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We present a measure of entanglement for pure two-qutrit states which constitutes a probability interpretation
for negativity. We also obtain an equivalence relation for the latter, which is used to find a lower bound on its
convex-roof extension, for systems with dimensions up to 6. The possibility of the obtained results being valid
for higher-dimensional systems is also discussed.
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I. INTRODUCTION

There has been an extensive effort to formulate suitable
entanglement measures over the last decade [1,2]. Entangle-
ment entropy was defined in 1996 for the pure state of a
bipartite system of two qubits which has an operational and
quite comprehensible interpretation [3]. Entanglement entropy
was then extended to the mixed states of two-qubit systems,
through the convex-roof method, known as entanglement of
formation [4]. Another entanglement measure which is also
related to the entanglement of formation and has been used
extensively is the well-known concurrence, which was put
forward in 1998 [5]. A probabilistic interpretation of this
measure for the pure bipartite states has been established
recently [6]. Several more measures, which are mostly exten-
sions of concurrence in some manner, were introduced later;
however, they have been difficult to evaluate for the mixed
states [7–9]. Conditions required of an acceptable measure
were put forward in 1998 [10], but it was emphasized later that
the only necessary condition is that it should not change under
local operations and classical communications [11]. Negativity
is a measure that is the simplest to calculate for mixed states
and was developed on the basis of the partial positive transpose
criterion [12] in 2002 [13]. It satisfies the essential condition
for a legitimate measure, but it is not necessarily faithful
when applied beyond qubit-qubit and qubit-qutrit systems. In
fact, there are some states, known as bound states, which are
entangled, although they have zero negativity [14]. It has been
revealed that negativity has some relevance to the distillation
of entanglement; namely, a nil result for the negativity of a
bound state implies that it cannot be distilled for entanglement
extraction [15]. In spite of its limitations, negativity is being
used extensively due to its easy evaluation. Negativity for the
pure state has also been extended to the mixed ones, through
the convex-roof method, in 2003 [16]; it has also been shown
that it is free from lack of faithfulness when applied to bound
states. There have been variations in the definition of negativity
with regard to its numerical coefficient in the course of time;
but we adhere to the one whose maximum is unity, as follows:

Nd := ‖ρTA‖ − 1

d − 1
, (1)
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where ρTA is the partially transposed density matrix of the
bipartite system with respect to the subsystem A and d :=
min{dim(A), dim(B)}.

Now we set up an expression for negativity in terms of
the Schmidt coefficients. Let us consider the following pure
bipartite state:

|ψAB〉 =
d1∑

i=1

d2∑
j=1

cij |iA,jB〉; (2)

it may be written in the Schmidt form in the following manner
[17]:

|ψAB〉 =
d∑

i=1

√
pi

∣∣αA
i ,βB

i

〉
, (3)

where |αA
i ,βB

i 〉 are called Schmidt bases, and {√pi} are the
Schmidt coefficients. It has been shown that {pi} are the eigen-
values of the reduced density matrix ρA = TrB |ψAB〉〈ψAB |
[18]. Now we apply the local unitary transformation US to
|ψAB〉 as expressed in Eq. (3), to write its expansion in the
computational basis

|ψAB〉 Us−→∣∣ψAB
S

〉
:= US |ψAB〉 =

d∑
i=1

√
pi |iA,iB〉. (4)

Moreover, using Eq. (4) we may express negativity in terms of
the Schmidt coefficients as follows [16]:

Nd = 1

d − 1

{(
d∑

i=1

√
pi

)2

− 1

}
= 1

d − 1

d∑
j>i=1

(2
√

pi

√
pj ).

(5)

II. A PROBABILISTIC ENTANGLEMENT MEASURE
FOR TWO-QUTRIT SYSTEMS

We first consider the following theorem.
Theorem 1. Let us consider a two-qutrit system whose state

in the computational bases is given by Eq. (2) for d = d1 =
d2 = 3. There is at least a local unitary transformation under
which the expansion coefficients |cU

i,i | and also the expansion
coefficients |cU

i,j �=i | are equal, simultaneously.

Proof. Assume that the unitary transformation U = ÛUS

suits the job, where US transforms the state to the Schmidt
form in the computational bases. This implies that it suffices

042323-11050-2947/2012/85(4)/042323(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.042323


ABBASS SABOUR AND MOJTABA JAFARPOUR PHYSICAL REVIEW A 85, 042323 (2012)

to find a unitary matrix Û that transforms the Schmidt form
in the computational bases to the required one. Of course, the
unitary matrix Û , and thus U , is not unique; we introduce
the ones which not only prove the theorem but also lead to
a probability interpretation for negativity. The proposed Û is
defined by

Û = u+ ⊗ u−, (6)

where

u± : = 1

2

⎡
⎣1 ±i 0

±i 1 0
0 0

√
2

⎤
⎦

⎡
⎣cos α 0 − sin α

0 1 0
sin α 0 cos α

⎤
⎦

×
⎡
⎣

√
2 0 0

0 1 −1
0 1 1

⎤
⎦ , (7)

α = tan−1

(
1√
2

)
. (8)

Applying Û to the Schmidt form (4) for d = d1 = d2 = 3,
we obtain

∣∣ψAB
U

〉 = Û

3∑
i=1

√
pi |iA,iB〉 =

3∑
i,j=1

cU
ij |iA,jB〉, (9)

where the new expansion coefficients in the computational
bases are given by

∣∣cU
ij

∣∣
i=j

= 1

3

3∑
i=1

√
pi =: c and

∣∣cU
ij

∣∣
i �=j

=
√

1 − 3c2

6
.

(10)

�
Considering the above result, we conclude that any bipartite

pure two-qutrit state may be expressed in the computational
bases as follows:

∣∣ψAB
U

〉 = c

3∑
i=1

eiθii |iA,iB〉 +
√

1 − 3c2

6

3∑
i �=j

eiθij |iA,jB〉,

(11)

where θij are the phases. Now, we define the following
orthonormal states expressed in the computational bases:∣∣ϕAB

1

〉
:= 1√

3
(eiθ11 |1A,1B〉 + eiθ22 |2A,2B〉 + eiθ33 |3A,3B〉),

(12)

∣∣ϕAB
2

〉
:= 1√

3
(eiθ12 |1A,2B〉 + eiθ23 |2A,3B〉 + eiθ31 |3A,1B〉),

(13)

∣∣ϕAB
3

〉
:= 1√

3
(eiθ13 |1A,3B〉 + eiθ21 |2A,1B〉 + eiθ32 |3A,2B〉).

(14)

They are similar to the Bell states and display the maximum
of entanglement as do the latter. Suppose that the system is in
one of the states given by Eqs. (12)–(14), which we refer to by
|ϕAB

n 〉; if a projective von Neumann local measurement (PM)
is performed on this state in the computational bases and the

value iA is obtained for A measurement, then a simple analysis
shows that B measurement leads to

jB(d; n; iA) := iA + n − d

[
iA + n − 2

d

]
− 1, (15)

with d = 3, where the square brackets denote the integer part.
That is, the unknown state may be determined by the latter
measurement. We may also construct a set of nine qutrit Bell-
type states in the H3 ⊗ H3 space, like the four genuine Bell
states that are set up in the H2 ⊗ H2 space, as follows:

∣∣ϕAB
nm

〉 = 1√
3

3∑
i=1

eiωmi |iA,jB(3; n; i)〉, n,m = 1,2,3,

(16)

ωmi = 2π

3
(1 − δm1)(1 − δi1)(5 − 2m)(5 − 2i).

Now, using Eqs. (12), (13), and (14) in Eq. (11), we have

∣∣ψAB
U

〉 =
√

3c
∣∣ϕAB

1

〉 +
√

1 − 3c2

2

∣∣ϕAB
2

〉 +
√

1 − 3c2

2

∣∣ϕAB
3

〉
= √

p1

∣∣ϕAB
1

〉 + √
p2

∣∣ϕAB
2

〉 + √
p3

∣∣ϕAB
3

〉
. (17)

Two interpretations may be associated with pi : First,
Eq. (17) reveals that it is the probability of realization of |ϕAB

i 〉
in |ψAB

U 〉 and, second, considering Eq. (11), it is the probability
that B obtains iB in his measurement while A has obtained iA

in hers. Let us choose c = 1/3 to obtain∣∣ψAB
U

〉∣∣
c= 1

3
= 1√

3

(∣∣ϕAB
1

〉 + ∣∣ϕAB
2

〉 + ∣∣ϕAB
3

〉)

= 1

3

3∑
i,j=1

eiθij |iA,jB〉; (18)

then, a PM is performed on the above state in the computational
bases. It is clear that B’s result does not depend on A’s result
and vice versa; that is, no correlation is observed. However,
c = 1/

√
3 yields |ϕAB

1 〉; in this case A’s and B’s results are
perfectly correlated as may be deduced from Eq. (12). Thus,
in light of the above observations, the difference between the
probabilities p1 and p2 = p3 may be considered as a measure
of the quantum correlation between the two qutrits,

�PU = (
√

3c)2 −
(√

1 − 3c2

2

)2

= 9c2 − 1

2
, (19)

which may be expressed in the following form, using Eq. (10):

�PU = 1

3 − 1

{(
3∑

i=1

√
pi

)2

− 1

}
. (20)

This is an interesting result; it is exactly equal to the nega-
tivity as expressed by Eq. (5); however, it may not necessarily
be unique and depends on the unitary transformation U that
has been applied in Eq. (11). Thus, we maximize Eq. (20) over
all the unitary transformations U , to define a unique measure
as follows:

�P := max
U

�PU . (21)

Now, considering Eq. (5); we also obtain

�P � N3; (22)
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that is, the derived measure also provides an upper bound on
negativity. But still we can achieve even better than this: Our
extensive numerical computations have revealed that actually
the inequality in Eq. (22) is an equality

�P = N3; (23)

thus, we conclude that �P is a probabilistic measure of
two-qutrit entanglement, which is equal to the negativity and
provides a probabilistic interpretation for the latter; its value
ranges from zero to 1.

One may wonder if it is possible to generalize the measure
expressed in Eq. (21) to higher-dimensional systems. In fact,
we have tried the four-dimensional case too. In this case we
need to transform the state in Eq. (2), for d = d1 = d2 = 4, to
the required form; considering Eq. (15) we may write∣∣ψAB

U

〉 = √
p1

∣∣ψAB
1

〉 + √
p2

∣∣ψAB
2

〉 + √
p3

∣∣ψAB
3

〉
+√

p4

∣∣ψAB
4

〉
, (24)

∣∣ψAB
n

〉
:= 1

2

4∑
i=1

eiθi,j (4; n; i) |iA,jB(4; n; iA)〉, (25)

where p2 = p3 = p4, and the same definition as in Eq. (22)
is applicable again. However, we have not been able to find
an appropriate U to do the job, analytically; thus we have
resorted to relatively tedious numerical computations. We note
that any bipartite state may be transformed to the Schmidt
form; thus it suffices to consider the latter type of state for
examination. We have tried the four-dimensional bipartite
states with unnormalized Schmidt coefficients {1,1,1,2},
{1,1,1,5}, {1,1,1,10}, {1,1,1,20}, {1,1,5,5}, {1,2,3,4},
{2,3,4,5}, {3,4,5,6}, {4,5,6,7}, {1,3,5,7}, {1,4,7,10}, and
{1,5,9,13} and have ascertained that the negativity and our
defined measure are equal in all cases. Considering the trend,
one may conjecture that our results may even be valid for
d � 4; however, we believe that more investigations are called
for, to check this conjecture.

III. AN EQUIVALENCE RELATION FOR PURE-STATE
NEGATIVITY

An equivalence relation for the pure-state negativity is
proved in this section. We start with the following theorem.

Theorem 2. A unitarily transformed expansion of the
bipartite state (2) is given by

|ψAB〉 U−→U |ψAB〉 =
d1∑

i=1

d2∑
j=1

cU
ij |iA,jB〉. (26)

Now, defining

γ U
ij := 2

(
cU
ii c

U
jj − cU

ij c
U
ji

)
, (27)

NU
d := 1

d − 1

d∑
j>i=1

∣∣γ U
ij

∣∣, (28)

N ′
d := max

U
NU

d , (29)

where d = min{d1,d2}; then N ′
d = Nd .

Proof. First, assuming U = US , |ψAB〉 is transformed to
the Schmidt form |ψAB

S 〉 = US |ψAB〉 in the computational

bases, whose corresponding negativity is given by Eq. (5).
Considering the latter and Eqs. (28) and (29), we note that for
cU
ij = √

piδij , NU
d reduces to Nd ; thus we may write

N ′
d � Nd ; (30)

that is, Nd is a lower bound on N ′
d . Now we demonstrate that

the inequality in Eq. (30) is actually an equality. To show this,
we follow the method of Ref. [19] which we have recently
developed to prove an equality for the entropic uncertainty
relation. First we note that in the (d1 × d2)-dimensional space
of the bipartite system, the negativity expressed in the Schmidt
form requires n1 = min{d1,d2} − 1 independent variables.
Application of a general local unitary transformation to this
state also requires n2 = d2

1 + d2
2 more variables. Thus, we

define the following function of n = n1 + n2 variables:

�d

(
U ;

∣∣ψAB
S

〉)
:= NU

d

(
U ;

∣∣ψAB
S

〉) − Nd

(∣∣ψAB
S

〉)
, (31)

where |ψAB
S 〉 is the general state expressed in the Schmidt form.

Nd is independent of the parameters which define the unitary
transformation U ; thus, maximizing Eq. (31) with respect to all
the n parameters is just equivalent to maximizing the difference
N ′

d − Nd . Carrying out numerical computations up to d1 and
d2 equal to 6, we have found zero for the latter in all cases,
without fail. Thus, we find an equivalence relation for the
negativity as follows:

Nd = N ′
d = max

U

1

d − 1

d∑
j>i=1

∣∣γ U
ij

∣∣ for max{d1,d2} � 6.

(32)

�
This is an interesting equivalence result; it is used in the

sequence to derive a lower bound on the convex-roof extended
negativity (CREN) and potentially may be useful in other
entanglement investigations. We also conclude that for any
arbitrary unitary transformation with max{d1,d2} � 6, NU

d

provides a lower bound on the negativity,

Nd � NU
d . (33)

IV. A LOWER BOUND ON CONVEX-ROOF EXTENDED
NEGATIVITY

The convex-roof method [20] has been used to extend the
pure-state negativity to mixed states [16]; however, it is very
difficult to evaluate the CREN for the general case. In fact, only
highly symmetrical states, for example the isotropic ones [21],
have rendered this evaluation possible [16].

Here we intend to derive a lower bound on the CREN,
which turns out to be specifically useful in the estimation of
entanglement in nonsymmetrical mixed states, whereas the
lack of symmetry hinders an easy evaluation of the CREN
itself. Our method of approach is similar to the one we took
recently to obtain a lower bound on the concurrence [22]. We
assume that the ensemble ε ≡ {|ψi〉; pi} represents the state
of the system; that is, its density operator is given by ρ =∑

i pi |ψi〉〈ψi |. Thus, the ensemble average of the negativity
Nd corresponding to this density operator is expressed by

Nd (ε) := [Nd ]ε≡{|ψi 〉;pi } =
∑

i

piNd (|ψi〉). (34)

042323-3



ABBASS SABOUR AND MOJTABA JAFARPOUR PHYSICAL REVIEW A 85, 042323 (2012)

As there may be several decompositions of the density
operator [23], the CREN (C) is defined as the infimum of
the average negativity with respect to the decomposition
ensembles; thus, it is decomposition independent and depends
only on the ρ itself:

Cd (ρ) := min
{|ψi 〉;pi }

∑
i

piNd (|ψi〉)
∣∣∣∣∣∑

i pi |ψi 〉〈ψi |=ρ

. (35)

Now, considering Eqs. (18)–(20), we may write

Nd (ε) =
∑

i

piNd (|ψi〉) =
∑

i

piN
′
d (|ψi〉)

=
∑

i

piN
′
d (Ui |ψi〉) =

∑
i

pi

(
max

Ui

1

d − 1

d∑
k>j=1

|γ Ui

i;jk|
)

� 1

d − 1
max

U

d∑
k>j=1

∑
i

pi

∣∣γ U
i;jk

∣∣, (36)

where we have assumed

Ui |ψi〉 =
d1∑

j=1

d2∑
k=1

c
Ui

i;jk |j,k〉, (37)

γ
Ui

i;jk := 2
(
c
Ui

i;jj c
Ui

i;kk − c
Ui

i;jkc
Ui

i;kj

)
, (38)

and the following inequality has been used:

max
U1

f1(U1) + max
U2

f2(U2) + · · · � max
U

[f1(U )

+ f2(U ) + · · ·]. (39)

To simplify the notation we combine the two indices j and
k into the single index I (j,k) = j + d1(k − 1); thus we write

|ψi〉 =
d1×d2∑
I=1

ci;I |I 〉, (40)

ρ =
∑

i

pi |ψi〉〈ψi | =
d1×d2∑
I,I ′=1

(∑
i

pici;I c
∗
i;I ′

)
|I 〉〈I ′|

=
d1×d2∑
I,I ′=1

ρI,I ′ |I 〉〈I ′|, (41)

where ρI,I ′ = ∑
i pici;I c

∗
i;I ′ is the matrix representation of the

density operator ρ.
Now, using Eq. (38), Eq. (15) in Ref. [22], and the fact that

the mixed-state concurrence is obtained through the convex-
roof method from the pure-state concurrence, we obtain

∑
i

pi

∣∣γ U
i;jk

∣∣ = 2
∑

i

pi

∣∣cU
i;I (j,j )c

U
i;I (k,k) − cU

i;I (j,k)c
U
i;I (k,j )

∣∣ � C
(
σU

jk

)
, (42)

where C(σU
jk) is the mixed two-qubit concurrence and the unnormalized density matrix σU

jk is expressed by

σU
jk ≡

⎡
⎢⎢⎢⎣

ρU
I (j,j ),I (j,j ) ρU

I (j,j ),I (j,k) ρU
I (j,j ),I (k,j ) ρU

I (j,j ),I (k,k)

ρU
I (j,k),I (j,j ) ρU

I (j,k),I (j,k) ρU
I (j,k),I (k,j ) ρU

I (j,k),I (k,k)

ρU
I (k,j ),I (j,j ) ρU

I (k,j ),I (j,k) ρU
I (k,j ),I (k,j ) ρU

I (k,j ),I (k,k)

ρU
I (k,k),I (j,j ) ρU

I (k,k),I (j,k) ρU
I (k,k),I (k,j ) ρU

I (k,k),I (k,k)

⎤
⎥⎥⎥⎦ , (43)

where ρU = UρU †. Now, defining

ÑU
d (ρ) := 1

d − 1

d∑
k>j=1

C
(
σU

jk

)
, (44)

Eq. (36) may be expressed by

Nd (ε) � max
U

ÑU
d (ρ) . (45)

We note that the right-hand side (RHS) of the above inequality is independent of the ensemble decomposition; thus we
minimize the LHS with respect to the latter, which does not affect the faithfulness of the inequality. Then, considering (35) we
finally obtain the lower bound on the CREN ( the LCREN L) as follows:

Cd (ρ) � max
U

ÑU
d (ρ) =: Ld (ρ) . (46)

Obviously, ÑU
d (ρ) will also be a lower bound on Cd (ρ) for any U , but not necessarily as strong as in the case when the latter

is the maximizing transformation yielding Ld (ρ).
To check our result, we apply (46) to the following isotropic state studied in Ref. [16]:

ρF
iso = 1 − F

d2 − 1
(1AB − |ϕAB〉〈ϕAB |) + F |ϕAB〉〈ϕAB |, (47)

where

F = 〈ϕAB |ρF
iso|ϕAB〉, |ϕAB〉 = 1√

d

d∑
i=1

|iA,iB〉. (48)
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Let us choose the trivial unitary transformation Ũ = 1AB = 1A ⊗ 1B . Considering that all the σ Ũ
jk matrices are equal due to

the symmetry of the isotropic density operator, we find

σ Ũ
jk =

⎡
⎢⎣

x 0 0 z

0 y 0 0
0 0 y 0
z 0 0 x

⎤
⎥⎦ , (49)

where x = (F + 1/d)/(d − 1), y = (1 − F )/(d2 − 1), and z = (Fd − 1/d)/(d2 − 1). The density matrix in Eq. (49) is the
familiar X state, whose concurrence is max{0,2(|z| − |y|)} [24]. Therefore, we finally have

Ñ Ũ
d

(
ρF

iso

) = 1

d − 1

d∑
k>j=1

C
(
σ Ũ

jk

) = 1

d − 1

(
d∑

k>j=1

1

)
C

(
σ Ũ

12

) = 1

d − 1
× d(d − 1)

2
× max

{
o,2

(∣∣∣∣Fd − 1
d

d2 − 1

∣∣∣∣ −
∣∣∣∣ 1 − F

d2 − 1

∣∣∣∣
)}

= max

{
0,

Fd − 1

d − 1

}
= Cd

(
ρF

iso

)
. (50)

This is an interesting result; the bound derived on the CREN
is exactly equal to the CREN itself for the isotropic state. That
is, the unitary transformation Ũ was the maximizing U in
Eq. (46). However, Ld (ρ) is just a lower bound in the general
case and no judgment regarding its sharpness may be made;
it is particularly of use whenever the state is not symmetric
enough to render the evaluation of the CREN possible.

V. CONCLUSIONS

We have obtained an upper bound on the negativity of
a pure two-qutrit state, which turns out to be equal to

the negativity itself; thus providing an operational inter-
pretation for the latter. The possibility that the obtained
bound might be valid for higher dimensions has also been
discussed. We have also derived an equivalence relation
for the pure-state negativity which has proved to be valid
for dimensions up to 6, with potential applications in en-
tanglement investigations. As an example, we have used
this equivalence relation to obtain a lower bound on the
convex-roof extended negativity for mixed states, which is
particularly useful in assessing entanglement in nonsymmetric
states.
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