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Stationary and uniform entanglement distribution in qubit networks with quasilocal dissipation
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We consider qubit networks where adjacent qubits besides interacting via XY coupling, also dissipate into the
same environment. The steady states are computed exactly for all network sizes and topologies, showing that
they are always symmetric under permutation of network sites, leading to a uniform distribution of the stationary
entanglement across the network. The maximum entanglement between two arbitrary qubits is shown to depend
only on the total number of qubits in the network, and scales linearly with it. A possible physical realization by
means of an array of doped cavities is discussed for the case of a linear chain.
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I. INTRODUCTION

It has been understood for a long time that entanglement
represents a quintessential and characteristic trait of quantum
mechanics [1]. Quantum phenomena are by now very well
known to be key resources for communication and computa-
tion [2], and it has been recently questioned whether they play
a functional role in certain biological processes [3,4]. Due to
its fragility under environment-induced decoherence, entan-
glement is commonly considered to be an elusive physical
phenomenon that can be observed only in the most elementary
systems and on the shortest time scales. Nevertheless, together
with a variety of entanglement-preserving mechanisms that
have been put forward [5–12], the idea is now spreading that
it can persist on relatively long time scales, even in a noisy
environment, if suitable conditions are fulfilled. To achieve
stationary entanglement in spin systems it is sufficient to
have quasilocal (two-body interaction) Hamiltonian and local
dissipation [7], or local Hamiltonian and quasilocal (two-body)
dissipation [8–10]. Until now, these two possibilities have
been studied separately or for systems composed of a small
number of qubits. The main aim of this paper is to study
the effects of both quasilocal interaction and dissipation in a
system composed of an arbitrary number of qubits. Our goal
is to determine general conditions for stationary entanglement
and characterize its distribution among qubits.

We consider a family of models of quantum networks
consisting of n qubits with onsite energy and XY interac-
tion between adjacent qubits. Moreover, a non-Hamiltonian
dynamical term is added within the quantum master equations
formalism [13]. The latter describes quasilocal dissipation
coupling of adjacent qubits, which can be understood as arising
from the coherent damping to the same, zero-temperature,
bosonic environment. We compute the steady states for any
size and network topology. This allows us to characterize
the given model of quasilocal dissipation as a means for
distributing stationary entanglement over a generic network.
We found that the steady states are largely independent on
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the dynamical features of the model, like the strength of
the onsite energy or of the XY interaction, and on the
network topology. The steady states are always symmetric
under permutation of the network sites, yielding a uniform
distribution of entanglement across the network. In particular
the maximum attainable entanglement between any pair of
qubits, measured by concurrence [14], equals 2/n ebits and
is independent on the relative position of the two qubits.
Furthermore, we investigate the steady-state entanglement as
a function of the initial state. Finally, for the special case in
which the network reduces to a chain we discuss a possible
physical realization by means of an array of doped optical
cavities.

The paper proceeds as follows. In Sec. II we introduce
the model of the qubit network; in Sec. III we compute the
steady states of the qubit network; the distribution of stationary
entanglement across the network is discussed in Sec. IV; in
Sec. V a possible physical realization is introduced; Sec. VI is
devoted to conclusions.

II. THE NETWORK MODEL

We consider a network of n qubits defined by a connected
graph G, with vertices V (G) and edges E(G), where a qubit
system is sitting at each vertex of the graph and the edges
identify two-body interactions between the qubits. Let

A[G]k,l =
{

0 if k,l /∈ E(G)

1 if k,l ∈ E(G)
, (1)

be the (symmetric) adjacency matrix of such a graph.
Then, by considering onsite energy and XY interaction, the

network Hamiltonian is defined as

H =
n∑

k=1

ωkσ
†
k σk + 1

2

n∑
k �=l=1

[A(G)]k,lJk,l(σ
†
k σl + σ

†
l σk), (2)

where ωk and σ
†
k , σk denote, respectively, the energy and the

raising, lowering operators of the kth qubit. Furthermore Jk,l

is the coupling strength between qubits k and l.
We assume that the dynamics of the network is described

by the master equation (h̄ = 1),

ρ̇ = L(ρ) , (3)
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where

L(ρ) = −i[H,ρ] + D(ρ). (4)

Here, adjacent qubits interact both directly through H and
indirectly through a non-Hamiltonian term given in the Gorini-
Kossakowski-Sudarshan-Lindblad form [13],

D(ρ) =
n∑

k �=l=1

[A(G)]k,lDk,l(ρ), (5)

where

Dk,l(ρ) = γk,l

2
(2Lk,lρL

†
k,l − L

†
k,lLk,lρ − ρL

†
k,lLk,l), (6)

with γk,l > 0 and

Lk,l = σk + σl. (7)

The non-Hamiltonian term D(ρ) describes a Markovian
damping process in which pairs of adjacent qubits coherently
decay into the same zero-temperature bosonic bath, with decay
rates γk,l .

III. THE NETWORK STEADY STATES

A pure state |ψ〉 ∈ C2⊗n is a steady state of the network if it
satisfies L(|ψ〉〈ψ |) = 0. A characterization of the pure steady
states of an open quantum system undergoing a Markovian
dynamics [13] has been provided in [11]. Following [11], a
pure steady state of our network model is characterized by the
conditions:

(1) [A(G)]k,lLk,l|ψ〉 = λk,l|ψ〉, for all k, l, with λk,l ∈ C;
(2) [iH + 1

2

∑
k �=l[A(G)]k,lγk,lL

†
k,lLk,l]|ψ〉 = λ|ψ〉,

with λ ∈ C;
(3) Re(λ) = 1

2

∑
k �=l[A(G)]k,lγk,l|λk,l|2, where Re(λ) de-

notes the real part of λ.
To compute the pure steady states of the network we first

notice that the operators Lk,l = σk + σl are nilpotent, hence
admitting only vanishing eigenvalues. Thus, condition 1 reads

[A(G)]k,l(σk + σl)|ψ〉 = 0. (8)

A pure state can be expanded in the standard basis,

|ψ〉 =
∑

a1,...,an=0,1

ψa1,...,an
|a1, . . . ,an〉, (9)

where σ
†
k σk|a1, . . . ,an〉 = ak|a1, . . . ,an〉. For any pair of ad-

jacent sites, k, l, Eq. (8) implies

0 =
∑

ak,al=0,1

ψa1,...1k ,...,al ,...,an
|a1, . . . ,0k, . . . ,al, . . . ,an〉

+ψa1,...,ak,...,1l ,...,an
|a1, . . . ,ak, . . . ,0l , . . . ,an〉, (10)

where the notations 0k , 1k , 0l , 1l are used to indicate that
ak = 0, ak = 1, al = 0, al = 1, respectively. This in turn yields

ψa1,...,1k ,...,0l ,...,an
+ ψa1,...,0k ,...,1l ,...,an

= 0, (11)

ψa1,...1k ,...,1l ,...,an
= 0. (12)

If there are no isolated points in the network, these conditions
imply that the pure steady states can contain at most one
excitation. They can be written as the superposition of the
network vacuum, |0〉 ≡ |01, . . . ,0n〉, and the single excitation

states, |k〉 ≡ |01, . . . ,1k, . . . ,0n〉 for k = 1, . . . ,n. To simplify
the notation we can expand the pure steady states as

|ψ〉 = α|0〉 + β

n∑
k=1

ψk|k〉, (13)

where the condition (11) implies

[A(G)]k,l (ψk + ψl) = 0. (14)

We can now distinguish two situations according to the
network topology:

(i) If the network does not contain cycles or it contains only
cycles with an even number of edges, the solution is given by
ψk = (−1)nkψ1, where nk is the number of edges connecting
the kth site with the first one;

(ii) Otherwise, if the network contains cycles with an odd
number of edges, the only solution is obtained by putting
ψk = 0 for all k.

In conclusion, we get that the pure steady states have the
form,

|ψ〉 = α|0〉 + β|ℵ〉, (15)

where

|ℵ〉 = 1√
n

n∑
k=1

(−1)nk |k〉. (16)

The coefficients α,β ∈ C are arbitrary if the network topology
fulfills (i). On the other hand, we have to put β = 0 if (ii) holds.
Being interested in the distribution of stationary entanglement,
in the following we assume that (i) is verified.

Then, the condition 2 reads

iH (α|0〉 + β|ℵ〉) = λ (α|0〉 + β|ℵ〉) , (17)

which may have two independent solutions:
(1) The first solution is obtained for α = 0 under the

conditions,

iλ = ωk −
∑

l

[A(G)]k,lJk,l, (18)

for all k = 1, . . . ,n.
(2) The second solution is obtained for β = 0, with λ = 0.
In the degenerate case, ωk − ∑

l[A(G)]k,lJk,l = 0, there
exists a two-dimensional steady subspaceHs = span{|0〉,|ℵ〉}.
Otherwise if ωk − ∑

l[A(G)]k,lJk,l = const. �= 0, the only
pure steady states are |0〉 and |ℵ〉. Finally, we notice that the
condition 3 is satisfied in both cases, since Re(λ) = 0.

Furthermore, it is worth noticing that it could be possible
that other mixed steady states exist, which are not in the convex
hull of pure steady states.

The steady states of our models do fulfill
[A(G)]k,lLk,l|ψ〉 = 0. The steady states satisfying such
a property are called dark states. A uniqueness theorem
for the dark states has been provided in [11], for a system
admitting a subspace of dark states. We can hence apply
this theorem in the degenerate case, in which the subspace
Hs = span{|0〉,|ℵ〉} is a subspace of dark states. According
to this result, if there exists no subspace S with S ⊥ Hs such
that [A(G)]k,lLk,lS ⊆ S, then the only mixed steady states are
in the convex hull of Hs . It is easy to show that a subspace
with such a property does not exist for our models. To show
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that it is sufficient to notice that since the operators Lk,l are
nilpotent, a subspace S which is invariant under the action
of all the Lk,l’s must necessarily include |0〉 or |ℵ〉. Thus, S

cannot be orthogonal to Hs .

IV. STEADY-STATE ENTANGLEMENT DISTRIBUTION

In this section we study the steady-state entanglement
between two arbitrary network qubits. Due to the symmetric
form of (16), the extension of the analysis of multiqubit
entanglement is straightforward.

Since we are interested in the distribution of steady-state
entanglement across the network, in the following we will
restrict to the case in which both condition (ii) and Eq. (18)
are fulfilled. Under this hypothesis, the reduced steady state of
two arbitrary qubits at site k and j of the network is necessarily
of the form,

ρk,j
s =

(
1 − 2p

n

)
|00〉〈00| + 2p

n
|
k,j 〉〈
k,j |, (19)

where |
k,j 〉 = [|10〉 + (−1)nj −nk |01〉]/√2 is a maximally
entangled state. It is worth noticing that the reduced steady
state contains only one free parameter p. Such a parameter
is determined by the initial state of the network. To fix the
ideas, we consider the concurrence [14] as an entanglement
measure for the reduced state of the two qubits. The stationary
concurrence of the two-qubit reduced state is as well a function
of p and the total number of qubits, namely

Cs = 2p

n
. (20)

In order to evaluate p for a given initial state of the network,
let us notice that

〈ℵ|ρ̇(t)|ℵ〉 = 1

2

n∑
k �=l=1

[A(G)]k,lγk,l〈ℵ|Lk,lρ(t)L†
k,l|ℵ〉, (21)

where we have used the fact that [A(G)]k,lLk,l|ℵ〉 = 0, and
that the vectors L

†
k,l|ℵ〉 are superpositions of states containing

two or more excitations. Moreover, we remark that the total
number of excitations in the network cannot increase under
the evolution dictated by the master equation (4). Therefore,
we conclude that if the initial state ρ(0) contains up to one
excitation, it follows that 〈ℵ|Lk,lρ(t)L†

k,l|ℵ〉 = 0 for any t � 0,
which in turn yields that the quantity 〈ℵ|ρ(t)|ℵ〉 is a constant
of motion. Eventually we get p = 〈ℵ|ρ(0)|ℵ〉, which allows
us to compute the steady-state parameter p for any initial
state of the network, provided it contains up to one excitation.
Let us further explore this setting by assuming that the
network is initialized in a state containing a single excitation
over m qubits, that is, |ψ(0)〉 = ∑m

j=1 αj |kj 〉. The maximum
stationary concurrence of the two-qubit reduced state is hence
obtained by maximizing p = |〈ℵ|ψ0〉|2. It follows that the
optimal choice for the initial state is

|ψ(0)〉 = 1√
m

m∑
j=1

(−1)nkj |kj 〉, (22)

yielding p = m/n.

We define Cs(1,m) as the maximum stationary concurrence
that can be achieved by preparing the network into an initial
state containing up to one excitation over m qubits. We then
have obtained that

Cs(1,m) = 2m

n2
. (23)

To go beyond the single-excitation setting, we have analyzed
numerically the achievable stationary concurrence for initial
states containing more than one excitation. By defining
Cs(N,m) as the maximum stationary concurrence for an
initial state containing up to N excitations over m qubits, our
numerical investigations suggest to conjecture that

Cs(N,m) � Cs(1,m), (24)

where the optimal network initial state is as in Eq. (22), that
is, a single-excitation initial state is sufficient to achieve the
overall maximum concurrence for a given m.

V. PHYSICAL REALIZATION

We sketch here a possible physical realization by an array of
n doped cavities coupled via optical fibers (see, e.g., [15,16]).
Actually, we restrict our attention to the case in which the
network is a linear chain with open boundary conditions. The
case of periodic boundary conditions can be analyzed in a
similar way. In the case of a linear chain, the model generalizes
that introduced in [10] where the Hamiltonian term is dropped.

Each cavity is doped with a two-level atom and is coupled
by optical fibers to the next-nearest cavities. We denote as ck , c†k
the ladder operators of the kth cavity, coupled to the levels |g〉k ,
|e〉k of the kth atom. Neighboring cavities are in turn coupled
through a single fiber mode, having ladder operators ak , a

†
k .

Furthermore, we assume that the kth fiber mode interacts with
its bosonic environment, described by a collection of operators
{bk,j ,b

†
k,j }. The Hamiltonian of the system in the rotating wave

approximation is given by

H = H free + H int , (25)

where

H free =
n∑

k=1

ωc
kc

†
kck +

n∑
k=1

ωa
k |e〉k〈e| +

n−1∑
k=1

ω
f

k a
†
kak

+
n−1∑
k=1

∑
j

ωe
k,j b

†
k,j bk,j , (26)

and

H int =
n∑

k=1

fk(c†k|g〉k〈e| + H.c.)

+
n−1∑
k=1

Jk[a†
k(ck + ck+1) + H.c.]

+
n−1∑
k=1

∑
j

ηk,j (a†
kbk,j + H.c.). (27)
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The first and second term in H free are the free Hamiltonian
of the cavity field and the two-level atom inside each cavity;
the third and fourth term describe the free Hamiltonian of
the fiber modes and of the environment of each fiber
with mode frequencies ωc

k , ωa
k , ω

f

k , and ωe
k , respectively.

In addition, the first term in the H int describes the interaction
between the cavity mode and the atom inside the cavity with
the coupling strength fk , the second term is the interaction
between the cavity and the fiber modes with the coupling
strength Jk and the last term is the interaction between the
fibers and their bosonic baths with the coupling strength ηk,j .
To write the above Hamiltonian we assumed the cavities are
in the strong coupling regime (i.e., f � κa,κc), where κa and
κc are the atomic and cavity decay rates, respectively. So, we
assume that both the decay rates are negligible compared with
the coupling between the fibers and their environments.

The first two terms of H free and the first term of H int can
be jointly diagonalized in the basis of polaritons [16]. On
the resonance between atom and cavity (i.e., ωc

k = ωa
k ≡ ωk),

the polaritonic states |n±〉k = (|g,n〉k ± |e,n − 1〉k)/
√

2, with
energies E±

k = nωk ± fk

√
n, are “created” by the operators

P
(n±)†
k = |n±〉k〈g,0|. Due to photon blockade and in the

Mott phase, double or higher occupancy of the polaritonic
states is prohibited, hence the only states to be considered
are |1,±〉k , with energies ωk ± fk [17,18]. Moreover, in
the rotating-wave approximation and interaction picture the
interconverting terms between different polaritons P

(1−)†
k P

(1+)
k+1

and P
(1+)†
k P

(1−)
k+1 ) in the interaction Hamiltonian are fast

rotating and they average to zero. So, if initially polaritons
are created solely by P

(1−)†
k , which is possible by applying

a global external laser to the atom-cavity system [16], the
polaritonic state |1,+〉 will never appear. Then Hamiltonian
(25), taking into account that each polariton can be treated as a
two-level system with ladder operator σ

†
k ≡ |1,−〉k〈g,0|, can

be rewritten as

H =
n∑

k=1

(ωk − fk)σ †
k σk +

n−1∑
k=1

ω
f

k a
†
kak +

n−1∑
k=1

∑
j

ωe
k,j b

†
k,j bk,j

+
n−1∑
k=1

Jk[a†
k(σk + σk+1) + H.c.]

+
n−1∑
k=1

∑
j

ηk,j (a†
kbk,j + H.c.). (28)

By adiabatic elimination of the fiber mode operators we
obtain the effective Hamiltonian,

H eff =
n∑

k=1

ω′
kσ

†
k σk +

n−1∑
k=1

∑
j

ω′e
k,j b

†
k,j bk,j

+
n−1∑
k=1

J ′
k(σ †

k σk+1 + σ
†
k+1σk)

+
n−1∑
k=1

∑
j

η′
k,j [b†k,j (σk + σk+1) + H.c.], (29)

with

ω′
k = ωk − fk − 2J 2

k

ω
f

k

+ J 2
k

ω
f

k

δk,1 + J 2
k

ω
f

k

δk,n, (30)

J ′
k = − J 2

k

ω
f

k

, (31)

ω′e
k = ωe

k − 2J 2
k

ω
f

k

, (32)

η′
k,j = −Jkηk,j

ω
f

k

. (33)

This Hamiltonian describes a qubit chain with XY interaction
where nearest-neighbor qubits dissipate into the same bosonic
bath. By tracing out the bosonic baths, which are assumed at
zero temperature, and in the Born and Markov approximations,
one finally obtains the master equation (4) describing the
polariton system.

VI. CONCLUSION

We have presented a characterization of the steady states
of qubit networks where adjacent qubits are coupled both
directly via an XY interaction, and indirectly via the coherent
dissipation into the same bosonic bath at zero temperature.
We have determined conditions allowing the distribution of
steady-state entanglement. Rather interesting, the features
of the steady-state entanglement are largely independent on
the network topology and on the dynamical details (e.g.,
coupling constants and decay rates). The maximal amount
of steady-state entanglement that can be achieved between
two arbitrary qubits only depends on the size of the network
and decreases linearly with it. The steady-state entanglement
is also a function of the network initial state. Furthermore,
our analytical results, supported by numerical evidences
lead us to conjecture that the optimal initial state of the
network is a symmetric, Dicke-like, state containing a single
excitation.

An array of doped optical cavities coupled by optical fibers
is also discussed as a physical implementation, at least for the
case of a network reducing to a linear chain. Another system
could be that of planar arrays of trapped electrons used for
quantum information processing [19].

Finally, the performed study lends itself to consider
extension from two-body dissipation to nd -body dissipa-
tion in n-qubit network and to analyze the scaling prop-
erties of entanglement versus nd/n. This is left for future
explorations.
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