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It is generally believed that network structure has a profound impact on diverse dynamical processes taking
place on networks. Tiny changes in the structure may cause completely different dynamics. In this paper, we
study the impact of single extra link on the coherent dynamics modeled by continuous-time quantum walks.
For this purpose, we consider the continuous-time quantum walk on the cycle with an additional link. We find
that the additional link in cycle indeed causes a very different dynamical behavior compared to the dynamical
behavior on the cycle. We analytically treat this problem, calculate the Laplacian spectrum, and approximate the
eigenvalues and eigenstates using the Chebyshev polynomial technique and perturbation theory. It is found that
the probability evolution exhibits a similar behavior like the cycle if the exciton starts far away from the two ends
of the added link. We explain this phenomenon by the eigenstate of the largest eigenvalue. We prove symmetry
of the long-time averaged probabilities using the exact determinant equation for the eigenvalues expressed by
Chebyshev polynomials. In addition, there is a significant localization when the exciton starts at one of the two
ends of the extra link; we show that the localized probability is determined by the largest eigenvalue and there is
a significant lower bound for it even in the limit of infinite system. Finally, we study the problem of trapping and
show the survival probability also displays significant localization for some special values of network parameters,
and we determine the conditions for the emergence of such localization. All our findings suggest that the different
dynamics caused by the extra link in cycle is mainly determined by the largest eigenvalue and its corresponding
eigenstate. We hope the Laplacian spectral analysis in this work provides a deeper understanding for the dynamics
of quantum walks on networks.
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I. INTRODUCTION

The dynamic processes taking place in networks have
attracted much attention in recent years [1–3]. It is generally
believed that network structure fundamentally influences the
dynamical processes on networks. Investigation on such aspect
could be done using the spectral analysis and it has been shown
that the dynamical behavior is related to the spectral properties
of the networks [3,4]. Examples include synchronization
of coupled dynamical systems [5], epidemic spreading [6],
percolation [7], community detection [8], and others [3].
In several of these examples, the largest eigenvalue plays
an important role in relevant dynamics. All these examples
suggest that spectral property is crucial to understanding the
dynamical processes taking place in networks.

Quantum walks, as coherent dynamical process in network,
have become a popular topic in the past few years [9–12]. The
continuous interest in quantum walk can be attributed to its
broad applications to many distinct fields, such as polymer
physics, solid-state physics, biological physics, and quantum
computation [13,14]. In the literature [9,10], there are two
types of quantum walks: continuous-time and discrete-time
quantum walks. It is shown that both types of quantum
walks are closely related to the spectral properties of the
Laplacian matrix of the network. Most of previous studies
have studied quantum walks on some simple graphs, such
as the line [15,16], cycle [17], hypercube [18], trees [19,20],
dendrimers [21], ultrametric spaces [22], threshold network
[23], and other regular networks with simple topology [11,12].
The quantum dynamics displays different behavior on different
graphs, most of the conclusions hold solely in the particular

geometry and how the structure influences the dynamics is still
unknown. Because quantum walks have potential applications
in teleportation and cryptography in the field of quantum
computation [14], it is clearly beneficial to investigate how
the structure influences the dynamics of quantum walks.

In this paper, we focus on continuous-time quantum walks
(CTQWs) and study the impact of single extra link on
its coherent dynamics. For this purpose, we consider the
continuous-time quantum walk on the cycle with an additional
link. The dynamics of continuous-time quantum walks on
cycle is well known; the problem is analytically solvable and
directly related to quantum carpets in solid-state physics [17].
The topology of cycle is highly symmetric and the quantum
dynamics reflects such topological symmetry. If one extra
link is added into the cycle, the topological symmetry is
broken and the structure has a small difference compared to
the cycle. This enables us to treat the problem analytically
and investigate how an additional link added to the network
affects the dynamics. Similar study of the impact of single
links on dynamical processes can be found in Refs. [24,25],
where the authors study the impact of single link addition in
percolation [24] and impact of single link failure in quantum
walks [25], respectively. In our case, in view of the fact that
experimental implementation of CTQWs on cycles has been
realized, we hope our study of the impact of single link (extra
coupling) provides useful insight in quantum computation.

The rest of the paper is organized as follows. Section II
introduces the model of continuous-time quantum walks
and defines the network structure. Section III investigates
the eigenvalues and eigenstates of the Laplacian matrix
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(Hamiltonian). We obtain the determinant equation for the
eigenvalues expressed by Chebyshev polynomial, and calcu-
late the largest eigenvalue on certain limit condition. The other
eigenvalues and eigenstates are obtained by the perturbation
theory. As we will show, like other dynamical processes, the
largest eigenvalue and its eigenstate play an important role in
the relevant dynamics. In Sec. IV, we study the characteristics
of probability evolution and distribution. The impact of the
extra link depends on the initial exciton position, which can
be well understood by the contribution of the eigenstate of
the largest eigenvalue. The long time-averaged probabilities
shows significant symmetry and localization, and we give an
explanation to these features using the determinant equation
and largest eigenvalue. In Sec. V, we study the trapping process
and the survival probabilities show significant localization for
some special values of network parameters. We discuss this
finding using the perturbation theory again. Conclusions and
discussions are given in the last part (Sec. VI).

II. CONTINUOUS-TIME QUANTUM WALKS AND THE
ADDITION OF LINK IN CYCLE

A. Continuous-time quantum walks

The coherent exciton transport on a connected network is
modeled by the continuous-time quantum walks (CTQWs),
which is obtained by replacing the classical transfer matrix
by the Laplacian matrix (i.e., H = −T ) [11,17]. The transfer
matrix T relates to the Laplacian matrix by T = −γA, where
for simplicity we assume the transmission rates γ of all bonds
to be equal and set γ ≡ 1 in the following [11,17]. The
Laplacian matrix A has nondiagonal elements Aij equal to −1
if nodes i and j are connected and 0 otherwise. The diagonal
elements Aii equal to degree of node i (i.e., Aii = ki). The
states |j 〉 endowed with the node j of the network form a
complete, orthonormalized basis set, which spans the whole
accessible Hilbert space. The time evolution of a state |j 〉
starting at time t0 is given by |j,t〉 = U (t,t0)|j 〉, where
U (t,t0) = exp[−iH (t − t0)] is the quantum mechanical time
evolution operator. The transition amplitude αk,j (t) from state
|j 〉 at time 0 to state |k〉 at time t reads αk,j (t) = 〈k|U (t,0)|j 〉
and obeys Schrödinger̄’s equation [11,17]. The classical and
quantum transition probabilities to go from the state |j 〉 at time
0 to the state |k〉 at time t are given by pk,j (t) = 〈k|e−tA|j 〉
and πk,j (t) = |αk,j (t)|2 = |〈k|e−itH |j 〉|2 [11,17], respectively.
Using En and |�n〉 to represent the nth eigenvalue and
orthonormalized eigenstate of H , the quantum amplitudes
between two nodes can be written as [11]

αk,j (t) =
∑

n

e−itEn〈k|�n〉〈�n|j 〉, (1)

πk,j (t) = |αk,j (t)|2 =
∣∣∣∣∣
∑

n

e−itEn〈k|�n〉〈�n|j 〉
∣∣∣∣∣
2

=
∑
n,l

e−it(En−El )〈k|�n〉〈�n|j 〉〈j |�l〉〈�l|k〉. (2)

For finite networks, πk,j (t) do not decay ad infinitum but
at some time fluctuates about a constant value. This value is

FIG. 1. Topology of the cycle with an extra link. The additional
link connects node 1 and m ≡ 3 in the cycle. According to the
symmetry of topology, the graph can be projected into a one-
dimensional (1D) chain of size N ′ ≈ �N/2� (the notation �N/2�
denotes the integer part of N/2).

determined by the long time average of πk,j (t):

χk,j = lim
T →∞

1

T

∫ T

0
πk,j (t)dt

=
∑
n,l

〈k|�n〉〈�n|j 〉〈j |�l〉〈�l|k〉

× lim
T →∞

1

T

∫ T

0
e−it(En−El )dt

=
∑
n,l

δ(En,El)〈k|�n〉〈�n|j 〉〈j |�l〉〈�l|k〉, (3)

where δ(En,El) takes value 1 if En equals to El and 0
otherwise. To calculate the exact analytical expressions for
πk,j (t) and χk,j , all the eigenvalues En and eigenstates |�n〉
of the Laplacian matrix are required. If all the eigenvalues
{Ei |i = 1,2, . . . ,N} are distinct (i.e., all the eigenvalues are
not degenerated), Eq. (3) can be simplified as

χk,j =
∑

n

|〈k|�n〉|2 · |〈�n|j 〉|2. (4)

The eigenvalues for the cycle graph are twofold degenerated.
However, as we will show, the addition of single link causes
the degeneracy to disappear. Therefore we can use Eq. (4) to
calculate the probability distribution for our model. The trans-
ition probabilities [see Eqs. (2)–(4)] are closely related to En

and |�n〉, it is crucial to calculate the Laplacian eigenspectrum
and we will do this in Sec. III.

B. Addition of link in cycle

Now we specify the topology of the cycle with an extra
link. First we construct a cycle of size N where each node
connected to its two nearest-neighbor nodes, then we connect
two nodes of certain distance with an additional link. The
topology is completely determined by the distance and size of
the cycle. For the sake of simplicity, we assign a consecutive
number from 1 to N for each neighbored node in the cycle.
The additional link connects node 1 and node m in the cycle.
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FIG. 2. (Color online) (a) Eigenvalues Ej , arranged in ascending order, for the networks of N = 100 with m = 3, m = 5, and m = 10. The
largest eigenvalue is larger than 4 and isolated from the other eigenvalues. (b1) shows the largest eigenvalue Emax as a function of system size N

for m = 3, m = 5, and m = 10. (b2) shows the largest eigenvalue Emax as a function of m for fixed network size N = 100. In large systems and
long-range coupling, that is, the distance between node m and node 1 [d(1,m)] is not small (the plat region in the plot), the largest eigenvalue
approaches to constant value (2 + 2

√
2). (c) Components of the eigenstate of the largest eigenvalue |x ′

j | as a function of j for networks of size
N = 100 with m = 20 (red dots) and m = 50 (black squares). The decay is exponential and there are two maximal points (|x ′

1| and |x ′
m|), the

distribution is symmetric, |x ′
j | = |x ′

m+1−j |, ∀ j ∈ [1,m], |x ′
j | = |x ′

m+N+1−j |, ∀ j ∈ [m + 1,N ].

Thus the structure, denoted by G(N,m), is characterized by the
network size N and connecting node m (m ∈ [3,N − 1]). Here,
we use d(1,m) to denote the (shortest) distance between node
1 and node m in the cycle (without an extra link), the graph
can also be characterized by G[N,d(1,m)]. The structure of
G(N,m = 3) is illustrated in Fig. 1.

It is interesting to note that the network considered also
has a symmetric structure, and the symmetry axis lies at the
central position between node 1 and m. The structure can
be mapped into a 1D chain of size N ′ ≈ �N/2� (the notation
�N/2� denotes the integer part of N/2) if we make a horizontal
projection of the graph (see Fig. 1). Such projection sheds some
light on the implicit relationship between the two structures.
For example, as we show in Appendix C, the eigenvalues of
the Laplacian matrix of the projected 1D chain also belong to
eigenvalues of our model.

III. LAPLACIAN EIGENVALUES AND EIGENSTATES

Since the transition probabilities are determined by the
Laplacian eigenvalues and eigenstates [see Eqs. (2)–(4)], a
detailed analysis to the eigenvalues and eigenstates will be
helpful for the problem. In this section, we will study the
Laplacian eigenvalues and eigenstates in detail.

Figure 2(a) shows the eigenvalues obtained by numerical
diagonalizing the Laplacian matrix using the software MATHE-
MATICA 7.0. The eigenvalues are ranked in ascending order for
networks of size N = 100 with m = 3, m = 5, and m = 10.
It is interesting to note that the largest eigenvalue is larger
than 4 and isolated from the other eigenvalues (the other
eigenvalues are less than 4), this means the gap between the
largest eigenvalue and the second largest eigenvalue does not
converge to zero when the size of the system goes to infinity,
whereas the other nearest eigenvalue gaps tend to zero in the
limit of infinite system. This suggests the eigenvalue spectra is

continuous except the largest eigenvalue. Such characteristic
feature of eigenvalue spectra is useful for understanding the
coherent dynamical behavior. As we will show, the largest
eigenvalue plays an important role in the dynamics and
gives significant contribution to the localized probabilities.
Hence in the following, we will try to obtain the Laplacian
eigenspectrum and determine the largest eigenvalue and its
corresponding eigenstate.

A. Determinant equation for the eigenvalues

We start our analysis on the eigenequation of the Hamilton
(Laplacian matrix). The Laplacian matrix H of G(N,m) (m �
3) takes the following form:

Hij = 〈i|H |j 〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3, if i = j = 1 or i = j = m

2, if i = j �= 1 and i = j �= m

−1, if i and j connected

0, otherwise.

(5)

According to the eigenequation H |�〉 = E|�〉, suppose the
eigenstate |�〉 can be expressed as

|�〉 =
N∑

i=1

xi |i〉, (6)

The eigenequation can be decomposed into the following N

linear equations:

3x1 − x2 − xm − xN = Ex1, (7)

−xj−1 + 2xj − xj+1 = Exj , 1 < j < m (8)

−x1 − xm−1 + 3xm − xm+1 = Exm, (9)

−xj−1 + 2xj − xj+1 = Exj , m < j < N (10)

−xN−1 + 2xN − x1 = ExN. (11)

042327-3



XIN-PING XU, YUSUKE IDE, AND NORIO KONNO PHYSICAL REVIEW A 85, 042327 (2012)

Equation (8) can be rewritten as (2 − E)xj = xj−1 + xj+1.
This is similar to the recursive definition of the Chebyshev
polynomials of the second kind (see Appendix A). Noting the
recursive relations and setting (2 − E) ≡ 2x in the definition
of Chebyshev polynomials, the variables x1,x2, . . . ,xm−2 in
Eq. (8) can be expressed as a function of xm−1 and xm,

xj−1 = Um−j (x)xm−1 − Um−1−j (x)xm, 1 < j � m. (12)

Analogously, Eqs. (10) and (11) can be written as a function
of xN and x1 using the Chebyshev polynomials,

xj−1 = UN+1−j (x)xN − UN−j (x)x1, m < j � N. (13)

Substituting E = 2 − 2x into Eqs. (7) and (9), we obtain

3x1 − x2 − xm − xN = (2 − 2x)x1 (14)

−x1 − xm−1 + 3xm − xm+1 = (2 − 2x)xm. (15)

In Eq. (12), x1 = Um−2(x)xm−1 − Um−3(x)xm, x2 =
Um−3(x)xm−1 − Um−4(x)xm. Replacing the variables x1

and x2 in Eqs. (14) and (15), we get

xN = [(2x + 1)Um−2(x) − Um−3(x)]xm−1

+ [Um−4(x) − (2x + 1)Um−3(x) − 1]xm, (16)

xm+1 = −[1 + Um−2(x)]xm−1 + [2x + 1 + Um−3(x)]xm.

(17)

Substituting x1 = Um−2(x)xm−1 − Um−3(x)xm and xN in
Eq. (16) into Eq. (13) for j = m + 1 and j = m + 2, we obtain

c1xm−1 + c2xm = 0, (18)

where c1 = UN−m(x)[(2x + 1)Um−2(x) − Um−3(x)] −
UN−m−1(x)Um−2(x) and c2 =UN−m(x)[Um−4(x) − (2x +
1)Um−3(x) − 1] + UN−m−1(x)Um−3(x) − 1, and

xm+1 = {UN−m−1(x)[(2x + 1)Um−2(x) − Um−3(x)]

−UN−m−2(x)Um−2(x)}xm−1

+{UN−m−1(x)[Um−4(x) − (2x + 1)Um−3(x) − 1]

+UN−m−2(x)Um−3(x)}xm. (19)

Combine Eqs. (17) and (19), we get another equation for xm−1

and xm:

c3xm−1 + c4xm = 0, (20)

where c3 = UN−m−1(x)[(2x + 1)Um−2(x) − Um−3(x)] −
UN−m−2(x)Um−2(x) + Um−2(x) + 1 and c4 = UN−m−1(x)
[Um−4(x) − (2x + 1)Um−3(x) − 1] + UN−m−2(x)Um−3(x) −
Um−3(x) − (2x + 1). Thus we have got two equations for
xm−1 and xm, Eqs. (18) and (20). The two equations should
have nonzero solutions, which leads to

c1c4 − c2c3 = 0. (21)

In Appendix B, we show the substraction of the products can
be simplified to be a much simple form in Eq. (B7), thus we
have obtained determinant equation for the eigenvalues,

1 + UN−m(x) + Um−2(x) − UN−1(x) − TN(x) = 0, (22)

where TN(x) and UN−1(x) are Chebyshev polynomials of the
first kind and the second kind, respectively. Solving the above
equation, we can get all the Laplacian eigenvalues. This

equation is useful to determine the largest eigenvalue and
interpret the symmetric structure of the transition probabilities.

B. The largest eigenvalue

The largest eigenvalue can be determined using Eq. (22)
under certain limit conditions. As we have shown, the largest
eigenvalue is larger than 4; this corresponds to the solution
x < −1 in Eq. (22). Note that the Chebyshev polynomial is
divergent for |x| > 1 in the limit of infinite order; Eq. (22)
divided by TN (x) leads to

UN−m(x)

TN(x)
+ Um−2(x)

TN(x)
− UN−1(x)

TN(x)
− 1 = 0. (23)

For large size of system and long-range coupling, that is, N

is large and the distance d(1,m) between node 1 and node
m is not small, if we apply the asymptotic solution of the
Chebyshev polynomials [see Eq. (A5) in Appendix A], the
first two terms of the above equation equal to 0, −UN−1(x0)

TN (x0) ≈
2

|z−1
0 −z0| = 1, which leads to z0 = −1 − √

2 (the other solutions

do not satisfy z = x − √
x2 − 1 less than −1 when x < −1)

and x0 = 1+z2
0

2z0
= −√

2. Thus the largest eigenvalue equals to

a constant value Emax = 2 − 2x0 = 2 + 2
√

2 under this limit
condition.

To test the above prediction, we plot the largest eigenvalue
as a function of N and m in Fig. 2(b). As we can see, the
largest eigenvalue converges to a constant value as N or m

increases. For moderate range coupling (e.g., m = 5), the
largest eigenvalue is close to the analytical prediction (2 +
2
√

2). The constant value of the largest eigenvalue suggests
that its corresponding eigenstate (eigenvector) approaches
to certain stationary distribution. Here, the obtained largest
eigenvalue is useful to consider its corresponding eigenstate,
which we will show in the following.

C. Eigenstate of the largest eigenvalue

The components of eigenstate corresponding to the largest
eigenvalue are shown in Fig. 2(c). The straight line in the linear-
log plot indicates that the components display an exponential
decay (i.e., |x ′

j | ∼ z
−j

0 ). The distribution of the components
of the eigenstate is symmetric, |x ′

j | = |x ′
m+1−j |, ∀ j ∈ [1,m];

|x ′
j | = |x ′

m+N+1−j |, ∀ j ∈ [m + 1,N ]. As we will prove in
Sec. IV B and Appendix C, this symmetric behavior is true
for all the eigenstates.

To obtain an approximate formula for the eigenstate of
the largest eigenvalue, we use Eq. (18) to present xm−1 as a
function of xm, and substitute it into Eq. (16) to write xN as a
function of xm. Using the Chebyshev polynomial identity (A7)
in Appendix A, Eq. (16) can be written as xN = [Um−1(x) +
Um−2(x)]xm−1 − [Um−2(x) + Um−3(x) + 1]xm. According to
Eq. (18), xm−1 = −c2xm/c1 and noting the simplified c1, c2 in
Eqs. (B1) and (B2) in Appendix B, we obtain xN = c′

2
c1

xm [see
the detailed derivation in Eq. (B8) in Appendix B]. Substituting
xm−1 and xN into Eqs. (12) and (13) and noting x1 = −xm for
the largest eigenvalue [see Eq. (C12) in Appendix C], Eqs. (12)
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and (13) can be written as

xj = −
[
c2

c1
Um−j−1(x) + Um−2−j (x)

]
xm, j ∈ [1,m],

(24)

xj =
[
c′

2

c1
UN−j (x) + UN−j−1(x)

]
xm, j ∈ [m,N ].

For the largest eigenvalue, x = x0 = −√
2, the ratios c2/c1

and c′
2/c1 approach to the constant value −z−1

0 = (
√

2 − 1)
for largesystems and long-range coupling. Therefore, Eq. (24)
can be recasted as

x ′
j ≈ [

z−1
0 Um−1−j (x0) − Um−2−j (x0)

]
x ′

m

= z
j−m

0 x ′
m, j ∈

[⌈
m + 1

2

⌉
,m

]
,

x ′
j ≈ [−z−1

0 UN−j (x0) + UN−1−j (x0)
]
x ′

m

= −z
j−N−1
0 x ′

m, j ∈
[⌈

(m + N + 1)

2

⌉
,N

]
. (25)

The above formula only describes the right part of the
symmetric distribution of the eigenstate [see the points on
the dashed lines in Fig. 2(c)]. The decay exponents in Eq. (25)
only depend on the (shortest) distance between the node pairs
(j,1) and (j,m) (i.e., dj = min{d(j,1),d(j,m)}). Equation (25)
can be summarized in a much simpler form using the shortest
distance dj ,

x ′
j ≈ ±z

−dj

0 x ′
m, dj = min{d(j,1),d(j,m)}. (26)

In the calculation, the eigenstate should be normalized,∑N
j=1 |x ′

j |2 = 1. For large systems and long-range coupling,
the summation has a weak dependence on N and m, thus
the summation of finite geometric series approaches to the
summation of the infinite geometric series, that is,

N∑
j=1

|x ′
j |2 =

m∑
j=1

|x ′
j |2 +

N∑
j=m+1

|x ′
j |2

≈
(

2
∞∑

j=1

z
2(1−j )
0 + 2

∞∑
j=1

z
−2j

0

)
|x ′

m|2

= 2
√

2|x ′
m|2 = 1, (27)

which leads to |x ′
1| = |x ′

m| = 2−3/4. For large systems and
long-range coupling, the distribution of the eigenstate of
the largest eigenvalue approaches to a stationary exponential
decay with the maximal component |x ′

1| = |x ′
m| = 2−3/4. In

Fig. 2(c), we plot the analytical predictions in Eq. (26), which
agree well with the exact numerical result.

We would like to point out that the exponential distribution
of the components of the eigenstate is an interesting charac-
teristic for the largest eigenvalue. For the other eigenstates,
the components do not display this feature. This could be
interpreted by the different behavior of the Chebyshev poly-
nomials for |x| > 1 and |x| < 1. For |x| � 1, the Chebyshev
polynomials show finite regular oscillations, but for |x| > 1,
the Chebyshev polynomials show exponential growth. The
largest eigenvalue and its eigenstate play a significant role in
the coherent dynamics, we will discuss this in the next section.

D. Other eigenvalues and eigenstates

We have determined the largest eigenvalue and its cor-
responding eigenstate using the determinant equation (22).
However, it is not intuitive to determine the other eigenvalues
and eigenstates by Eq. (22). Here, we use the perturbation
theory to get the approximate results for the other eigenvalues
and eigenstates.

According to perturbation theory, the Hamilton (Laplacian
matrix) of the cycle with an additional link H can be
divided into two parts: the unperturbed Hamilton H (0) and
perturbed Hamilton H ′ (H = H (0) + H ′, H |�〉 = E|�〉).
The unperturbed Hamilton H (0) is the Laplacian matrix
for the cycle, whose eigenvalues and eigenstates are well
known: H (0)|ψ (0)

n 〉 = E(0)
n |ψ (0)

n 〉, E(0)
n = 2 − 2 cos θn, |ψ (0)

n 〉 =
1√
N

∑N
j=1 e−ijθn |j 〉 (n ∈ [−�N

2 �,�N
2 �], θn = 2nπ/N ). The

perturbed Hamilton H ′ can be written as H ′ = |1〉〈1| +
|m〉〈m| − |1〉〈m| − |m〉〈1|. The eigenvalues of the cycle E(0)

n

are twofold degenerated except the minimal eigenvalue 0
and maximal eigenvalue 4. The first-order corrections for
eigenvalues 0 and 4 are E

(1)
0 = 0 and E

(1)
N/2 = 2/N [1 +

(−1)m], respectively (maximal eigenvalue 4 only exists for
even N ). The zero-order approximation of the eigenstates
corresponding to 0 and 4 are equal to the original unperturbed
eigenstates of H (0) [i.e., |�(0)

0 〉 = |ψ (0)
0 〉 = (1/

√
N )

∑N
j=1 |j 〉,

|�(0)
N/2〉 = |ψ (0)

N/2〉 = (1/
√

N )
∑N

j=1(−1)j |j 〉]. For the twofold
degenerated states, the degeneracy disappears when an extra
link is added. To approximate these eigenvalues and eigen-
states, we apply degenerate perturbation theory to calculate
the first-order corrections of the eigenvalues and zero-order
approximation of the eigenstates.

We diagonalize the perturbed Hamilton H ′ using the
unperturbed degenerated eigenstates |ψ (0)

n 〉 and |ψ (0)
−n〉. The

perturbed Hamilton H ′ can be written as

H ′ =
(

H ′
n,n H ′

n,−n

H ′
−n,n H ′

−n,−n

)
, n ∈

[
1,

⌈
N

2

⌉
− λ

]
,

where λ =
{

1 if N is even

0 if N is odd,
(28)

where H ′
n,n = H

′∗
−n,−n = 〈ψ (0)

n |H ′|ψ (0)
n 〉 = 2

N
[1 − cos(m −

1)θn], H ′
n,−n = H

′∗
−n,n = 〈ψ (0)

n |H ′|ψ (0)
−n〉 = 1

N
[eiθn − eimθn ].

The first-order corrections of the eigenvalues are given by the
two eigenvalues in Eq. (28),

E(1)
n = 0, E

(1)
−n = 4

N
[1 − cos(m − 1)θn]. (29)

The corresponding eigenstates for E(1)
n and E

(1)
−n are

Kn = 1√
2

(
ei(m+1)θn

1

)
, K−n = 1√

2

(−ei(m+1)θn

1

)
.

(30)

The zero-order approximations of the eigenstates are given by∣∣�(0)
n

〉 = Kn(1)
∣∣ψ (0)

n

〉 + Kn(2)
∣∣ψ (0)

−n

〉
,

(31)∣∣�(0)
−n

〉 = K−n(1)
∣∣ψ (0)

n

〉 + K−n(2)
∣∣ψ (0)

−n

〉
.
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Substituting the Bloch states |ψ (0)
n 〉 = 1√

N

∑N
j=1 e−ijθn |j 〉 into

the above equation, we obtain

∣∣�(0)
n

〉 = 1√
2N

N∑
j=1

(eijθn + e−i(j−m−1)θn )|j 〉,
(32)∣∣�(0)

−n

〉 = 1√
2N

N∑
j=1

(eijθn − e−i(j−m−1)θn )|j 〉.

Thus we have obtained the first-order corrections of the
degenerated eigenvalues and the zero-order approximation
of the corresponding eigenstates [see Eqs. (29) and (32)].
Using these eigenvalues and eigenstates, we can calculate the
transition probabilities in Eqs. (2)–(4).

It is worth mentioning that the perturbation theory cannot
be used to calculate the largest eigenvalue, since the eigenvalue
gaps do not converge to zero in this case. However, the
analytical predicted eigenvalues by perturbation theory [see
Eq. (29)] can also be obtained by Taylor series expansion of
the Chebyshev polynomials. In Appendix D, we approximate
the other eigenvalues using the determinant equation (22),
which are consistent with the predictions in Eq. (29).

IV. PROBABILITY EVOLUTION AND DISTRIBUTION

In this section, we consider the probability evolution
and probability distribution. We will explain the observed
phenomenon using the obtained eigenvalues and eigenstates.

A. Probability evolution

The time evolution of the probability is given by Eq. (2).
Here, we focus on the return probability πj,j (t) [set k = j in
Eq. (2)]. The decay behavior is used to quantify the efficiency
of the transport [11]. In our case the return probability πj,j (t)
depends on the starting position j . We study the time evolution
of the return probability πj,j (t) on different starting position
j . The behavior of πj,j (t) versus t are plotted in Fig. 3. It
is found that πj,j (t) shows a different time range for scaling
behavior πj,j (t) ∼ t−1: For the starting positions far from the
connected nodes 1 and m, the scaling range of time is much
larger than that of the walk starting near the nodes 1 and m

(compare scaling in the four figures). It is well known that
for the cycle, πj,j (t) = J 2

0 (2t) ∼ t−1. This suggests that the
additional link gives small influence on the dynamics when
the walk starts at outlying positions, and gives larger influence
for exciton near nodes 1 and m. If the walk starts at the center
nodes (nodes at symmetry axis) j = (m + 1)/2 (m is odd)
or j = (N + m + 1)/2 (N + m is odd) [see Fig. 3(a)], the
probabilities are exactly the same as the probabilities in cycle
of the same size; in this case the additional link has no impact
on the dynamics.

The observed phenomenon can be well understood using
the eigenstates obtained in the previous section. If the exciton
starts at positions far away from 1 and m, the components of
the eigenstate of the largest eigenvalue are very small due to the
exponential decay of the components. Thus the contribution
from the largest eigenvalue in Eq. (1) is very small, and
the main contribution to the amplitude comes from the other
eigenvalues, which leads to the scaling behavior resembling to

(a)

(b)

(c)

(d)

FIG. 3. Return probabilities πj,j (t) on a network of N = 100 and
m = 21 for different starting positions j . (a) The exciton starts at the
center node (symmetry axis) between 1 and m, [i.e., j = (m + 1)/2 =
11 or j = (N + m + 1)/2 = 61]. (b) Starting at j = 41. (c) Starting
at j = 31. (d) Starting at j = 1 or j = m = 21. The time range of
scaling t−1 becomes short when the starting position near the two
ends of the added link.

the case in cycles. If the exciton starts at the center nodes (nodes
at symmetry axis) j = (m + 1)/2 (m is odd) or j = (N +
m + 1)/2 (N + m is odd), the corresponding components
of the largest eigenvalue’s eigenstate are 0 [see Eqs. (C13)
and (C14) in Appendix C]. In this particular case, the largest
eigenvalue does not contribute to the amplitude, the pro-
babilities are exactly the same as in the cycles, thus the
additional link has no impact on the dynamics. If the exciton
starts at the positions near the connected nodes 1 and m,
the components of the largest eigenvalue’s eigenstate become
larger and contribute to the amplitude, thus the scaling behavior
disappears gradually [see Figs. 3(b) and 3(c)]. If the exciton
starts at nodes 1 or m, the components of the eigenstate of
the largest eigenstate (x1 or xm) largely contribute to the
amplitude, and the time range of the scaling behavior is very
short [see Fig. 3(d)]. In this case, the return probabilities
do not decay ad infinitum but fluctuate about a constant
value, suggesting significant localization induced by the
largest eigenvalue. We will study this feature in detail in the
following.

B. Probability distribution

In this section, we consider the long-time-averaged prob-
abilities. We find that these limiting probabilities display a
symmetric structure; symmetric nodes k and l (k + l = m + 1
or k + l = N + m + 1; see the two nodes in the horizontal
projection in Fig. 1) have the same limiting probabilities. This
suggests that the probability of finding the exciton at a certain
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node k is equal to the probability of finding the exciton at the
symmetric position l = (m + 1) − k (or l = N + m + 1 − k),
that is, χk,j = χm+1−k,j ∀ j,k (or χk,j = χN+m+1−k,j ∀ j,k).
This symmetric structure can be understood as a result of
the axis symmetry of the graph. Here, we give a rigorous
mathematical proof for this symmetric structure using Eq. (4).
In Eq. (4), the limiting probabilities are only dependent
on the eigenstates. Suppose the nth eigenstate is expanded
as |�n〉 = ∑N

j=1 x
(n)
j |j 〉, the probabilities in Eq. (4) can be

written as χk,j = ∑
n |x(n)

j |2|x(n)
k |2. In Appendix C, we prove

that the components of the eigenstate are symmetric, |xj | =
|xm+1−j |, ∀ j ∈ [1,m]; |xj | = |xm+N+1−j |, ∀ j ∈ [m + 1,N ].
Here, no superscript for xj means the identity holds for all the
eigenstates (∀ n). The symmetric structure of the eigenstates
leads to the symmetric limiting probabilities. This is one of
the main conclusions in our paper.

Now we try to use the eigenstates to find analytical approx-
imate results for the limiting probabilities. The contribution in
Eq. (4) comes from three parts: the eigenstate of the largest
eigenvalue, nondegenerated eigenstates (|�(0)

0 〉 and |�(0)
N/2〉),

and degenerated eigenstates. Therefore Eq. (4) transforms into

χk,j ≈ |x ′
j |2|x ′

k|2 + 1

N2
(1 + λ)

+
�N/2�−λ∑

n=1

∣∣〈k∣∣�(0)
n

〉∣∣2∣∣〈j ∣∣�(0)
n

〉∣∣2

+
�N/2�−λ∑

n=1

∣∣〈k∣∣�(0)
−n

〉∣∣2∣∣〈j ∣∣�(0)
−n

〉∣∣2
, (33)

where λ takes value 1 for even N and 0 for odd N .
Substituting the degenerated eigenstates of Eq. (32) into the
above equation and noting the trigonometric function formula∑j

i=1 cos 2πix
N

= 1
2 (sin (2j+1)πx

N
/ sin πx

N
− 1), Eq. (33) can be

simplified as

χk,j ≈ |x ′
j |2|x ′

k|2 + 1

N
− 1

N2

+ 1

2N2

{
sin 2π (j − k)

(
1 − λ

N

)
sin 2π(j−k)

N

+ sin 2π (j + k − m − 1)
(
1 − λ

N

)
sin 2π(j+k−m−1)

N

}
. (34)

Figure 4 shows the probability distribution for different
starting positions. It is evident that the exact numerical results
agree well with analytical predictions in Eq. (34). For exciton
starting at j = 1 and j = m, there is a high probability to
find the exciton at j = 1 and j = m, suggesting significant
localization in the dynamics. For excitons starting at center
node j = (m + 1)/2 (m is odd) and j = (N + m + 1)/2
(N + m is odd), the probability distribution is exactly the
same as the cycles. This could be explained by Eq. (34) as
follows: For j = (m + 1)/2 or j = (N + m + 1)/2, |x ′

j | = 0
[see Eqs. (C13) and (C14) in Appendix C], the contribution
from the largest eigenstate’s eigenstate is 0 [see the first term in
Eq. (34)], the localized probability χk,j mainly depends on the
trigonometric function in Eq. (34). For return probabilities with
j = k = (m + 1)/2 (m is odd) or j = k = (N + m + 1)/2

(a)

(b)

(c)

(d)

FIG. 4. (Color online) Long-time-averaged probability distri-
bution χk,j on a network of N = 100 and m = 21 for different
starting positions j (compare Fig. 3). (a) The exciton starts at the
center node between 1 and m, that is, j = (m + 1)/2 = 11 and
j = (N + m + 1)/2 = 61. (b) Starting at j = 41. (c) Starting at
j = 31. (d) Starting at j = 1 and j = m = 21. The black squares are
the exact numerical results obtained by diagonalizing the Laplacian
matrix. The dashed red lines are the analytical predictions in Eq. (34).

(N + m is odd), limits of the trigonometric function ratio in
the big bracket equal N − λ, thus Eq. (34) becomes

χk,j =
{

(2N−1−λ)
N2 , j = k = m+1

2 , (N+m+1)
2

(N−1−λ)
N2 , j �= k, j,k = m+1

2 , (N+m+1)
2 ,

(35)

which are consistent with the results in Ref. [26]. For
this particular case, j,k = {m+1

2 , (N+m+1)
2 }, the probability

distribution is exactly the same as the cycles; this indicates the
adding of one link has no impact on the dynamics for center
node excitations (k or j at the symmetry axis; see Fig. 1). Here
we provide a theoretical interpretation for this phenomena.
However, if m and N + m are not odd numbers, this particular
case does not exist.

As we have shown, the return probabilities χj,j have a high
value at j = 1 and j = m. Such a strong localization may
vanish as the size of the system becomes large. In order to
investigate the dependence of localized probability χ1,1 (or
χm,m) on the size of the system, we plot χ1,1 (or χm,m) as a
function of N for different values of m in Fig. 5. We find that
the return probability converges to a constant value when N

tends to infinity. This constant value can be calculated using
Eq. (34). For infinite systems, χ1,1 (or χm,m) equals the first
term of Eq. (34) (the other terms are 0 in the limit of N → ∞).
Therefore, for infinite systems, the limiting probabilities are
determined by the components of the eigenstate of the largest
eigenvalue. Noting that |x ′

1| = |x ′
m| = 2−3/4, we get

χ1,1 = χ1,m = χm,1 = χm,m ≈ |x ′
1|4 = 1

8 . (36)
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FIG. 5. (Color online) Return probabilities χ1,1 and χm,m as a
function of the network size N for m = 3 (black squares), m = 5
(red dots), and m = 10 (blue triangles). All the return probabilities
approach to the predicted constant value 1/8 (horizontal dotted line).

Therefore χ1,1 (or χm,m) converges to the 1/8, indicating there
is a significant lower bound for the return probabilities.
This result has not been previously reported and
suggests that quantum walks display nontrivial localization on
nonsymmetric system. Since all the components of the largest
eigenvalue’s eigenstate are known [see Eqs. (25) and (26)],
the limiting probabilities χk,j have a lower bound given by
|x ′

j |2|x ′
k|2. Using the expression of x ′

j in Eq. (26), |x ′
j |2|x ′

k|2 ≈
|z0|−2(dj +dk )|x ′

m|4 = 1
8 |z0|−2(dj +dk ). The lower bound for the

limiting probability is determined by the shortest distance dj

and dk . For instance, for j = 1 and k = 2, dj = 0, dk = 1,
χ1,2 > 1

8(1+√
2)2 ; for j = m and k = N − 1, dj = 0, dk = 2,

χk,j > 1
8(1+√

2)4 , etc. This dynamical feature is completely
different from the case of the cycles. For continuous-time
quantum walks on a 1D cycle of N nodes, all the limiting
probabilities χk,j are 0 when N → ∞, due to the fact that all
the components of the eigenstates approaches to 0 on this case.
So there is no localization on infinite regular cycles. For our
case, the localization is induced by the largest eigenvalue
and size of the system N , which differs from the 1D regular
cycles where the localization is only induced by the size of the
system. To this end, the localization in our case is much more
essential and may have potential applications in quantum
information science.

V. TRAPPING

An important process related to random walk is trapping
[27,28]. Trapping problems have been widely studied in the
frame of physical chemistry, as part of the general reaction-
diffusion scheme [29]. Previous work has been devoted to
the trapping problem on discrete-time random walks [30,31].
However, even in its simplest form, trapping was shown
to yield a rich diversity of results, with varying behavior
over different geometries, dimension, and time regimes [31].
The main physical quantity related to trapping process is
the survival probability, which denotes the probability that
a particle survives during the walk in a space with traps.

In this paper, we consider trapping using the approach
based on time-dependent perturbation theory and adopt the
methodology proposed in Ref. [32]. In Ref. [32], the authors

consider a system of N nodes and among them M are traps
(M < N ). The trapped nodes are denoted by m′, so that
m′ ∈ M. The new Hamiltonian of the system is H = H0 + i�,
where H0 is the original Hamiltonian without traps and i�

is the trapping operator. � has m purely imaginary diagonal
elements �m′m′ at the trap nodes and assumed to be equal
for all m (�m′m′ ≡ � > 0). See Ref. [32] for details. The new
Hamiltonian is non-Hermitian and has N complex eigenvalues
and eigenstates {El , |�l〉} (l = 1,2, . . . ,N ). Then the quantum
transition probability is

πk,j (t) = |αk,j (t)|2 =
∣∣∣∣∣
∑

l

e−itEl 〈k|�l〉〈�̃l|j 〉
∣∣∣∣∣
2

, (37)

where 〈�̃l| (l = 1,2, . . . ,N) is the conjugate eigenstate of
the new Hamiltonian. Equation (37) depends on the initially
excited node j . The average survival probability over all initial
nodes j and all final nodes k, neither of them being a trap node,
is given by Ref. [32],

�M (t) = 1

N − M

∑
j �∈M

∑
k �∈M

πk,j (t). (38)

For intermediate and long times and a small number of trap
nodes, �M (t) is mainly a sum of exponentially decaying terms
[32]:

�M (t) ≈ 1

N − M

N∑
l=1

exp(−2γlt), (39)

where γl is the imaginary part of the eigenvalue El .
For the cycle with an additional link, we focus on the case

that only one trap exists in the graph and the trap is located at
node 1. Figure 6 shows the survival probability �M (t) versus t

for N = 100 (a) and N = 101 (b). We find that �M (t) decays
very slowly and converges to a certain constant value (nonzero)
for some special network parameters N and m. Meanwhile,
for the other values of N and m, �M (t) decays slowly and
converges to 0. For the network of size N = 100 [see Fig. 6(a)],
�M (t) converges to nonzero constants for m = 3, m = 6, m =

(a)

(b)

FIG. 6. Survival probabilities �M (t) for N = 100 (a) and N =
101 (b) for different values of m. In the calculation, the trap is
localized at node 1 and � = 1. We find that if N

2(m−1) is integral, �M (t)
converges to (m − 1 − λ)/(N − 1). Otherwise, �M (t) approaches to
0.
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11, m = 26, and m = 51, whereas �M (t) approaches to 0
for other values of m. For the network of size N = 101 [see
Fig. 6(b)], �M (t) approaches to 0 for all values of m. The
nonzero threshold of the survival probability suggests that
the trapping process displays significant localization for some
special values of network parameters. This result is interesting
since in previous studies the survival probability converges
to 0 [11,32], indicating the excitation eventually returns to the
traps. The nonzero threshold of the survival probability implies
that the excitation does not eventually return to the traps [33],
and the survival probability is smaller than 1/2.

To give an explanation to the localized survival probability,
we analyze the Laplacian eigenvalues using the perturbation
theory. In Eq. (39), the behavior of �M (t) is determined by
the imaginary part of the eigenvalue (γl). If γl is nonzero
(γl > 0), exp(−2γlt) converges to 0 at long time scale. On the
contrary, if γl is 0, exp(−2γlt) equals 1. The main contribution
for the localized survival probability comes from the real
eigenvalues (γl = 0), thus the lower bound of �M (t) depends
on the number of real eigenvalues (γl = 0). The eigenvalues
and eigenstates for cycle with an additional link has been
analyzed in Sec. III; the trapping operator can be regarded as
the perturbed operator. According to perturbation theory, the
first-order corrections of the eigenvalues of the non-Hermitian
Hamiltonian are given by

E(1)
n = 〈

�(0)
n

∣∣i�∣∣�(0)
n

〉 = i�
∣∣〈1∣∣�(0)

n

〉∣∣2
. (40)

Utilizing the zero-order approximation of the eigenstates in
Eq. (32), the first-order correction of the eigenvalue can
be written as E(1)

n = i� 1
N

[1 ± cos(m − 1)θn]. γl = 0 requires
the first-order correction E(1)

n equals 0, thus (m − 1)θn =
2n(m−1)π

N
= kπ (n ∈ [1,�N/2� − λ], k > 0). The number of

integer solutions of this equation gives the number of real
eigenvalues γl = 0. If N

2(m−1) is integral, the number of integer
solutions is (m − 1 − λ). Therefore, the lower bound of �M (t)
equals (m − 1 − λ)/(N − 1) (< 1

2 ). If N is odd, no integer
solutions exist, thus �M (t) converges to 0 for odd size of
networks. Thus we succeed in explaining the localized survival
probability.

VI. CONCLUSIONS AND DISCUSSIONS

In summary, we consider the continuous-time quantum
walk on the cycle with an additional link. We analytically treat
this problem and approximate the Laplacian eigenvalues and
eigenstates by the Chebyshev polynomial technique and per-
turbation theory. We find that the probability evolution exhibits
a similar behavior like the cycle if the exciton starts far away
from the two ends of the added link. The distribution of the
long-time limiting probabilities display symmetric structure,
we prove this symmetry using the exact determinant equation
for the eigenvalues expressed by Chebyshev polynomials. In
addition, the quantum dynamics exhibit significant localization
when the walk starts at the two ends of the extra link;
we show that the localized probability is determined by the
largest Laplacian eigenvalue and there is a significant lower
bound for it even in the limit of infinite system. Finally,
we study the problem of trapping and show the survival
probability also displays significant localization for some

special values of network parameters; we succeed in explaining
this phenomenon and determining the conditions for the
emergence of such localization using the perturbation theory.

In our work, we find that the extra link of the cycle
indeed causes a different dynamical behavior compared to the
dynamics on the cycle. The impact of the extra link is mainly
determined by the largest eigenvalue and its corresponding
eigenstate. This is similar to the other dynamic processes on
networks where the largest eigenvalue plays an important role
in relevant dynamics. The additional link causes a significant
localization at the two end nodes of the link. We show
such localization is related to the eigenstate of the largest
eigenvalue, which differs from the 1D regular cycles where
the localization is only induced by the size of the system.
This characteristic is reminiscent of the Anderson localization
in condensed matter physics [34]. Anderson has shown that
there is no quantum diffusion on disordered medium, an effect
nowadays called (strong) localization, where the quantum
mechanical transport through the lattice is prohibited by
disordered structures [34,35]. In our case, the additional link
breaks the perfect order nature of the cycle and induces some
structural disorder; this also leads to a strong localization re-
sembling the Anderson localization. For Anderson localization
all the eigenstates become localized, whereas here it is only
the one corresponding to the largest eigenvalue. We hope our
findings provide a deeper understanding for the dynamics
of quantum walks on networks and possible insights into
the experimental implementation of continuous-time quantum
walks on irregular networks [36].
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APPENDIX A: DEFINITION OF CHEBYSHEV
POLYNOMIALS

The Chebyshev polynomials of the first kind are defined by
the recurrence relation [37,38],

T0(x) = 1, T1(x) = x, 2xTn(x) = Tn−1(x) + Tn+1(x).

(A1)

The Chebyshev polynomials of the second kind are defined by
the recurrence relation [37,38],

U0(x) = 1, U1(x) = 2x, 2xUn(x) = Un−1(x) + Un+1(x).

(A2)

The closed-form solutions of Eqs. (A1) and (A2) are given by

Tn(x) = zn + z−n

2
, (A3)
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Un(x) = z−(n+1) − zn+1

|z−1 − z| , (A4)

where z = x − √
x2 − 1. For the case of large-order n and

z < −1 (|z| > 1), the above solutions can be approximated by

Tn(x) ≈ zn

2
, Un(x) ≈ − zn+1

|z−1 − z| = − zn+1

z−1 − z
. (A5)

Using the closed-form solutions for the Chebyshev polyno-
mials [see Eqs. (A3) and (A4)], we can prove the following
identities,

Un−1(x) + U−n−1(x) = 0, (A6)

2xUn(x) = Un−1(x) + Un+1(x), (A7)

Tn(x) = Un(x) − xUn−1(x) = xUn−1(x) − Un−2(x), (A8)

Un(x)Um(x) − Un−1(x)Um−1(x) = Un+m(x), (A9)

Un(x)Um(x) − Un+1(x)Um−1(x) = Un−m(x), (A10)

Un(x)Tm(x) + Um−1(x)Tn+1(x) = Un+m(x), (A11)

Un(x)Tm(x) − Um−1(x)Tn+1(x) = Un−m(x), (A12)

T 2
n (x) − (x2 − 1)U 2

n−1(x) = 1, (A13)

Tm(x)Un(x) = 1
2 [Um+n(x) + Un−m(x)],

(A14)

Tm(x)Tn(x) = 1
2 [Tm+n(x) + T|m−n|(x)].

APPENDIX B: CALCULATION FOR
THE DETERMINANT EQUATION

For the sake of simplicity, we first simplify the four
coefficients c1, c2, c3, and c4 using the Chebyshev polynomial
identities. The first coefficient c1 can be simplified as

c1 = UN−m(x)[(2x + 1)Um−2(x) − Um−3(x)] − UN−m−1(x)Um−2(x)

= {UN−m(x)Um−1(x) − UN−m−1(x)Um−2(x)} + UN−m(x)Um−2(x) [(A7) used]

= UN−1(x) + UN−m(x)Um−2(x). [(A9) used] (B1)

The second coefficient can be simplified as

c2 = UN−m(x)[Um−4(x) − (2x + 1)Um−3(x) − 1] + UN−m−1(x)Um−3(x) − 1

= [−UN−m(x)Um−2(x) + UN−m−1(x)Um−3(x)] − UN−m(x)Um−3(x) − UN−m(x) − 1 [(A7) used]

= −UN−2(x) − UN−m(x)Um−3(x) − UN−m(x) − 1. [(A9) used] (B2)

Analogously, c3 and c4 can be simplified as

c3 = UN−m−1(x)[(2x + 1)Um−2(x) − Um−3(x)] − UN−m−2(x)Um−2(x) + Um−2(x) + 1

= {UN−m−1(x)Um−1(x) − UN−m−2(x)Um−2(x)} + UN−m−1(x)Um−2(x) + Um−2(x) + 1

= UN−2(x) + UN−m−1(x)Um−2(x) + Um−2(x) + 1, (B3)

c4 = UN−m−1(x)[Um−4(x) − (2x + 1)Um−3(x) − 1] + UN−m−2(x)Um−3(x) − Um−3(x) − (2x + 1)

= {−UN−m−1(x)Um−2(x) + UN−m−2(x)Um−3(x)} − UN−m−1(x)Um−3(x) − UN−m−1(x) − Um−3(x) − (2x + 1)

= −UN−3(x) − UN−m−1(x)Um−3(x) − UN−m−1(x) − Um−3(x) − (2x + 1). (B4)

Substituting the simplified c1, c2, c3, and c4 into c1c4 − c2c3 and expand the two products, we obtain

c1c4 − c2c3 = 1 + UN−m(x) + Um−2(x) − UN−1(x) + {U 2
N−2(x) − UN−1(x)UN−3(x)}

+ {UN−2(x)UN−m(x) − UN−1(x)UN−m−1(x)} + {UN−2(x)Um−2(x) − UN−1(x)Um−3(x)}
+ {UN−2(x)Um−3(x) − UN−3(x)Um−2(x)}UN−m(x) + {UN−2(x)Um−2(x) − UN−1(x)Um−3(x)}UN−m−1(x)

+ [UN−m(x)Um−3(x) + UN−m−1(x)Um−2(x) − 2xUN−m(x)Um−2(x)] + 2[UN−2(x) − xUN−1(x)]. (B5)

In the above equation, the terms in the curly brackets can be simplified using (A10), and the terms in square brackets can be
simplified using (A7) and (A8). Thus,

c1c4 − c2c3 = 2 + UN−m(x) + 2Um−2(x) − UN−1(x) + UN−m(x) − UN−m−1(x)UN−m(x) + UN−m(x)UN−m−1(x)

+ [UN−m(x)Um−3(x) + UN−m−1(x)Um−2(x) − [UN−m−1(x) + UN−m+1(x)]Um−2(x)] − 2TN (x). (B6)

Applying identity (A9) to the term in square brackets leads to

c1c4 − c2c3 = 2{1 + UN−m(x) + Um−2(x) − UN−1(x) − TN(x)}. (B7)

Using the Chebyshev polynomial identity (A7) in Appendix A, Eq. (16) can be written as xN = [Um−1(x) + Um−2(x)]xm−1 −
[Um−2(x) + Um−3(x) + 1]xm. According to Eq. (18), xm−1 = −c2xm/c1 and noting the simplified c1, c2 in Eqs. (B1) and (B2),
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thus we can write xN as

xN = −[Um−1(x) + Um−2(x)]
c2

c1
xm − [Um−2(x) + Um−3(x) + 1]xm

=
{

UN−2(x) + UN−m(x)Um−3(x) + UN−m(x) + 1

UN−1(x) + UN−m(x)Um−2(x)
[Um−1(x) + Um−2(x)] − [Um−2(x) + Um−3(x) + 1]

}
xm

=
{

UN−m(x)
[
Um−1(x)Um−3(x) − U 2

m−2(x)
] + [UN−2(x)Um−1(x) − UN−1(x)Um−2(x)]

UN−1(x) + UN−m(x)Um−2(x)

+ [UN−2(x)Um−2(x) − UN−1(x)Um−3(x)] + UN−m(x)Um−1(x) + Um−1(x) + Um−2(x) − UN−1(x)

UN−1(x) + UN−m(x)Um−2(x)

}
xm

= −UN−m(x) + UN−m−1(x) + UN−m(x) + UN−m(x)Um−1(x) + Um−1(x) + Um−2(x) − UN−1(x)

UN−1(x) + UN−m(x)Um−2(x)
xm

= UN−m−1(x) + UN−m(x)Um−1(x) + Um−1(x) + Um−2(x) − UN−1(x)

UN−1(x) + UN−m(x)Um−2(x)
xm ≡ c′

2

c1
xm, (B8)

where the terms in square brackets are simplified using (A10).

APPENDIX C: PROOF FOR THE SYMMETRY OF
THE EIGENSTATES

In this section, we prove the symmetry of the components
of the eigenstates, that is,

|xj | =
{|xm+1−j | if j ∈ [1,m]
|xm+N+1−j | if j ∈ [m + 1,N ]. (C1)

To prove the symmetric behavior of the eigenstates, we have
the following theorem: If x1 = ±xm is true, then all the other
symmetric relations are true, that is,

If x1 = ±xm is true, then

x2 = ±xm−1, xN = ±xm+1, . . . are also true. (C2)

In the above theorem, the signs ± are uniformed. This theorem
can be proved using Eq. (12) and the Chebyshev identity.
Setting j = 2 and j = 3 in Eq. (12), we obtain

x1 = Um−2(x)xm−1 − Um−3(x)xm, (C3)

x2 = Um−3(x)xm−1 − Um−4(x)xm. (C4)

If x1 = ±xm, then xm = Um−2(x)xm−1/[Um−3(x) ± 1]
[Eq. (C3)]. Substituting xm into Eq. (C4), we get the
relationship between x2 and xm−1,

x2

xm−1
= Um−3(x) − Um−2(x)Um−4(x)

Um−3(x) ± 1

=
[
U 2

m−3(x) − Um−2(x)Um−4(x)
] ± Um−3(x)

Um−3(x) ± 1

= 1 ± Um−3(x)

Um−3(x) ± 1
= ±1, (C5)

where the term in the square brackets is simplified using (A10).
Thus we have proved x2 = ±xm−1. The remaining symmetric
relations can also be proved in the same way [just use Eqs. (12)
and (13)]. The theorem suggests that to prove the symmetry
of the eigenstates in Eq. (C1), we only need to prove that one
symmetric component of the eigenstates (x1 and xm) satisfies
Eq. (C1). In the following, we will try to prove x1 = ±xm

using the determinant equation (22).

Now, we show that the determinant equation (22) can
be written as a product of two factors using the Chebyshev
polynomial technique. According to Eq. (A12), the term
UN−m(x) can be written as UN−m(x) = UN−1(x)Tm−1(x) −
Um−2(x)TN(x). Substituting UN−m(x) into the determinant
equation (22), we get

UN−1(x)Tm−1(x) = Um−2(x)[TN(x) − 1]

+ TN (x) + UN−1(x) − 1. (C6)

Square both sides of the above equation and note that
T 2

m−1(x) = (x2 − 1)U 2
m−2(x) + 1 [Pell equation in Eq. (A13)],

we obtain[
(x2 − 1)U 2

N−1(x) − [TN(x) − 1]2
]
U 2

m−2(x)

= 2[TN(x) − 1][TN(x) + UN−1(x) − 1]Um−2(x)

+ [TN (x) − 1][TN(x) + 2UN−1(x) − 1]. (C7)

The factor in the square bracket in the left-hand side can be
further simplified as[

(x2 − 1)U 2
N−1(x) − [TN(x) − 1]2

]
= T 2

N
(x) − 1 − [TN(x) − 1]2

= 2[TN(x) − 1]. [(A13) used] (C8)

Therefore, Eq. (C7) becomes

[TN(x) − 1]
{
2U 2

m−2(x) − 2[TN(x) + UN−1(x) − 1]Um−2(x)

− [TN (x) + 2UN−1(x) − 1]
}

≡ [TN(x) − 1](N,m,x) = 0. (C9)

In the above equation, [TN(x) − 1] = 0 corresponds to the
determinant equation for the cycles. Solving [TN(x) − 1] = 0
gives the eigenvalues for the regular cycle of N nodes; this
suggests that some eigenvalues of the cycle are exactly the
same as the eigenvalues in our model. Because we have squared
Eq. (C6), this doubles the number of solutions of the original
determinant equation (22). [TN(x) − 1] = 0 only gives about
one-half (�N/2�) of the total solutions for Eq. (22); such
eigenvalues belong to the original cycle and correspond to the
eigenvalues whose first-order corrections are 0 [see Eq. (29)]
in the perturbation theory. In view of Fig. 1, such eigenvalues
are equivalent to the eigenvalues of a 1D chain of size �N/2�.
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The other eigenvalues are determined by (N,m,x) = 0 (the
second factor in the curly bracket) in Eq. (C9).

Next, we prove x1 = ±xm using Eq. (C9). We use Eq. (18)
to write xm−1 = −c2xm/c1, and substitute xm−1 into Eq. (C3),

x1

xm

=
{
Um−2(x)

UN−m(x)Um−3(x) + UN−m(x) + UN−2(x) + 1

UN−1(x) + UN−m(x)Um−2(x)
− Um−3(x)

}

= [UN−2(x)Um−2(x) − UN−1(x)Um−3(x)] + UN−m(x)Um−2(x) + Um−2(x)

UN−1(x) + UN−m(x)Um−2(x)

= UN−m(x) + UN−m(x)Um−2(x) + Um−2(x)

UN−1(x) + UN−m(x)Um−2(x)
. UN−1(x) + UN−m(x)Um−2(x) �= 0. [(A10) used] (C10)

If TN(x) − 1 = 0, according to Eq. (21), UN−1(x) = UN−m(x) + Um−2(x). Substituting it into Eq. (C10), we get x1/xm = 1 [the
denominator in Eq. (C10) not equal to 0]. If (N,m,x) = 0 [the second factor in the curly bracket in Eq. (C9)], according to
Eq. (22), UN−m(x) = UN−1(x) + TN(x) − Um−2(x) − 1, thus UN−m(x)Um−2(x) can be simplified as

UN−m(x)Um−2(x) = [UN−1(x) + TN(x) − Um−2(x) − 1]Um−2(x) = − 1
2 [TN(x) + 2UN−1(x) − 1], (C11)

where (N,m,x) = 0 has been used in the above calculation. Substituting UN−m(x) + Um−2(x) = UN−1(x) + TN(x) − 1 [Eq. (22)]
and UN−m(x)Um−2(x) in Eq. (C11) into Eq. (C10) lead to

x1

xm

= UN−1(x) + TN(x) − 1 − 1
2 [TN(x) + 2UN−1(x) − 1]

UN−1(x) − 1
2 [TN(x) + 2UN−1(x) − 1]

=
1
2 [TN(x) − 1]
1
2 [1 − TN (x)]

= −1. TN(x) �= 1. (C12)

Thus we have proved x1 = ±xm, where the sign depends on the eigenvalues. For the largest eigenvalue, x1 = −xm holds because
the largest eigenvalue satisfies (N,m,x) = 0 in Eq. (C9) [TN(x) �= 1].
Now we prove that if m (or N + m) is odd, the components xj at the symmetry axis j = (m + 1)/2 of the eigenstates
corresponding to eigenvalues satisfying (N,m,x) = 0, that is, xj = 0 [j = (m + 1)/2] for the eigenstates whose eigenvalues
satisfy (N,m,x) = 0 [see the second factor in the curly bracket in Eq. (C9)]. According to Eq. (12), xj = Um−1−j (x)xm−1(x) −
Um−2−j (x)xm. Setting j = (m + 1)/2 leads to x(m+1)/2 = U(m−3)/2(x)xm−1(x) − U(m−5)/2(x)xm. Considering xm−1 = −c2xm/c1

[see c1 and c2 in Eqs. (B1) and (B2)], we obtain

xj=(m+1)/2 =
{
U(m−3)/2(x)

UN−m(x)Um−3(x) + UN−m(x) + UN−2(x) + 1

UN−1(x) + UN−m(x)Um−2(x)
− U(m−5)/2(x)

}
xm

=
{

UN−m(x)[Um−3(x)U(m−3)/2(x) − Um−2(x)U(m−5)/2(x)] + [UN−2(x)U(m−3)/2(x) − UN−1(x)U(m−5)/2(x)]

UN−1(x) + UN−m(x)Um−2(x)

+ UN−m(x)U(m−3)/2(x) + U(m−3)/2(x)

UN−1(x) + UN−m(x)Um−2(x)

}
xm [(A10) can be used in the square brackets]

= 2UN−m(x)U(m−3)/2(x) + UN−(m+1)/2(x) + U(m−3)/2(x)

UN−1(x) + UN−m(x)Um−2(x)
xm ≡ �xm

UN−1(x) + UN−m(x)Um−2(x)
. (C13)

The numerator � in Eq. (C13) multiplied by T(m−1)/2(x)
and applying the identity (A14), we obtain 2T(m−1)/2(x)
U(m−3)/2(x) = Um−2(x) and T(m−1)/2(x)UN−(m+1)/2(x) =
1
2 [UN−1(x) + UN−m(x)]. Replacing the term UN−m(x) =
UN−1(x) + TN(x) − Um−2(x) − 1 [see Eq. (22)] and after
some appropriate algebraical calculations, we get

�T(m−1)/2(x)

= −U 2
m−2(x) + [TN(x) + UN−1(x) − 1]Um−2(x)

+ 1
2 [TN(x) + 2UN−1(x) − 1] ≡ − 1

2(N,m,x).

(C14)

Comparing Eq. (C14) and the second factor (N,m,x) in
Eq. (C9), the above equation equals 0 if the eigenvalues
satisfying (N,m,x) = 0. Thus � = 0 and we have proved
xj = 0 [j = (m + 1)/2] for this case. Because the largest
eigenvalue satisfies (N,m,x) = 0, the component x ′

j at the
symmetry axis j = (m + 1)/2 equals 0 for the corresponding

eigenstate. The proof for j = (N + m + 1)/2 (N + m is odd)
is similar and we do not show here.

APPENDIX D: APPROXIMATING THE OTHER
EIGENVALUES USING THE DETERMINANT

EQUATION (22)

In this section, we approximate the other eigenvalues
(except the largest eigenvalue) based on the determinant
equation (22). Equation (C6) can be rewritten as

Um−2(x)[TN(x) − 1] = UN−1(x)Tm−1(x)

− TN (x) − UN−1(x) + 1. (D1)

Square both sides of the above equation and note
that U 2

m−2(x) = [T 2
m−1(x) − 1]/(x2 − 1) [Pell equation in
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Eq. (A13)], we obtain{
(x2 − 1)U 2

N−1(x) − [TN(x) − 1]2
}
T 2

m−1(x) + 2
{
(x2 − 1)U 2

N−1(x) + (x2 − 1)UN−1(x)[TN(x) − 1]
}
Tm−1(x)

+ {
(x2 − 1)U 2

N−1(x) + 2(x2 − 1)UN−1(x)[TN(x) − 1] + x2[TN(x) − 1]2} = 0. (D2)

Replacing the term U 2
N−1(x) by U 2

N−1(x) = [T 2
N−1(x) − 1]/(x2 − 1) (see Pell equation (A13)] leads to

[TN(x) − 1]
{
2T 2

m−1(x) − 2[TN(x) + 1 + (x2 − 1)UN−1(x)]Tm−1(x) + 2(x2 − 1)UN−1(x) + x2[TN(x) − 1] + TN(x) + 1
} = 0.

(D3)

The first factor in the square bracket in the left-hand side TN(x0) − 1 = 0 [UN−1(x0) = 0] corresponds to the eigenvalues for the
regular cycle of N nodes. Suppose the solutions of the second factor in the curly bracket being equal to 0 can be expanded as
x ≈ x0 − � [x0 is the solution of TN(x0) − 1 = 0; � is a small value compared to x0], the zero-order approximation of Tm−1(x),
TN(x) and first-order approximation of (x2 − 1)UN−1(x) are given by

Tm−1(x) ≈ Tm−1(x0), TN(x) ≈ TN(x0) = 1, (D4)

(x2 − 1)UN−1(x) ≈ (x0x0 − 1)UN−1(x0) + x0UN−1(x0)(x − x0) + NTN(x0)(x − x0) = −N�. (D5)

Thus the second factor in the curly bracket of Eq. (D3) can be approximated as

T 2
m−1(x0) − (2 − N�)Tm−1(x0) + (1 − N�) = 0, (D6)

which leads to solution Tm−1(x0) = 1 − N� and the small deviation � = 1
N

[1 − Tm−1(x0)]. Noting that Tm−1(x0) = cos(m −
1)θn (the trigonometric function definition of the Chebyshev polynomials) [37,38], our result obtained here accords with the
first-order correction in Eq. (29) by the perturbation theory.
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