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We propose and analyze a quantum repeater architecture in which Rydberg-blocked atomic ensembles inside
optical cavities are linked by optical fibers. Entanglement generation, swapping, and purification are achieved
through collective laser manipulations of the ensembles and photon transmission. Successful transmission and
storage of entanglement are heralded by ionization events rather than by photon detection signals used in previous
proposals. We demonstrate how the high charge detection efficiency allows for a shortened average entanglement
generation time, and we analyze an implementation of our scheme with ensembles of Cs atoms.
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I. INTRODUCTION

A possible route toward scalable quantum computers and
quantum communication networks combines small quantum
processor nodes which communicate via the exchange of
moving information carriers, the so-called flying qubits,
which will typically be photons. The direct exchange of
a photon, either through free space or a fiber, between a
pair of nodes does not have unit success probability, and to
safely communicate quantum states, one can instead apply
an entangled state in teleportation protocols [1,2], where the
entanglement of two remote nodes can be achieved, e.g., after
multiple attempts until a suitable heralding detection event
certifies the establishment of the state. For long distances,
photon loss makes the success probability small, and hence
the average time needed to establish a state for transmission
of a single bit of quantum information very long. This
problem, however, can be solved by the quantum repeater
setup [3], which divides the transmission path between the
nodes into smaller segments with auxiliary nodes over which
losses are strongly diminished. The auxiliary nodes are first
entangled with their nearest neighbors in a heralded way
followed by a succession of local measurements which cause
the graduate projection on quantum states with entanglement
distributed over longer and longer distances (entanglement
swapping). The implementation of this approach is compatible
with different physical setups involving atomic ensembles
and linear optical operations. The most influential proposal
is the so-called DLCZ protocol [4], whose feasibility was
experimentally considered in its two-node version in [5].

This manuscript presents a quantum repeater scenario,
based on the Rydberg blockade phenomenon. Rydberg block-
ade refers to the strong dipole-dipole interaction between pairs
of highly excited atoms, which after laser excitation of a
single atom shifts the resonance condition for all the other
atoms and hence blocks further excitation by the laser field.
Rydberg blockade forbids the resonant excitation of more
than one Rydberg atom in an atomic mesoscopic sample
[6], and has been experimentally observed, e.g., in [7,8].
In [9] it was proposed to take advantage of the Rydberg
blockade in quantum information processing, leading to an

intensive current field of research [10]. Different theoretical
proposals have been recently put forward which allow one to
take advantage of the full spectroscopic richness of Rydberg
interactions for quantum information purposes [11–13], and a
framework for quantum information encoding and computing
has been proposed [10,14–16] in which register qubit states
are physically implemented by the (symmetric) occupational
states |ni = 0,1〉 of internal atomic levels {|i〉, i = 1, . . . ,K}
in an ensemble of Na (> K) identical atoms.

The collective laser manipulation of the system combined
with the Rydberg blocking interaction allows one to store and
universally process information in the subspace of symmetric
ensemble states containing at most one atom in each internal
level. The primary advantage of ensembles over single atoms
consists in their enhanced coupling to external control fields,
which allows for efficient and rapid processing. A secondary
practical advantage is that even in a multiqubit register, one
merely needs to address the atoms collectively, contrary to
individual-atom encoding of qubits which requires precise
control of each and every single particle in the system.

In the quantum repeater we propose here, the nodes are
N identical atomic ensembles, placed in cavities which are
linked via optical fibers. The internal structure of the atoms
is such that each ensemble k = 1, . . . ,N accommodates three
logical subnodes, called the left (Lk), the right (Rk), and the
auxiliary subnode (Ak) in the following. In the first step of
our protocol, we entangle the logical state of the subnode (Rk)
in the cavity k with the polarization state of a single photon
released in the cavity. This photon is then transmitted to the
neighboring cavity where it is absorbed by the left subnode
(Lk+1) degree of freedom of the atomic ensemble in that
cavity, which thus becomes entangled with (Rk). A conditional
gate applied to subnodes (Lk+1) and (Ak+1), followed by
appropriate ionization detection, is used to ensure that no error
occurred during the entanglement generation, in particular,
that the photon was not lost during the transfer through the
fiber between the cavities. If needed, subnodes (Rk,Lk+1)
are reset so that the entanglement generation operation
can be repeated until successful. Once all pairs (Rk,Lk+1)
have been correctly entangled, entanglement is swapped by
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TABLE I. The transitions required by our protocol.

|0,1A〉 ↔ |ϕA〉
|0L,R〉 ↔ |ϕ−〉
|1L,R〉 ↔ |ϕ+〉
|s〉 σ±←→ |ϕ±〉
|ϕA〉 ↔ |rA〉
|ϕ±〉 ↔ |r±〉

|0L,R,A〉 ↔ |1L,R,A〉

ensemble operations on every pair (Lk,Rk). Measurements us-
ing Rydberg blockade and ionization detection on all subnodes
{Lk,Rk,k = 2, . . . ,(N − 1)} finally heralds the entangled state
of the remote pair (R1,LN ) which can be transformed into any
required Bell state by application of a unitary operation on
(LN ) prescribed by the results of the measurements. If one of
the measurements fails, the procedure must be repeated.

We note that the use of Rydberg-blocked ensembles as
quantum repeaters has been proposed in [17,18]. Though
related, our proposal, however, never makes use of photon de-
tection to generate entanglement between neighboring nodes.
We solely rely on ensemble laser manipulations (including ion-
izing pulses), ion detection whose efficiency can be made very
close to one ηd ∼ 1, and photon transmissions through optical
fibers. This allows for a shortened entanglement generation
average time whose expression is derived in the Appendix.

The paper is structured as follows. In Sec. II, we present our
quantum repeater scheme using Rydberg-blocked ensembles
in optical cavities coupled by optical fibers. In Sec. III, we
analyze the different steps of our protocol with emphasis on
their robustness against errors, and we compute the average
duration of our scheme. In Sec. IV, we suggest a physical
implementation. In Sec. V, we compare our scheme with other
schemes for quantum repeaters, and we conclude in Sec. VI.

II. THE MODEL

Our quantum repeater setup consists of N atomic ensembles
placed in cavities which are linked by optical fibers [see
Fig. 1(a)]. Neighboring cavities are separated by the distance
L0.

The atomic level structure is represented in Fig. 1(b).
All the atoms are initially prepared in the “reservoir”
state |s〉, and the atoms have, in addition, six metastable
states denoted by |0L〉,|1L〉,|0R〉,|1R〉,|0A〉,|1A〉, three ex-
cited states |ϕ+〉,|ϕ−〉,|ϕA〉, and three high-lying Rydberg
states |r+〉,|r−〉,|rA〉. We assume that the transitions given in
Table I can be independently and selectively addressed by
appropriately tuned laser beams. In particular, it implies that
we can couple pairs of states, |s〉 ↔ |r±,A〉, |0L,R〉 ↔ |r−〉,
|1L,R〉 ↔ |r+〉 and |0A〉,|1A〉 ↔ |rA〉, via the intermediate
states, |ϕ+〉, |ϕ−〉 or |ϕA〉.

We further suppose that the atomic samples are small
enough to operate in the full Rydberg blockade regime,
i.e., their size should not exceed a few micrometers. As a
consequence, when driving the transition |s〉 ↔ |r±,A〉 on a
sample with Na atoms initially in the state |s . . . s〉, multiply
excited states are out of resonance due to the strong dipole-
dipole interaction among Rydberg excited atoms, and the

(a)

(b)

(c)

FIG. 1. (Color online) (a) The physical setup for our quantum
repeater: N atomic ensembles are placed in two-mode cavities linked
by optical fibers. (b) Atomic level structure: The figure shows the
“quantum-classical” two-photon transitions, |s〉 ←→ |r±〉, driven via
the intermediate states |ϕ±〉 with coupling strength g± to the quantized
cavity field modes ± and with Rabi frequencies �± detunings �± to
the classical laser control fields. (c) The three steps of our scheme:
(1) entanglement of pairs of neighboring subnodes (Rk,Lk+1), (2)
entanglement swapping through two-bit gates on each pair (Lk,Rk),
and (3) measurement of all subnodes but (R1,LN ).

transfer of more than a single atom to the Rydberg state
|r±,A〉 is blocked. The fields are applied symmetrically to all
atoms in each sample, and they hence excite the symmetric
collective state with a single Rydberg excitation, (|rks . . . s〉 +
|srks . . . s〉 + · · · + |s . . . srk〉)/

√
Na . The associated coupling

strength is easily seen to be magnified by the factor
√

Na with
respect to the coupling strength of the single-atom transition
|s〉 ↔ |rk〉. Applying a π pulse on the collective ensemble
transition, followed by the single-particle transition |rk〉 →
|j 〉(j = 0L,1L,0R,1R,0A,1A), prepares the sample in a sta-
ble symmetric collective state |N0L

,N1L
,N0R

,N1R
,N0A

,N1A
〉,

where the Nj ’s denote the populations of the different internal
levels, restricted to values 0 and 1. Unitary operations can be
applied in the eight-dimensional subspace of collective states,
{|N0L

,(1 − N0L
),N0R

,(1 − N0R
),N0A

,(1 − N0A
)〉}, by simply

driving the corresponding single-atom transitions |0L,A,R〉 ↔
|1L,A,R〉 and/or |0L,A,R〉,|1L,A,R〉 ↔ |r+,−,R〉, as described in
[13,15]. The collective state pairs (|0L〉,|1L〉), (|0R〉,|1R〉) and
(|0A〉,|1A〉) at each repeater node can thus be associated with
three qubits, referred to as the left (L), right (R), and auxiliary
(A) subnodes in the following.
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We shall use a simplified notation for ensemble states,
denoting the collective internal state population as 0̄ and 1̄,
such that, e.g., |0̄L; 1̄R; 1̄A〉 denotes the state |N0L

= N1R
=

N1A
= 1; N1L

= N0R
= N0A

= 0〉, where both the right and
the auxiliary subnodes occupy the logic state 1, while the left
subnode is in state 0.

It is a further requirement of our protocol that the transitions
|s〉 ←→ |ϕ±〉 couple nonresonantly to two different modes, ±,
with equal frequency and with detunings �± with respect to
the atomic transitions but different polarizations in the cavity
(this will legitimate the assumptions we make below on the
fiber transmission and losses). Driving the upper transition
|r±〉 ←→ |ϕ±〉 with a laser field with detuning �± and
Rabi frequency �± induces a second-order quantum-classical
process described by the single-atom effective Hamiltonian
h̄g±�±

�±
a
†
±|s〉〈r±| + H.c., where a± denotes the annihilation

operator of the cavity mode ± and g± its coupling strength.
This Hamiltonian derives from the adiabatic elimination of the
intermediate state |ϕ±〉 [19] and is valid for |�±| 	 |�±|,|g±|.
Performing an ensemble π pulse on the quantum-classical
two-photon transition |s〉 ↔ |ϕ±〉 ↔ |r±〉 hence converts a
collective Rydberg excitation |r±〉 into a cavity photon
± and the other way around, with the coupling strength
h̄
√

Nag±�±/�±. We emphasize that although only a single
cavity photon is emitted or absorbed during the process, the
coupling can be made strong, thanks to the atomic ensemble
magnification factor

√
Na [20]. To avoid spurious interfer-

ence effects, we suggest application of different detuning
parameters for the two transitions proceeding via the same
intermediate state |ϕ±〉.

Optical fibers [21] couple the cavities to each other, and we
simply assume that the fiber between two neighboring cavities
(k,k + 1) achieves the coupling

Vk,k+1 =
∑
j=0,1

h̄αk,j [ak,j a
†
k+1,j + a

†
k,j ak+1,j ] (1)

with a coupling strength αk,j between the modes j = +,−
in the kth cavity with annihilation operator ak,j , and the same
modes in the (k + 1)-th cavity. Since the modes (+,−) differ by
their polarizations but have the same frequency, we make the
reasonable assumption that the αk,j ’s have the same value α for
all (k,j ). We moreover suppose that the coupling between two
neighboring cavities can be switched on and off, for instance,
by a controlled Pockels cell. This will allow us to isolate and
separately deal with pairs of coupled nodes.

Due to fiber loss, the transmission of a photon from one
cavity to its neighbor is not perfect. We shall assume that the
transmission efficiency is the same for all fiber connections
and can be written under the form ηt = exp(−L0/Latt), where
Latt is the attenuation length, typically of the order of 22 km
(corresponding to losses of 0.2 dB/km). The probability for
loosing one photon (+,−) during the transmission along a
fiber mode of length L0 is thus given by (1 − ηt ).

III. THE SCHEME

In this section, we describe how to entangle two remote
nodes using the model we presented in the previous section.
First, we briefly sketch the different steps of our scheme in
the ideal case without losses. Then, we show how to make

our method immune to photon loss and spontaneous emission
from the Rydberg level. Finally, we analyze the effects of other
possible errors on the performance of our protocol.

A. The different steps of the scheme

Initially, all the cavities are empty and all ensemble atoms
are in the reservoir state |s . . . s〉. The first step consists
of entangling pairs of neighboring subnodes (Rk,Lk+1) [see
Fig. 1(c)]. To this end, one applies the sequence of operations
given in Table II. In this table, dashed-line arrows are used for
nonresonant couplings to the intermediate states. Moreover,
the “ensemble” nature of pulses is emphasized by a

√
Na

factor above the concerned arrows. Finally, we indicate when
a cavity mode is involved in a transition |s〉 ↔ |ϕ±〉 by writing
“single photon ±” above the corresponding arrow.

The first seven pulses (i–vii) in Table II prepare the
subnode (Rk) and the cavity (k) in the entangled state
(|0̄R〉 ⊗ |−〉 + |1̄R〉 ⊗ |+〉)/√2, where |±〉 denotes the
number state |n± = 1〉 of the cavity mode ±. The photon
thus released is then transferred to the cavity (k + 1) through
the fiber [step (viii)]. The last four pulses (ix–xii) of the
sequence translate the photonic excitation into an atomic
excitation of the ensemble (k + 1): a “−” photon is translated
into a |0L〉 excitation, a “+” photon into a |1L〉 excitation.
Finally, the two subnodes (Rk,Lk+1) are left in the state
(|0̄R〉k ⊗ |0̄L〉k+1 + |1̄R〉k ⊗ |1̄L〉k+1)/

√
2. The sequence of

states along which the system evolves during the series of
operations described in Table II can be found in Table III.

The entanglement generation procedure described above
cannot be applied simultaneously on all pairs (Rk,Lk+1):
indeed, the pair of nodes to be entangled must be isolated
from the others for the photon exchange. One can, however,
deal with all the pairs (R2k−1,L2k)1�k�N/2 in parallel. Once
entanglement has been successfully established among
these pairs, one can then treat the remaining pairs

TABLE II. The different steps of the entanglement generation
procedure.

(i) Simultaneous π pulses (same Rabi frequency) on ensemble (k)⎧⎨
⎩ |s〉

√
Na��� |ϕ−〉 ��� |r−〉

|s〉
√

Na��� |ϕ+〉 ��� |r+〉
(ii) π pulse on ensemble (k) |r−〉 ��� |ϕ−〉 single photon−,

√
Na��� |s〉

(iii) π pulse on ensemble (k) |s〉
√

Na��� |ϕ−〉 ��� |r−〉
(iv) π pulse on ensemble (k) |r+〉 ��� |ϕ+〉 single photon+,

√
Na��� |s〉

(v) π pulse on ensemble (k) |s〉
√

Na��� |ϕ+〉 ��� |r+〉
(vi) π pulse on ensemble (k) |r−〉 ��� |ϕ−〉 ��� |0R〉
(vii) π pulse on ensemble (k) |r+〉 ��� |ϕ+〉 ��� |1R〉
(viii) Transfer of the photon through the fiber
from cavity (k) to cavity (k + 1)

(ix) π pulse on ensemble (k + 1) |s〉 single photon−,
√

Na��� |ϕ−〉 ���
|r−〉
(x) π pulse on ensemble (k + 1) |r−〉 ��� |ϕ−〉 ��� |0L〉
(xi) π pulse on ensemble (k + 1) |s〉 single photon+,

√
Na��� |ϕ+〉 ���

|r+〉
(xii) π pulse on ensemble (k + 1) |r+〉 ��� |ϕ+〉 ��� |1L〉
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TABLE III. Evolution of the state vector during the entanglement
generation procedure.

|s . . . s〉k ⊗ |vac〉k ⊗ |s . . . s〉k+1 ⊗ |vac〉k+1

(i)→ (|Nr− = 1〉k + |Nr+ = 1〉k)/
√

2 ⊗ |vac〉k+1 ⊗ |s . . . s〉k+1

⊗|vac〉k+1
(ii)→ (|s . . . s〉k ⊗ |−〉k + |Nr+ = 1〉k ⊗ |vac〉k)/

√
2 ⊗ |s . . . s〉k+1

⊗|vac〉k+1
(iii)→ (|Nr− = 1〉k ⊗ |−〉k + |Nr+ = 1〉k ⊗ |vac〉k)/

√
2 ⊗ |s . . . s〉k+1

⊗|vac〉k+1
(iv)→ (|Nr− = 1〉k ⊗ |−〉k + |s . . . s〉k ⊗ |+〉k)/

√
2 ⊗ |s . . . s〉k+1

⊗|vac〉k+1
(v)→ (|Nr− = 1〉k ⊗ |−〉k + |Nr+ = 1〉k ⊗ |+〉k)/

√
2 ⊗ |s . . . s〉k+1

⊗|vac〉k+1
(vi)→ (|0̄R〉k ⊗ |−〉k + |Nr+ = 1〉k ⊗ |+〉k)/

√
2 ⊗ |s . . . s〉k+1

⊗|vac〉k+1
(vii)→ (|0̄R〉k ⊗ |−〉k + |1̄R〉k ⊗ |+〉k)/

√
2 ⊗ |s . . . s〉k+1 ⊗ |vac〉k+1

(viii)→
[

|0̄R〉k ⊗ |vac〉k ⊗ |s . . . s〉k+1 ⊗ |−〉k+1

+|1̄R〉k ⊗ |vac〉k ⊗ |s . . . s〉k+1 ⊗ |+〉k+1

]
/
√

2

(ix)→
[

|0̄R〉k ⊗ |vac〉k ⊗ |Nr− = 1〉k+1 ⊗ |vac〉k+1

+|1̄R〉k ⊗ |vac〉k ⊗ |s . . . s〉k+1 ⊗ |+〉k+1

]
/
√

2

(x)→
[

|0̄R〉k ⊗ |vac〉k ⊗ |0̄L〉k+1 ⊗ |vac〉k+1

+|1̄R〉k ⊗ |vac〉k ⊗ |s . . . s〉k+1 ⊗ |+〉k+1

]
/
√

2

(xi)→
[

|0̄R〉k ⊗ |vac〉k ⊗ |0̄L〉k+1 ⊗ |vac〉k+1

+|1̄R〉k ⊗ |vac〉k ⊗ |Nr+ = 1〉k+1 ⊗ |vac〉k+1

]
/
√

2

(xii)→
[

|0̄R〉k ⊗ |vac〉k ⊗ |0̄L〉k+1 ⊗ |vac〉k+1

+|1̄R〉k ⊗ |vac〉k ⊗ |1̄L〉k+1 ⊗ |vac〉k+1

]
/
√

2

(R2k,L2k+1)1�k�N/2−1. Omitting the auxiliary subnodes and
the cavity modes which are all empty, one can write the final
state of the system under the form

∏N−1
k=1 (|0̄R〉k ⊗ |0̄L〉k+1 +

|1̄R〉k ⊗ |1̄L〉k+1)/
√

2.
To complete the scheme, we now need to swap

entanglement, i.e., to entangle the left and right subnodes (Rk)
and (Lk) in every ensemble and decouple the first and last
nodes from all the others. This constitutes the second step of
the method [see Fig. 1(c)]. To this end, one first simultaneously
applies to each pair of subnodes (Rk,Lk)k=2,...,N−1 the unitary
transformation (UL ⊗ UR) × PLR × (IL ⊗ VR), where
U = exp(−i π

2 σz) exp(−i π
4 σy) and V = exp(−i π

2 σx) ×
exp(−i π

2 σz) exp(−i π
4 σy) are simply achieved through apply-

ing the appropriate laser-induced pulses |0L,R〉 ↔ |1L,R〉 and

PLR =

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠

is implemented through the following sequence of pulses:

π pulse :|0L〉 → |r−〉,
2π pulse :|1R〉 ←→ |r+〉,
π pulse :|r−〉 → |0L〉.

(Note that all these processes are driven by classical laser
beams via the intermediate states |ϕ±〉.) Finally, one measures

TABLE IV. Pulse sequence for diagnosing errors occurring during
entanglement generation procedure.

(i) π pulse: |1L,R〉 ↔ |r+〉
(ii) π pulse: |0A〉 ↔ |rA〉
(iii) π pulse: |rA〉 ↔ |1A〉
(iv) π pulse: |r+〉 ↔ |1L,R〉
(v) π pulse: |0L,R〉 ↔ |r−〉
(vi) π pulse: |0A〉 ↔ |rA〉
(vii) π pulse: |rA〉 ↔ |1A〉
(viii) π pulse: |r−〉 ↔ |0L,R〉

all subnodes (Rk,Lk)k=2,...,N−1 through state-selective ioniza-
tion. This step can be achieved in parallel on the different
subnodes. The average time needed for the entanglement
swapping operation is hence the time needed for performing
the gate and the measurement on a single ensemble.

At the end of the whole procedure, the subnodes (R1)
and (LN ) are decoupled from all the others and reduced in
one of the four entangled states {(|00〉 ± |11〉)/√2,(|01〉 ±
|10〉)/√2}. The unitary W one has to apply on the qubit stored
in (LN ), through driving the appropriate pulse |0L〉 ↔ |1L〉
to get the desired state (|00〉 + |11〉)/√2, is determined from
the outcomes of the measurements. It is indeed obtained as the
product of (N − 2) transformations W = ∏N−1

k=2 Wk , where Wk

depends on the values (iLk
,iRk

)k=2,...,(N−1) found for the qubits
stored in the left and right subnodes of the ensemble (k):

(iLk
,iRk

) = (0,0) → Wk = I,

(iLk
,iRk

) = (0,1) → Wk = σx,

(iLk
,iRk

) = (1,0) → Wk = σz,

(iLk
,iRk

) = (1,1) → Wk = σzσx,

where σx ≡ (0 1
1 0

)
and σz ≡ (1 0

0 −1

)
are the usual Pauli matrices.

B. Error detection and prevention

So far, we did not take into account errors and losses. Fiber
loss and spontaneous emission from the Rydberg level may
corrupt the state in quite the same way since they both represent
the loss of an excitation. We now investigate the influence of
such errors on the different steps of our scheme.

If a photon loss occurs during the transfer through the fiber
or if a Rydberg-excited atom spontaneously decays to the
reservoir state during one of the steps in Table II, an excitation
is missing either in (Rk) or (Lk+1) at the end of the entangle-
ment generation procedure. To diagnose whether this is the
case, we merely need to test the occupancy of both subspaces
{|0R〉k,|1R〉k} and {|0L〉k+1,|1L〉k+1} at the end of the entangle-
ment procedure in the same spirit as in [16]. To this end, one
first prepares auxiliary subnodes (Ak) and (Ak+1) in the state
|0̄A〉, before applying to each pair of subnodes (Ak,Rk) and
(Lk+1,Ak+1) the sequence of pulses given in Table IV. At the
end of this sequence, the states of the subnodes (Rk) and (Lk+1)
are unchanged, while the auxiliary subnode (Ak) [respectively
(Ak+1)] is either in state |1̄A〉 if the subnode (Rk) [respectively
(Lk+1)] is singly occupied, or in the state |NrA

= 1〉 if the
subnode (Rk) [or (Lk+1)] contains no excitation. One therefore
merely needs to selectively ionize |rA〉 in both ensembles (k)
and (k + 1). Case (A): If an ion is observed, subnodes (Rk)
and (Lk+1) were not correctly entangled. They must therefore
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be reset through state-selective ionization, and the whole
procedure in Table II must be repeated. Case (B): If no ion
is observed, then one selectively ionizes the state |1A〉 in both
ensembles (k) and (k + 1). Case (B1): If an ion is observed, as
expected, the entanglement generation procedure was indeed
correctly performed and the scheme can continue. Case (B2):
If no ion is observed, then most probably an ion detection failed
and, to be sure, the whole procedure for entangling subnodes
(Rk) and (Lk+1) must be repeated again, as in the case (A).

In quite the same way, if a Rydberg atom decays during
the entanglement swapping procedure, an atomic excitation
will miss in one of the subnodes (Rk,Lk)k=2,...,N−1 and the
subsequent series of measurements will therefore fail. In
that case, entanglement generation and swapping should be
repeated again after resetting the subnodes through state-
selective ionizations.

As seen above, errors can be detected and their effects
avoided through diagnosis and repetition of the erroneous
steps. The cost is, however, an increase of the average time re-
quired to run the whole protocol, which will now be estimated.

Let us first focus on the entanglement generation procedure.
As said in Sec. II, the success probability for a photon transfer
along a fiber of length L0 is ηt = exp(−L0/Latt), where Latt ∼
22 km. For L0 = 100 km, ηt � 1.1%. On the other hand, the
probability for one Rydberg-excited atom to spontaneously
decay during the entanglement generation procedure between
two neighboring subnodes (Rk,Lk+1) (including the error
diagnosis) is roughly given by nr

π
�
	, where nr = 23 is

the number of (second-order) π pulses involving Rydberg
states, and � is the typical value for their Rabi frequency.
Note that these pulses can be either “classical-classical,”
i.e., driven by two laser beams, or “quantum-classical,” i.e.,
they involve a cavity photon, in which case the expression
of the associated Rabi frequency comprises the coupling
strength g±, and 	 is the emission rate of the Rydberg level.
Taking for the parameters the typical values � = 2π × 1 MHz
and 	 = 1 kHz, one obtains 1 − nrπ	/� ≈ 99%. Moreover,
four ion detections must be successfully performed (giving
either a positive or negative result) during the diagnosis
on the two subnodes (Ak) and (Ak+1). The probability of
this event is given by η4

ion ≈ 96% for the ion detection
efficiency ηion ≈ 99%. Finally, the probability for successfully
entangling a pair of two neighboring subnodes (Rk,Lk+1)
is therefore given by P0 = ηt (1 − nrπ	/�)η4

ion ≈ 1%. Note
that the photon transfer is mainly responsible for this low
probability, i.e., P0 ≈ exp(−L0/Latt); it is also the longest
step of the entanglement generation procedure since it takes
L0/c = 0.5 ms for L0 = 100 km and c = 2 × 108 m s−1,
while each pulse takes no more than ∼1 μs, typically, and
the duration of an elementary entanglement generation step
is roughly given by L0/c. In average, a pair of neighboring
subnodes (Rk,Lk+1) will be correctly entangled after 1/P0

repetitions of the entanglement generation procedure. For the
N -node chain to be correctly entangled, the entanglement
generation procedure must be repeated on average a certain
number of times n̄(P0,N ), whose expression is calculated in
the Appendix. For P0 ∼ 1% and N = 10, i.e., for a total length
L � 1000 km, one obtains n̄(P0,N ) � 455.

The same analysis can be achieved for the entanglement
swapping step. The success probability of this step is readily

found to be P1(N ) = [(1 − 4π	/�)η4
ion]N−2. In average, to

correctly entangle two remote nodes, 1/P1(N ) repetitions of
the whole protocol will therefore be necessary. For N = 10,
ηion � 99%, � = 2π × 1 MHz, and 	 = 1 kHz, one gets
P1(N ) � 71.3%.

Finally, since the time necessary for photon transfer, L0/c,
dominates by several orders of magnitude all the other steps,
the average time taken by our protocol can be estimated
by T ∼ L0

c

n̄(P0,N)
P1(N) , that is, T ∼ 0.32 s for the previous

set of parameters, compared to the average time it would
take via direct transmission through the lossy optical fiber,
(1/χr )(1/ exp−L/Latt ) ∼ 5.5 × 109 s, where χr is the repetition
rate of the source of photons which we took equal to 10 GHz
for our estimation.

To conclude this section, let us point out that other errors
can affect our protocol. First, Rydberg levels can be multiply
excited due to the finite value of �dd . They constitute losses for
our protocol, just as spontaneous emission, and are therefore
already dealt with by the scheme. Their probability is ( �

�dd
)2 �

1% and only very weakly modifies P0 and P1.
Secondly, uncertainty in the number of atoms in the sample

may lead to inaccuracies in the Rabi frequencies. However, it
was noted in [17] that such errors can be made as low as 1%;
moreover, as suggested in [16], they can also be dealt with by
composite pulse techniques. We shall not consider them here.

IV. A PHYSICAL IMPLEMENTATION

In this section, we suggest a physical implementation of
our scheme with ensembles of Cs atoms placed in linear
cavities. Figure 2 presents a possible choice for the internal
states used in our protocol. The reservoir state |s〉 and
the subnode states |0L,A,R〉,|1L,A,R〉 correspond to different
hyperfine components of the ground level 6s1/2, I = 7/2:

|s〉 ≡ |F = 3; mF = 0〉,
|0R〉 ≡ |F = 3; mF = 1〉,
|0L〉 ≡ |F = 4; mF = −1〉,
|1R〉 ≡ |F = 3; mF = −1〉,
|1L〉 ≡ |F = 4; mF = 1〉,
|0A〉 ≡ |F = 3; mF = 3〉,
|1A〉 ≡ |F = 4; mF = −3〉.

They are coupled to the Rydberg states |r±〉 =
|ns1/2,mj = ±1/2,mI = ±1/2〉, |rA〉 = |ns1/2,mj = −1/2,

mI = −7/2〉, with n ∼ 70, via the intermediate states |ϕ±〉 =
|12p1/2,mj = ±1/2,mI = ±1/2〉 and |ϕA〉 = |12p1/2,

mj = −1/2,mI = −7/2〉. Note that for the intermediate and
Rydberg levels, the hyperfine structure may be neglected,
which legitimates the use of the decoupled basis. We assume
the availability of light sources and cavities at the wavelengths
of the required transitions, i.e., 335 nm and 6.5 μm for
the 6s ↔ 12p and 12p ↔ 75s transitions, respectively.1

1If the |6s1/2〉 ↔ |12p1/2〉 transition is driven via the |7p1/2〉 state
with a classical field at 460 nm, the quantum field at the upper tran-
sition is at 1.24 μm which conveniently matches telecommunication
fibers.
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Selection rules show that almost all the transitions necessary to
our scheme are allowed and that, in particular, the transitions
|ϕ±〉 → |s〉 have different polarizations, that is σ+ and σ−,
as required. (Note that by setting the quantization axis, i.e.,
the direction of the applied magnetic field, along the axis
of the linear cavity, one highly suppresses modes with π

polarization.) Only the direct coupling |0L,R,A〉 ↔ |1L,R,A〉
is not permitted. To overcome this difficulty, we suggest to
resort to intermediate states. To be more explicit, to apply
a unitary transformation in the subspace {|0A〉,|1A〉} we
propose to first transfer the population from |0A〉 to |ϕA〉,
then to run the desired transformation between |ϕA〉 and
|1A〉, which are indeed coupled, and finally transfer the
population back from |ϕA〉 to |0A〉. The same trick can be
used to emulate a coupling between |0R,L〉 and |1R,L〉. One
first transfers the population from |0R,L〉 to |ϕ−〉, then to
|α〉 = |6s 1

2
; I = 7

2 ; F = 4; mF = 0〉, then to |ϕ+〉; one then
applies the desired transformation between |ϕ+〉 and |1L,R〉
before transferring the population back from |ϕ+〉 to |0R,L〉
along the same path as in the first step.

Moreover, as indicated on Fig. 2, a magnetic field is
applied to lift the degeneracies of the different levels. The
specific choice we made, that is, B ∼ 50 G, results in
splittings of μBB

4h̄ ∼ 2π × 17.5 MHz, 2μBB

3h̄ ∼ 2π × 47 MHz
for the hyperfine components |F = 3,4; mF 〉 of the ground
level and the excited states |ϕ±〉,|r±〉, respectively. These
splittings assure that the different transitions required by

our protocol are selectively addressable, provided that the
relevant effective two-photon coupling constant is smaller
than μBB

h̄
∼ 2π × 70 MHz and respects the finite lifetime

of the Rydberg level. Moreover, the detunings from the
intermediate states |ϕ±〉 must be chosen larger than γ12p =
τ−1 ∼ 2π × 80 kHz, τ being the lifetime of the level 12p1/2.
Typical values of � ∼ 2π × 1 MHz and � ∼ 2π × 10 MHz
fulfill the previous requirements and can be achieved for
both “classical-classical” and “quantum-classical” paths in a
sample of a few hundreds of atoms, with �laser ∼ 2π × 1 MHz
and g± ∼ 2π × 0.1 MHz. Note that the size of the samples
should also be small enough so as to remain in the full
blockade regime. As shown in [15], a cloud of ∼5 μm of a few
hundreds of atoms exhibit Rydberg dipole-dipole interactions
of at least �dd ∼ 2π × 100 MHz, which is indeed much larger
than � and therefore efficiently forbids multiple Rydberg
excitations. Finally, all the two-photon processes required
in our protocol, including gates on the quantum register,
can be performed on the microsecond time scale. Finally,
note that the spontaneous emission from the 12p1/2 does not
constitute a problem when performing unitaries in the subspace
{|0A〉,|1A〉} through actually populating the state |ϕA〉. Indeed,
in this case, we must only fulfill the condition �laser � μBB

h̄
∼

2π × 70 MHz to ensure that no unwanted transition such
as |0A〉 ↔ |12p1/2,mj = −1/2,mI = −3/2〉 takes place. The
frequencies of all the required manipulations, transfers |0A〉 ↔
|ϕA〉 and unitaries |1A〉 ↔ |ϕA〉, can therefore be taken as large

ns1/2 BB
mj = 1/2

mj = 1/2

mI = 7/2 mI = 7/2

mI = 7/2 mI = 7/2r

r+

7/2 m = 7/2

rA
0.5 MHz

12p1/2
mj = 1/2

mj = 1/2

mI = 7/2 mI = 7/2

mI = 7/2 mI = 7/2

+

+

BB
3

A

B 50 G

2 ×80 kHz

mF = 4

BB

B = 50 G
BB

2 ×70 MHz
L

F = 4
mF = 4 Ehf 9.2 GHz

A

L

6s1/2
mF = 3

B
F = 3

mF = 3

BB

s

A

R

R

FIG. 2. Physical implementation of our scheme with Cs atoms. The figure shows the states |jl〉j=0,1;l=L,R,A,|ϕ+,−,A〉 and |r+,−,A〉. For sake
of clarity, the figure only shows the quantum-classical paths |r±〉 ↔ |ϕ±〉 ↔ |s〉 used for converting an atomic excitation into a cavity photon
and vice versa. The dashed-line arrows stand for the transitions driven by the cavity modes ± of respective polarizations σ±; the full lines stand
for the transitions driven by laser beams of linear polarization. Note that unwanted transitions involving relevant states are out of resonance
and therefore highly suppressed.
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FIG. 3. (Color online) Logarithm of the average time required
for entangling two remote nodes over the distance L (km), for a total
number of nodes N = 24 = 16, via the direct exchange of a photon
(dotted line), through the repeaters described in [10,18] (dashed line),
and through our protocol (full line).

as ∼ 2π × 7 MHz, while the decay rate of the level 12p1/2 is
only ∼ 2π × 80 kHz. The whole unitary process can therefore
be run before the decay of the level 12p1/2 plays any role.

V. DISCUSSION

We now summarize the main differences between our
scheme and the most recent works on the subject [17,18]. As
noted in [17,18], the use of Rydberg-blocked ensembles allows
one to perform entanglement swapping via deterministic ma-
nipulations and not through probabilistic photonic detections.
The main originality of our proposal is that we also completely
got rid of photonic detections during the linking procedure.
Indeed, here, photons are simply transmitted from one site
and reabsorbed by their neighbor in an efficient and faithful
way. The heralded linking is performed only via deterministic
ensemble manipulations and ion detections, whose efficiency
can be made very close to one. In that respect, our scheme is
more of a relay type, as defined in [22]. It is also important to
note that, contrary to [17], we do not need different ensembles
for encoding what we called “subnodes” in the present work
but use the multilevel structure of the atomic spectrum to store
three subnodes in the same ensemble; therefore we do not rely
on the Rydberg blockade between two ensembles, a rather
challenging task. We also note that another proposal for a
quantum repeater based on atomic ensembles was put forward
in [23]. There, however, the authors did not rely on Rydberg
blockade phenomenon but rather on fluorescence detection
of excitations stored in the atoms after low-intensity laser
excitation and Raman scattering.

Finally, it is worth comparing the total average time needed
by our protocol to that required by other schemes, as a figure of
merit. Figure 3 displays the logarithm of the average time nec-
essary for entangling two remote nodes by the direct exchange
of a photon. A generous repetition rate of 10 GHz for the pho-
ton source was assumed by the protocol described in [17,18]
and by our protocol as functions of the distance L between
the two nodes to entangle for a fixed number of N = 24 = 16
nodes. As in [17,18], a photodetection efficiency of ηpd � 0.9
and a retrieval efficiency of ηr � 0.9 (in our cavity model,
this retrieval efficiency was taken equal to one) were assumed.

P0 = 0.3

P0 = 0.2

P0 = 0.1

P0 = 0.1

P0 = 0.2

P0 = 0.3

1000 2000 3000 

(a)

(b)

FIG. 4. (Color online) (a) Generic behavior of the probability
pK (n) for K = 1000 and three different values of P0 = 0.1,0.2,0.3.
The probability is a peaked curve around its maximum nmax

K . (b)
Behavior of n̄(P0,N ) as a function of N for three different values of
P0 = 0.1,0.2,0.3.

It appears that our protocol is quicker, though asymptotically
equivalent for L → ∞, which is explained by our assumption
of the ion detection efficiency exceeding that of photons.

VI. CONCLUSION

In this paper we proposed a quantum repeater scenario
based on Rydberg-blocked ensembles placed in cavities which
are linked by optical fibers. Entanglement generation between
two neighboring nodes is performed in a heralded way by
the transmission of a photon whose polarization is entangled
with the state of the first atomic ensemble, followed by

P0 = 0.1

P0 = 0.2

P0 = 0.3

n(P0,N) 

2nN/2 
max 

1000 2000 3000 

FIG. 5. (Color online) Comparison of n̄(P0,N ) and 2nmax
N/2 for

three different values of P0 = 0.1,0.2,0.3.
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its absorption by the neighboring atomic ensemble. Photon
losses and spontaneous emission from the Rydberg level
can be detected thanks to an error-syndrome measurement
involving ensemble laser manipulations, ionizing pulses, and
(very efficient) ion detections. An implementation with Cs
atoms was suggested and analyzed.

Contrary to protocols previously proposed, the scheme pre-
sented here does not make use of any (inefficient) photodetec-
tion: this potentially allows for a speedup in the entanglement
generation, as confirmed by numerical simulations. Finally,
main error sources were analyzed. Future work should be
devoted to a closer investigation of the practical feasibility
of our scheme with real cavities and fibers.
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APPENDIX: DERIVATION OF THE EXPRESSION OF THE
AVERAGE NUMBER OF STEPS IN ENTANGLEMENT

GENERATION

As described in Sec. III, the entanglement generation
procedure is performed in two steps. During each of these
steps, K = N/2 subnodes are entangled by pairs. A pair of
subnodes is correctly entangled with the probability P0.

Let us first compute the probability pK (n) that K pairs are
correctly entangled within exactly n repetitions. This means
that, within the (n − 1) first steps, at least one pair is not
entangled. Considering all the possible cases, one establishes
the following recurrence formula:

pK (n) = pK−1(n)p1(n) + pK−1(n)

(
n−1∑
m=1

p1(m)

)

+
(

n−1∑
m=1

pK−1(m)

)
p1(n)

= pK−1(n)

(
n∑

m=1

p1(m)

)
+

(
n−1∑
m=1

pK−1(m)

)
p1(n),

and noting that p1(n) = P0(1 − P0)n−1 one gets

pK (n) = pK−1(n)[1 − (1 − P0)n] (A1)

+
(

n−1∑
m=1

pK−1(m)

)
P0(1 − P0)n−1. (A2)

Setting SK (n) ≡ ∑n
m=1 pK (m), one derives from Eq. (A1), the

relation SK (n) = SK−1(n)[1 − (1 − P0)n] whence SK (n) =
S1(n)[1 − (1 − P0)n]K−1 and, since S1(n) = [1 − (1 − P0)n],
SK (n) = [1 − (1 − P0)n]K . One finally deduces the expression
for pK (n) from pK (n) = SK (n) − SK (n − 1):

pK (n) = [1 − (1 − P0)n]K − [1 − (1 − P0)n−1]K.

The average number of repetitions one needs to entangle the
K pairs is simply given by

∑+∞
n=1 npK (n).

Since the entanglement of the two groups of K = N/2 pairs
of subnodes (R2k,L2k+1) and (R2k+1,L2(k+1)) is performed
independently and successively, the total average number
of repetitions required is simply n̄(P0,N ) = 2

∑+∞
n=1 npK (n),

represented on Fig. 4, or more explicitly,

n̄(P0,N ) = 2
+∞∑
n=1

n{[1 − (1 − P0)n]K

− [1 − (1 − P0)n−1]K}. (A3)

Let us now derive a simple lower bound for n̄(P0,N ).
We shall first note that pK (n) = fK (n) − fK (n − 1) where
fK (n) = [1 − (1 − P0)n]K ; for n 	 1, one thus has pK (n) �
dfK

dn
(n) and therefore one can calculate the approximate

position of the maximum of pK (n) by deriving dfK

dn
(n).

Doing so, one obtains a maximum for pK (n) at n = nmax
K =

− ln K/ ln(1 − P0). As can be seen in Fig. 4, the distribution
pK (n) is not symmetric around its maximum; the position
of its peak therefore cannot, strictly speaking, be identified
with n̄(P0,N = 2K)/2. It, however, gives a good order of
magnitude, n̄(P0,N ) � −2 ln(N/2)/ ln(1 − P0), as can be
checked on Fig. 5. In particular, the expression of 2nmax

N/2 gives
a good indication of how n̄(L0,N ) scales with the physical
parameters.
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