the CRAB algorithm for optimal quantum control that was
originally developed in quantum information science [19] and
used it to determine, for realistic experimental parameters,
(weak) pulse shapes that allow for the preparation of arbitrary
coherent superpositions with high fidelity. We are also able
to reduce the impact of the random orientation of FMO
complexes in typical samples and to optimize the readout of
the system, maximizing state sensitivity. These methods may
serve to provide further experimental confirmation that recent
models concerning the interplay of transport processes and
environmental noise [6–12] do grasp the main features of the
system dynamics. Moreover, optimal control techniques can
provide additional tools for the experimental discrimination
of Hamiltonian descriptions resulting from different methods
[27,34], which would be an important step toward developing
more accurate theoretical descriptions of the system-matrix
protein environment [24]. In future work, based on the
techniques presented here, we are planning to consider more
general non-Markovian models [41–43], and other biomolec-
ular complexes, and we will study the importance of multiple
excitations in the system. We will also explore the use of CRAB
within closed-loop control techniques in this context. These
tools will then be experimentally applied to provide optimized
setups that, using methods different from multidimensional
spectroscopy, allow us to quantitatively probe the functional
relevance of quantum coherence, the exploration of which
would shed further light on the question as to whether or not
quantum correlations are a necessary ingredient for efficient
EET in natural conditions.
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