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It is shown that local distinguishability of orthogonal mixed states can be completely characterized by the local
distinguishability of their supports irrespective of entanglement and mixedness of the states. This leads to two
kinds of upper bounds on the number of locally distinguishable orthogonal mixed states. The first one depends
only on pure-state entanglement within the supports of the states and therefore may be easy to compute in many
instances. The second bound is optimal in the sense that it optimizes the bounding quantities, not necessarily
the function of entanglement alone, over all orthogonal mixed-state ensembles (satisfying certain conditions)
admissible within the supports of the density matrices.
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I. INTRODUCTION

A characteristic feature of quantum theory is that com-
posite quantum systems, whose parts do not interact, may
possess nonlocal properties. For example, entanglement [1]
and quantum information both exhibit nonlocality. Entangled
states are nonlocal because they give rise to correlations
that cannot be explained by local hidden variable theories
[2], whereas nonlocality of quantum information is in the
sense that a measurement on the whole system sometimes
reveals more information about the state than coordinated
local measurements on its parts [3–8]. This nonlocal nature of
quantum information is generally manifested in the setting of
local discrimination of quantum states [3,4,6–19]. One of the
principal goals in quantum information theory is to understand
and quantify the relationship between entanglement and
nonlocality of quantum information.

The difficulty in quantifying the role of entanglement in
local state discrimination is evident from some of the early
results, which show that the presence of entanglement is
neither necessary nor sufficient to ensure whether a given
set of orthogonal states is locally indistinguishable. That
entanglement is not necessary is evident from the examples
of locally indistinguishable sets of orthogonal product states
exhibiting “nonlocality without entanglement” or forming an
unextendible product basis (UPB) [4,5]. On the other hand,
any two orthogonal states can be perfectly distinguished no
matter how entangled they are [9], showing that entanglement
is not sufficient for local indistinguishability. Nevertheless,
entanglement is often the key factor in a typical locally
indistinguishable set, as in the case of a complete bipartite
orthogonal basis containing one or more entangled states [6,7];
if such a set can be perfectly distinguished locally, then one can
create entanglement from product states using local operations
and classical communication (LOCC) [6,7], a task known to
be impossible.

Significant progress, which also motivated the present
work, was reported in Ref. [14], where it was shown
that entanglement does guarantee difficulty in local state
discrimination. In particular, it was shown that if the states
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(pure or mixed) σ1,σ2, . . . ,σN can be perfectly discriminated
by LOCC, then the number of states is bounded by

N � D/d(σi) � D/r(σi) � D/2E(σi ) � D/2G(σi ), (1)

where D is the dimension of the Hilbert space of the
composite quantum system; d(σ ) is a quantity (to be defined
later) resembling distance to the nearest separable state;
r(σ ) = rank(ρ)[1 + Rg(ρ)], where ρ is the normalized
projector onto the support [20] of σ and Rg(ρ) is the
robustness of entanglement [21]; E(σi) = ER(σi) + S(σi),
where ER(σ ) is the relative entropy [22] and S(σ ) is the von
Neumann entropy; G(σ ) is the geometric measure [14,23];
and xi = 1

N

∑N
i=1 xi denotes the average. If the inequality

is violated for any of the bounding quantities, then we can
certainly conclude that the given set of states cannot be
perfectly locally distinguished. However, if the inequality is
satisfied, then no such definite conclusion can be drawn.

For pure states the bounding quantities (from right to
left) correspond to well-defined distance-like entanglement
measures, namely, geometric measure, relative entropy, and
robustness of entanglement, thereby allowing a clear inter-
pretation: the number of pure states that can be perfectly
distinguished by LOCC is bounded by the total dimension over
average entanglement. This therefore clarifies the matter to a
great extent for pure states. For mixed states, however, no such
clear conclusion can be drawn, and the role of entanglement
still remains unclear. Applications of inequality (1) for LOCC
discrimination of interesting multipartite ensembles having
certain group symmetries can be found in Ref. [15].

The purpose of the present work is to investigate how local
distinguishability of a given set of orthogonal mixed states
depend on entanglement and mixedness of the states. We
first show that local distinguishability of mixed states can be
completely characterized by local distinguishability of their
supports. In particular, we establish a simple equivalence be-
tween local discrimination of orthogonal states and subspaces
in the sense that a given set of density matrices can be perfectly
distinguished by LOCC if and only if their supports are also
perfectly locally distinguishable, and moreover, if the states
can be perfectly distinguished, then the separable measurement
that distinguishes the states also distinguishes the supports and
vice versa. We use this fact to obtain the following results:
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(a) state-specific properties such as inseparability and mixed-
ness of the density matrices (whose local distinguishability is
under consideration) do not have any special role in determin-
ing their local distinguishability, (b) local distinguishability
of mixed states may be completely determined by maximal
pure-state entanglement within their supports, and (c) the
number of LOCC distinguishable orthogonal mixed states
can be bounded by the quantities that are optimized over all
orthogonal mixed-state ensembles having identical supports.
We now briefly discuss results (a)–(c).

For result (a), we show that the state-specific properties
such as inseparability and mixedness of the given mixed states
do not have any fundamental role in determining their local
distinguishability. To see this, suppose S = {σ1,σ2, . . . ,σN }
is a set of orthogonal density matrices whose local distin-
guishability is under question. Let {s1,s2, . . . ,sN } be the set of
orthogonal subspaces where si is the support of σi . It is clear
that infinitely many sets like S exist, where each set contains
N orthogonal density matrices with the property that si is the
support of its ith element. Let Q be the collection of all such
sets; that is, Q = {S,S′, . . . }. We then show that either every
set in Q is perfectly distinguishable by LOCC or none of them
are, regardless of how entangled or mixed the states in a given
set are. That is, if S is perfectly distinguishable by LOCC,
then so is any set, say S′ ∈ Q and vice versa, even though
average entanglement or mixedness could be very different
for the states in S and S′ (for instance, the density matrices
in S may be highly entangled, whereas the density matrices
in S′ may be very weakly entangled). We call this property
subspace degeneracy. Thus the state-specific properties of the
density matrices σi do not have any special role as far as their
local distinguishability is concerned.

For results (b) and (c), we use the above observations
to present upper bounds on the number of perfectly locally
distinguishable orthogonal mixed states. In particular, we
obtain two kinds of upper bounds. The first one shows that the
number of orthogonal density matrices that can be perfectly
distinguished locally is bounded above by the total dimension
over the average of maximal pure state entanglement in the
supports of the density matrices. This bound is not necessarily
optimal but depends only on pure-state entanglement within
the supports of the states and therefore may be easy to compute
in many instances. This shows that local distinguishability of
mixed states may be determined by pure-state entanglement
alone. The second bound is optimal in the sense that it opti-
mizes the bounding quantities over all orthogonal ensembles
(satisfying certain conditions) admissible within the supports
of the density matrices.

II. NECESSARY CONDITIONS FOR PERFECT LOCC
STATE DISCRIMINATION

Let H be the Hilbert space of a composite quantum system
and D = dimH. Throughout this paper we consider only
finite-dimensional systems. We note that any measurement
realized by LOCC is separable (the converse is not true [4]). A
separable measurement � = {�1,�2, . . . ,�n} on H is a pos-
itive operator-valued measure (POVM) satisfying

∑n
i=1 �i =

IH, where �i is a separable, positive semidefinite operator
for every i. Therefore, if a set of quantum states is perfectly

distinguishable by LOCC, then there exists a separable
measurement distinguishing the states. For a necessary and
sufficient condition for perfect discrimination by separable
measurements, see Ref. [16]. We now state two necessary
conditions for perfect LOCC state discrimination. The first
condition and its variants can be found in Refs. [12–14,16,19]
and the second condition is due to Ref. [14].

Proposition 1. If the orthogonal quantum states
σ1,σ2, . . . ,σN are perfectly distinguishable by LOCC, then
it is necessary that there exists a separable POVM � =
{�1,�2, . . . ,�N } such that

Tr(�iσj ) = δij . (2)

Proposition 2. A necessary condition for perfect LOCC
discrimination of the states σ1,σ2,...,σN by a separable POVM
� = {�1,�2, . . . ,�N } is that the following inequality is
satisfied:

N∑

i=1

d(σi) � D, (3)

where d(σi) := min Tr(�i )
Tr(σi�i )

such that 0 � �i

Tr(σi�i )
� I.

Let us remark that the above necessary condition is
particularly useful for bounding the number of states that can
be perfectly discriminated by LOCC [14].

III. RESULTS

A. Local discrimination of orthogonal subspaces

We first explain what we mean by LOCC discrimination
of orthogonal subspaces (for discrimination of nonorthogonal
subspaces using global measurements, see Ref. [24]). In local
discrimination of orthogonal subspaces, a pure quantum state
shared between several observers is guaranteed to belong to
a subspace chosen from a known collection of orthogonal
subspaces. The goal is to determine by LOCC to which
subspace the state belongs without making any error. We
assume that within each subspace each state is equally likely
and so are the subspaces. We will say that the subspaces
{S1,S2, . . . ,Sk} are perfectly locally distinguishable if we can
perfectly distinguish the set of density matrices {ρ1,ρ2, . . . ,ρk}
by LOCC, where ρi is the normalized projector onto the
subspace Si . Clearly, the problem of local discrimination of
orthogonal subspaces is a special case of the general problem.
We begin with a simple but useful lemma.

Lemma 1. If the orthogonal subspaces {S1,S2, . . . ,Sk}
are perfectly LOCC distinguishable, then so are the density
matrices {ω1,ω2, . . . ,ωk}, where, ωi ∈ Si .

Proof. That the subspaces {S1,S2, . . . ,Sk} are perfectly
LOCC distinguishable means that the set of orthogonal
density matrices {ρ1,ρ2, . . . ,ρk}, the normalized projectors
onto the subspaces, can be perfectly distinguished. Thus
there exists a locally implementable separable POVM � =
{�1,�2, . . . ,�k} such that Tr(�iρj ) = δij . Denoting ρj =

1
dimSj

�j , where �j is the projection operator onto Sj ,
we get

1

dimSj

Tr(�i�j ) = δij ; (4)
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thus for i �= j the POVM elements {�i} are all orthogonal to
the subspace Sj . Now for any density matrix � and a POVM
M = {Mi : i = 1, . . . ,k} the relation

∑

i

Tr(Mi�) = 1 (5)

is valid. The summation indicates that the sum of the
probabilities must add up to 1 when the measurement M is
performed on the state �, where Tr(Mi�) is the probability
of obtaining outcome i. Suppose the POVM � is implemented
on the given state chosen from {ω1,ω2, . . . ,ωk}. We therefore
have

∑

i

Tr(�iωj ) = 1, (6)

where Tr(�iωj ) is the probability of obtaining outcome i when
the input state is ωj . Because ωj ∈ Sj , ωj must be orthogonal
to all POVM elements �i ; i �= j . Therefore,

Tr(�iωj ) = δij . (7)

Thus the POVM � also perfectly distinguishes the states
{ω1,ω2, . . . ,ωk}. �

B. Equivalence of LOCC discrimination of states and subspaces

For a given set of orthogonal density matrices {ρi : i =
1, . . . ,N}, consider the set of subspaces {S1, . . . ,SN }, where
Si is the support of ρi . The orthogonality of the density
matrices implies that the supports are orthogonal. We now
show that the problems of local discrimination of orthogonal
states and subspaces are equivalent in the following sense.

Theorem 1. The density matrices ρ1, . . . ,ρN are perfectly
distinguishable by LOCC if and only if their supports are.
Moreover, if the states are perfectly distinguishable, then the
measurement that distinguishes the states also distinguishes
their supports and vice versa.

Proof. Let � = {�i : i = 1, . . . ,N} be the POVM that
perfectly distinguishes the set of density matrices {ρi : i =
1, . . . ,N} by LOCC. Therefore, Tr(�iρj ) = δij . Let sj be the
support of ρj and 	j = 1

|Pj |Pj , where Pj is the projector onto
the subspace sj and |Pj | = dim sj . To prove that the POVM
� also perfectly distinguishes the subspaces S1,S2, . . . ,SN ,
we only need to show that Tr(�i	j ) = δij . That the POVM is
locally implementable holds by the assumption that it perfectly
distinguishes {ρi}. Consider first the diagonal decomposition
of ρj :

ρj =
|Pj |∑

l=1

p
j

l

∣∣φj

l

〉 〈
φ

j

l

∣∣. (8)

From Eq. (5) for every l we have
∑

i

Tr
(
�i

∣∣φj

l

〉〈
φ

j

l

∣∣) = 1. (9)

Also Tr(�iρj ) = δij implies that all POVM elements �i (i �=
j ) are orthogonal to the states {|φj

l 〉 : l = 1, . . . ,dj }. Using this
fact, the above equation reduces to

Tr
(
�i

∣∣φj

l

〉 〈
φ

j

l

∣∣) = δij : ∀l. (10)

Noting that 	j , the normalized projector onto the subspace sj ,
can be written as

	j = 1

|Pj |
|Pj |∑

l=1

∣∣φj

l

〉 〈
φ

j

l

∣∣, (11)

we immediately obtain Tr(�i	j ) = δij using Eqs. (10) and
(11). Thus the subspaces can be perfectly distinguished,
and the POVM � distinguishes them. The rest of the
proof, namely, the POVM that perfectly distinguishes the
orthogonal subspaces {S1,S2, . . . ,SN } also distinguishes
the orthogonal density matrices {ρ1, . . . ,ρN }, follows from
Lemma 1. �

The condition in Theorem 1, though remarkably sim-
ple and intuitive, is able to capture the essence of local
state discrimination and, in particular, the role of entan-
glement therein. In particular, Theorem 1 leads to what
we call “subspace degeneracy,” which is discussed in the
next section.

C. Subspace degeneracy

As noted in the Introduction, intuitively, subspace de-
generacy means that any given set S of orthogonal density
matrices belongs to a collection of infinitely many sets having
identical distinguishability properties no matter how different
the average entanglement of the individual sets are. For a given
set S = {σi : i = 1, . . . ,N} whose local distinguishability is
under consideration, consider another orthogonal set S′ =
{σ ′

i : i = 1, . . . ,N} with the property that for every i, σi and
σ ′

i have identical support. Let Q = {S′} be the collection
of all such orthogonal sets S′. Clearly, S is also a member
of Q. In other words, given a set of orthogonal subspaces
S = {si : i = 1, . . . ,N}, Q is simply the collection of only
those sets S′ = {σ ′

i : i = 1, . . . ,N} with the properties that
the for every i, σ ′

i ∈ si and rank(σ ′
i ) = dim si . By simple

application of Theorem 1 we obtain the next result.
Proposition 3. All orthogonal sets in Q are either perfectly

LOCC distinguishable or none of them are, regardless of the
average entanglement of the individual sets. Furthermore, if
the sets can be perfectly distinguished by LOCC, then there
is a separable measurement �Q that distinguishes every set
in Q.

Simply put, no matter how different the average en-
tanglement of the sets might be, as far as perfect local
distinguishability is concerned, they are either equally hard
or equally easy to distinguish. This is in sharp contrast to
pure states, where the result in Ref. [14] implies different
upper bounds for pure ensembles of the same cardinality
but having different average entanglement. Thus, unlike
pure states, there cannot be any direct correlation between
entanglement (under any reasonable measure) of the states
and their local distinguishability. Furthermore, entanglement
or mixedness of the states in S is not crucial in determining
whether S can be perfectly distinguished or not by LOCC.
We use this fact (Proposition 3) to obtain two kinds of upper
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bounds on the number of perfectly LOCC distinguishable
orthogonal states.

D. Upper bounds on the number of perfectly LOCC
distinguishable orthogonal states

In this section we give two kinds of upper bounds on the
number of perfectly LOCC distinguishable density matrices.
In the first one, the bounding quantities depend only on the
maximal pure-state entanglement in the supports of the density
matrices, whereas in the second we use Proposition 3 to
optimize the bounding quantities over all sets in Q.

We first show how local distinguishability of a set of
orthogonal density matrices can be related to the local distin-
guishability of a set of orthogonal pure states satisfying certain
conditions. For the orthogonal density matrices σ1, . . . ,σN , let
S = {|ψ1〉,|ψ2〉, . . . ,|ψN 〉} be a collection of orthogonal pure
states such that for every i, |ψi〉 ∈ si , where si is the support
of σi .

Proposition 4. If the states |ψ1〉,|ψ2〉, . . . ,|ψN 〉 are not
perfectly distinguishable by LOCC, then the density matrices
σ1, . . . ,σN cannot be perfectly distinguished by LOCC.

Proof. The proof of the second statement is by contradic-
tion. Suppose states |ψ1〉,|ψ2〉, . . . ,|ψN 〉 cannot be perfectly
distinguished by LOCC but there is a LOCC protocol that
perfectly distinguishes the density matrices σ1, . . . ,σN . From
Theorem 1 we know that if the density matrices σ1, . . . ,σN are
perfectly LOCC distinguishable, then one can also perfectly
distinguish the orthogonal subspaces s1,s2, . . . ,sN , where si

is the support of σi . This implies, by Lemma 1, that the
states |ψ1〉,|ψ2〉, . . . ,|ψN 〉 can also be perfectly distinguished
locally because for every i, |ψi〉 ∈ si , which contradicts our
assumption. �

It is important to note that if the states |ψ1〉,|ψ2〉, . . . ,|ψN 〉
can be perfectly distinguished locally, then it does not mean
that the density matrices σ1, . . . ,σN can also be reliably
distinguished. For example, consider the following density
matrices in 2 ⊗ 2: σ1 = α|+〉〈+| + (1 − α)|01〉〈01| and
σ2 = β|−〉〈−| + (1 − β)|10〉〈10|, where α �= 0 and β �=
0. Clearly, s1 = span{|+〉,|01〉} and s2 = span{|−〉,|10〉}.
While any two orthogonal vectors |ψ1〉,|ψ2〉, where |ψi〉 ∈ si

for i = 1,2, are perfectly LOCC distinguishable, the density
matrices σ1 and σ2 are not. The reason is that neither of the
subspaces can be spanned only by product states, thereby
violating a necessary condition for perfect local discrimination
by separable measurements [16].

To arrive at our upper bound we will use the previous
proposition and inequality (1). For a set of orthogonal pure
states {|φ1〉,|φ2〉, . . . ,|φN 〉} inequality (1) becomes

N � D

1 + R(|φi〉)
� D

2ER (|φi 〉)
� D

2Eg(|φi 〉)
, (12)

where the corresponding bounding quantities have been
defined before.

Now, if the states |ψ1〉,|ψ2〉, . . . ,|ψN 〉 as defined in Propo-
sition 4 violate the above inequality, then we can certainly
conclude that the density matrices σ1, . . . ,σN are not perfectly
distinguishable by LOCC. Therefore, if the density matrices
σ1,σ2, . . . ,σN are perfectly LOCC distinguishable, then the

following inequality holds:

N � D

1 + R(|ψi〉)
� D

2ER (|ψi 〉)
� D

2Eg(|ψi 〉)
. (13)

Note that the inequality may still be satisfied even if the density
matrices are locally indistinguishable. The example given after
Proposition 4 conforms to this fact. The crucial point is that
if the density matrices are locally distinguishable, then the
inequality will not be violated.

Naturally, we would like to maximize the bounding quan-
tities over all orthogonal pure state ensembles like S. Let
Smax = {|�1〉,|�2〉, . . . ,|�N 〉} be the set of orthogonal pure
states with the properties that, for every i, (a) |�i〉 ∈ si and
(b) R(|�i〉) = maxψ∈si

R(|ψ〉). The first condition ensures that
the states belong to the supports of the density matrices, so that
Proposition 4 is applicable. The second condition reflects the
fact that for every i, |�i〉 is the state with maximum pure state
entanglement in the support of σi . Thus by replacing the pure
state ensemble S by Smax in Eq. (13) we have the following
result.

Theorem 2. If the density matrices σ1,σ2, . . . ,σN are
perfectly LOCC distinguishable, then

N � D

1 + R(|�i〉)
� D

2ER (|�i 〉)
� D

2Eg(|�i 〉)
, (14)

where, for every i, |�i〉 ∈ si , R(�i) = maxψ∈si
R(|ψ〉).

Let us note that an exact analytical formula for robustness R

is known for pure bipartite states [21]. Therefore, for any given
set of bipartite orthogonal density matrices, the upper bound
can be explicitly calculated (one needs to optimize to get the
best possible bound). Inequality (14) shows that mixed states
also admit pure-state-like correlation between entanglement
and the number of locally distinguishable states. This allows
us to make a general statement on the connection between
entanglement and local distinguishability: The number of
perfectly LOCC distinguishable quantum states, pure or
mixed, is bounded above by the total dimension over the
average of maximal pure-state entanglement in the supports
of the states. It is, however, important to note that the quantity,
second from left, in inequality (1) is always stronger than the
leftmost quantity, in Eq. (14) [25].

Our second bound can be considered to be the optimized
version of the general mixed-state bound given by (1).
From Proposition 3 we know that if set S is perfectly
LOCC distinguishable, then so is any set S′ ∈ Q, and the
measurement that distinguishes S also distinguishes any S′
and vice versa. Noting that the sets are of same cardinality, it
simply follows that an upper bound on the number of perfectly
LOCC distinguishable states for any S′ is also an upper bound
for S. The optimal bound is thus obtained by maximizing the
bounding quantities over all S′.

For the given set S = {σi ; i = 1, . . . ,N}, let Qi be the set
of all density matrices in si having rank equal to dim si , where
si is the support of σi . Define the following quantities:

Ri = max
σ ′′∈Qi

R(σ ′′),

Ei = max
σ ′′∈Qi

[ER(σ ′′) + S(σ ′′)],

Gi = max
σ ′′∈Qi

G(σ ′′),
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whereR(σ ′′) := α−1[1 + Rg(σ ′′)], with α being the maximum
eigenvalue of σ ′′, Rg(σ ′′) is the global robustness of entangle-
ment [21], ER(σ ′′) is the relative entropy [22], S(σ ′′) is the von
Neumann entropy, and G(σ ′′) is the geometric measure [14].

Theorem 3. If the set of states S = {σi ; i = 1, . . . ,N} is
perfectly distinguishable by LOCC, then the number of states
is bounded by

N � D/d(σi) � D/Ri � D/2Ei � D/2Gi , (15)

where xi = 1
N

∑N
i=1 xi denotes the average.

Proof. It is sufficient to show that

d(σi) � Ri � Ei � Gi . (16)

Inequality (15) is then obtained by combining Proposition 2
and the above inequality and dividing by N . The proof follows
along lines very similar to that in Ref. [14].

It was shown in Ref. [14] that we can write d(σi) = min( 1
λ

)
such that ∃ 	′, satisfying

�̃i = λiPi + (1 − λi |Pi |) 	′ ∈ S (17)

along with the conditions

Tr(Pi	
′) = 0, (18)

〈φ|�̃i |φ〉 � λ ∀|φ〉, (19)

where �̃i = �i/Tr(�i),Pi is the projector onto si (the support
of σi), |Pi | = dim si , and S is the set of separable density
matrices. Recall that Qi is the set of all density matrices in si

having rank equal to |Pi |. Now observe that for any density
matrix σ ′′ ∈ Qi , we have d(σ ′′) = d(σi) [26]. Now σ ′′ can be
expressed as

σ ′′ = αPi − βσ ′′′, (20)

where, α is the maximum eigenvalue of σ ′′, β = |Pi |α − 1,
and σ ′′′ ∈ si . Equation (17) can therefore be rewritten in the
form,

�̃i = λi

α
(σ ′′ + γ 	′′) ∈ S (21)

where γ = (α − λi)/λi . Noting that the generalized (or global)
robustness of entanglement [21] of Rg(σ ) of any state σ is
defined by Rg(σ ) = min t such that there exists a state 	

satisfying

1

1 + t
(σ + t	) ∈ ς, (22)

where ς is a separable state, we immediately obtain Rg(σ ′′) �
γ . Thus, for any σ ′′ ∈ Qi, we have

d(σ ′′) � α−1[1 + Rg(σ ′′)] (23)

Thus,

d(σi) � Ri = max
σ ′′∈Qi

R(σ ′′), (24)

where R(σ ′′) := α−1[1 + Rg(σ ′′)]. The rest of the proof is
straightforward. It is easy to show that for any density matrix

σ ′′ ∈ Qi , the following inequality holds:

r(σi) � E(σ ′′) � G(σ ′′). (25)

Thus we obtain

Ri � r(σi) � Ei = max
σ ′′∈Qi

E(σ ′′) � Gi = max
σ ′′∈Qi

G(σ ′′). (26)

Combining Eqs. (24) and (26), we get Eq. (16). This concludes
the proof. �

A few remarks are in order.
(i) By construction, for every bounding quantity, R, E , and

G, there always exists a set of orthogonal quantum states S′ =
{σ ′

i ; i = 1,...,N} ∈ Q maximizing it, which is the essence of
the entire optimality argument. For example, one can construct
an orthogonal set S′

R(σ ′) = {σ ′
i ; i = 1, . . . ,N} ∈ Q, such that

for every i, Ri = R(σ ′
i ), and similarly for the quantities E

and G.
(ii) A nice feature of the above inequality is that the

hierarchical form holds even when the bounding quantities
are independently maximized (this is clear from the proof),
and different sets may maximize different quantities.

(iii) For any set S′′ = {σ ′′
i ; i = 1, . . . ,N} ∈ Q, the follow-

ing inequality holds [inequality (15) is simply the optimized
version of the following one]:

N � D/d(σi) � D/R(σ ′′) � D/2E(σ ′′) � D/2G(σ ′′). (27)

IV. CONCLUSIONS

We have considered the problem of local distinguishability
of orthogonal mixed states. In particular, we have investigated
how entanglement and mixedness of the states influence their
local distinguishability. We have shown a general equiva-
lence between local discrimination of orthogonal states and
subspaces which in turn implies that local distinguishability
of mixed states is completely determined by whether or not
their supports are also locally distinguishable. This led to the
following results: (a) state-specific properties such as insep-
arability and mixedness of the density matrices do not have
any special role in determining their local distinguishability,
(b) local distinguishability of mixed states may be completely
determined by maximal pure-state entanglement within their
supports, and (c) an upper bound on the number of perfectly
locally distinguishable orthogonal mixed states is given where
the bounding quantities are optimized over all orthogonal
mixed-state ensembles having identical supports.

Although the results obtained in this paper and in
Ref. [14] show that entanglement is a significant factor in
local distinguishability, many questions still remain open.
For example, there are orthogonal product states known to
be locally indistinguishable [4,5], despite being completely
unentangled. Whether there is a deeper reason behind this
phenomena or it is just a consequence of the fact that not
all separable measurements are locally implementable is not
known yet. Obviously, entanglement of the states is a nonissue
here, but entanglement could still be important because,
to implement such separable measurements by LOCC, one
is expected to consume auxiliary entanglement. Thus, it is
necessary to quantify the entanglement cost of such separable
measurements. Another interesting class of states requiring
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further investigation are those which, despite being entangled
and locally indistinguishable, do not violate the inequalities
presented in this paper or in Ref. [14]. All these examples
show that there is more to local distinguishability of quantum
states than what can be captured through entanglement only.
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